MATLAB®
Data Import and Export

[
i R
V/
N
y.

MATLAB

R2019b - ) MathWorks:



X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Data Import and Export
© COPYRIGHT 2009-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.


https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.9 (Release 2009b)
Revised for Version 7.10 (Release 2010a)
Revised for Version 7.11 (Release 2010b)
Revised for Version 7.12 (Release 2011a)
Revised for Version 7.13 (Release 2011b)
Revised for Version 7.14 (Release 2012a)
Revised for Version 8.0 (Release 2012b)
Revised for Version 8.1 (Release 2013a)
Revised for Version 8.2 (Release 2013b)
Revised for Version 8.3 (Release 2014a)
Revised for Version 8.4 (Release 2014b)
Revised for Version 8.5 (Release 2015a)
Revised for Version 8.6 (Release 2015b)
Rereleased for Version 8.5.1 (Release
2015aSP1)

Revised for Version 9.0
Revised for Version 9.1
Revised for Version 9.2
Revised for Version 9.3
Revised for Version 9.4
Revised for Version 9.5
Revised for Version 9.6
Revised for Version 9.7

Release 2016a)
Release 2016b)
Release 2017a)
Release 2017b)
Release 2018a)
Release 2018b)
Release 2019a)
Release 2019b)

Py






Contents

File Opening, Loading, and Saving

1]

Supported File Formats for Import and Export ............. 1-2
Methods for ImportingData ............................ 1-7
Tools that Import Multiple File Formats ................. 1-7
Importing Specific File Formats . ...................... 1-7
Importing Data with Low-Level /O .. ............. ... ... 1-8
Import Images, Audio, and Video Interactively ............. 1-9
Viewing the Contentsofa File ........................ 1-9
Specifying Variables . ............ ... ... .. ... ... ... 1-10
Generating Reusable MATLABCode ................... 1-11
Import or Export a Sequence of Files . ... ............... 1-13
Save and Load Parts of Variables in MAT-Files ............ 1-14
Save and Load Using the matfile Function .............. 1-14
Load Parts of Variables Dynamically ................... 1-16
Avoid Inadvertently Loading Entire Variables ............ 1-17
Partial Loading and Saving Requires Version 7.3 MAT-Files .. 1-17
MAT-File Versions ................... ... ... ... ...... 1-19
Overview of MAT-File Versions ....................... 1-19
Save to Nondefault MAT-File Version . ................. 1-21
Data Compression . ..........c.ouiiiiinennennn.nn 1-21
Accelerate Save and Load Operations for Version 7.3 MAT-Files
............................................ 1-22
Growing Arrays Using matfile Function .................. 1-23

Unexpected Results When Loading Variables Within a Function
................................................ 1-25



Create Temporary Files . ... ........................... 1-27

2|

Import TextFiles ................ ... ... ... ... ........
Import Text Files Using the Import Tool ... ..............
Import Text Files Using readtable ......................
Import Data from Text Files as Other Data Types ..........

Read Text File Data Using ImportTool ................... 2-5
Select Data Interactively ............. ... .. ........ 2-5
Import Data from Multiple Text Files . .................. 2-8

Import Dates and Times from Text Files ................. 2-10
Import Numeric Data from Text Files into Matrix ......... 2-15
Import Comma-SeparatedData ....................... 2-15
Import Delimited NumericData ...................... 2-16
Import Mixed Data from Text File into Table . ............ 2-18
Import Block of Mixed Data from Text File into Table or Cell
ATTaY . .. e 2-22
Write Datato Text Files ... ............................ 2-27
Export Tableto TextFile .............. ... ........... 2-27
Export Cell Arrayto Text File . ....................... 2-28
Export Numeric Array to Text File .................... 2-30
WritetoaDiaryFile ... .............................. 2-31
Read Collection or Sequence of Text Files . .............. 2-32
Import Block of Numeric Data from Text File . ............ 2-35

vi Contents



Spreadsheets

3|

Import Spreadsheets . ........... ... ... ... ... ... .... 3-2
Import Spreadsheet Data Using the Import Tool ........... 3-2
Import Spreadsheet Data Using readtable ............... 3-3
Import Spreadsheet Data as Other Data Types . ........... 3-4

Read Spreadsheet Data Using Import Tool ................ 3-5
Select Data Interactively .............. ... ... .. ....... 3-5
Import Data from Multiple Spreadsheets . ............... 3-7
Paste Data from Clipboard ........................... 3-7

Read Spreadsheet Data into Array or Individual Variables . . . 3-9

Read Spreadsheet DataintoTable ...................... 3-12

Read Collection or Sequence of Spreadsheet Files . ...... .. 3-16

Write Data to Excel Spreadsheets . ..................... 3-19
Write Tabular Data to Spreadsheet File . ................ 3-19
Write Numeric and Text Data to Spreadsheet File .. ....... 3-20
Disable Warning When Adding New Worksheet ........... 3-21
Format Cellsin Excel Files ... ....................... 3-21

Define Import Options for Tables .. ..................... 3-22

4

Import Text Data Files with Low-Level I/O ... .............. 4-2
OVEIVIEW . . . e 4-2
Reading Data in a Formatted Pattern ................... 4-3
Reading Data Line-by-Line . .......................... 4-5
Testing for End of File (EOF) .. ....................... 4-6
Opening Files with Different Character Encodings ......... 4-9

Import Binary Data with Low-Level I/O ... ............... 4-10
Low-Level Functions for ImportingData ................ 4-10



viii

Contents

Reading Binary DatainaPFile ........................ 4-10

Reading PortionsofaFile ........................... 4-13
Reading Files Created on Other Systems ............... 4-15
Opening Files with Different Character Encodings ........ 4-16
Export to Text Data Files with Low-Level I/O ............. 4-18
Write to Text Files Using fprintf . ..................... 4-18
Append To or Overwrite Existing Text Files .............. 4-20
Open Files with Different Character Encodings ........... 4-23
Export Binary Data with Low-Level I/O . ................. 4-24
Low-Level Functions for ExportingData ................ 4-24
Write Binary DatatoaPFile .......................... 4-24
Overwrite or Append to an Existing Binary File ........... 4-25
Create a File for Use on a Different System ............. 4-27
Open Files with Different Character Encodings ........... 4-28
Write and Read Complex Numbers .................... 4-28

Internet of Things (IoT) Data

S|

Aggregate Data in ThingSpeak Channel . ................. 5-2
Regularize Irregularly Sampled Data .................... 5-4
Plot Data Read from ThingSpeak Channel ................ 5-6

Read ThingSpeak Data and Predict Battery Discharge Time
with Linear Fit .. .......... ... ... ... ... ... ... ... ... 5-8
Images

6|

Importing Images .................................... 6-2
Getting Information About Image Files .................. 6-2
Reading Image Data and Metadata from TIFF Files . ....... 6-3



ExportingtoImages ........................ ...
Exporting Image Data and Metadata to TIFF Files . ........

Scientific Data

7

Import CDF Files Using Low-Level Functions .............. 7-2
Represent CDF Time Values . ........................... 7-5
Import CDF Files Using High-Level Functions ............. 7-6
ExporttoCDF Files ... ........ ... ... . ... ... ......... 7-10
Map NetCDF API Syntax to MATLAB Syntax .............. 7-13
Import NetCDF Files and OPeNDAPData ................ 7-15
MATLAB NetCDF Capabilities .. ..................... 7-15
Read from NetCDF File Using High-Level Functions . ...... 7-15
Find All Unlimited Dimensions in NetCDF File ........... 7-18
Read from NetCDF File Using Low-Level Functions ....... 7-19
Resolve Errors Reading OPeNDAPData ................. 7-23
Exportto NetCDF Files . .............................. 7-24
MATLAB NetCDF Capabilities . ...................... 7-24
Create New NetCDF File From Existing File or Template ... 7-24
Merge Two NetCDF Files . .......... ... .. ........ 7-26
Write Data to NetCDF File Using Low-Level Functions . . ... 7-28
Importing Flexible Image Transport System (FITS) Files . .. 7-31
Importing HDF5 Files . ... ............................ 7-33
OVEIVIEW . . . e 7-33
Using the High-Level HDF5 Functions to Import Data . . . ... 7-33
Using the Low-Level HDF5 Functions to Import Data ... ... 7-40
Exportingto HDF5 Files .. ... ......................... 7-41
OVETVIEW . . ottt e e e e e e e et e 7-41

ix



Using the MATLAB High-Level HDF5 Functions to Export Data

............................................ 7-41
Using the MATLAB Low-Level HDF5 Functions to Export Data
............................................ 7-42
Working with Non-ASCII Characters in HDF5 Files ... ... .. 7-50
Create Dataset and Attribute Names Containing Non-ASCII
Characters . ...... ...t 7-50
Create Variable-Length String Data Containing Non-ASCII
Characters . ...... ... 7-51
Import HDF4 Files Programatically ..................... 7-54
OVeIVIEW . . ... 7-54
Using the MATLAB HDF4 High-Level Functions .......... 7-54
Map HDF4 to MATLAB Syntax . ........................ 7-58
Import HDF4 Files Using Low-Level Functions ............ 7-60
Import HDF4 Files Interactively ........................ 7-63
Step 1: Opening an HDF4 File in the HDF Import Tool . . . .. 7-63
Step 2: Selecting a Data Setinan HDF File ............. 7-65
Step 3: Specifying a Subset of the Data (Optional) ........ 7-66
Step 4: Importing Data and Metadata .................. 7-66
Step 5: Closing HDF Files and the HDF Import Tool . ... ... 7-67
Using the HDF Import Tool Subsetting Options ........... 7-67
About HDF4 and HDF-EOS ............................ 7-80
Exportto HDF4 Files .. .............. ... .............. 7-81
Write MATLAB Datato HDF4 File ..................... 7-81
Manage HDF4 Identifiers .. ......................... 7-83

Audio and Video

8|

Read and Write Audio Files . ... ............ .. .. .. ....... 8-2
Record and PlayAudio ................................ 8-5
Record Audio .. ....... . i 8-5

X Contents



PlayAudio . ...... ... 8-7

Record or Play Audio within a Function ................. 8-8
Read Video Files .................................... 8-10
Supported Video and Audio File Formats ................ 8-15

Video Datain MATLAB . ....... ... . .. 8-15

Audio Datain MATLAB . ... ... .. i 8-17
Convert Between Image Sequences and Video ............ 8-20

XML Documents

9

Importing XML Documents ............................. 9-2
What Is an XML Document Object Model (DOM)? .......... 9-2
Example — Finding Textinan XML File . ................ 9-3

Exporting to XML Documents ........................... 9-5
Creatingan XML File ... ... ... 9-5
Updating an Existing XML File .. ...................... 9-7

Memory-Mapping Data Files
10

Overview of Memory-Mapping ......................... 10-2
What Is Memory-Mapping? .. ..........c.ouiiiin... 10-2
Benefits of Memory-Mapping .. ...................... 10-2
When to Use Memory-Mapping . ...........covvvvun... 10-4
Maximum Size of aMemoryMap ..................... 10-5
ByteOrdering . ........ ... .. 10-5

Map FiletoMemory ................. ..., 10-6
Create a Simple MemoryMap . ..............cu.... 10-6
Specify Format of Your Mapped Data . ................. 10-7
Map Multiple Data Types and Arrays .................. 10-8
SelectFiletoMap . ..., 10-10

xi



xii

Contents

Read from Mapped File ... ...........................

Write to Mapped File . ...............................
Write to Memory Mapped as Numeric Array ............
Write to Memory Mapped as Scalar Structure ..........
Write to Memory Mapped as Nonscalar Structure ........
Syntaxes for Writing to Mapped File . .................
Work with Copies of Your Mapped Data . ..............

Delete Memory Map ...............0tiiiniieinnnn...
Ways to Deletea MemoryMap . .....................
The Effect of Shared Data Copies On Performance ... ....

Share Memory Between Applications ..................

11|

Server Authentication . ................ .. .. .. ... ... ...
Server Authentication For RESTful Web Services .........
Server Authentication For HTTP Web Services ...........

Proxy Server Authentication ...........................
RESTful Web Services . .. ...
HTTP Web Services . ...,
Use MATLAB Web Preferences For Proxy Server Settings . . .
Use System Settings For Proxy Server Settings ..........

MATLAB and Web Services Security ....................
MATLAB Does Not Verify Certificate Chains .............

Download Data from Web Service ......................
Convert Data from Web Service .......................
Download Web Page and Files ........................

Example — Use the webread Function ................
Example — Use the websave Function ................



Call Web Services from Functions ... .................. 11-16

12

Error Messages Concerning Web Service Options ........ 11-17
SendEmail ............ ... ... ... . 11-18
Perform FTP File Operations . ........................ 11-20
Display Hyperlinks in the Command Window ............ 11-23

Create Hyperlinksto Web Pages . .................... 11-23

Transfer Files Using FTP . ...................... ... 11-23

Large Data
Getting Started with MapReduce ....................... 12-3

What Is MapReduce? ........... ... ... ... .. ........ 12-3

MapReduce Algorithm Phases . ...................... 12-4

Example MapReduce Calculation ..................... 12-5
Write a Map Function ... ............................ 12-10

Role of Map Function in MapReduce ................. 12-10

Requirements for Map Function ..................... 12-11

Sample Map Functions ........... ... ... ... ....... 12-12
Write a Reduce Function . ........................... 12-15

Role of the Reduce Function in MapReduce ............ 12-15

Requirements for Reduce Function ................... 12-16

Sample Reduce Functions . ......................... 12-17
Speed Up and Deploy MapReduce Using Other Products . . 12-20

Execution Environment ................... ... ..... 12-20

Runningin Parallel . ........ ... . . ... 12-20

Application Deployment .. ........... ... ... ... .... 12-20
Build Effective Algorithms with MapReduce ............ 12-22
Debug MapReduce Algorithms ........................ 12-25

Set Breakpoint . ........ ... ... ... .. ... . 12-25

Execute mapreduce ........... ... ... ... ... 12-26

Step Through Map Function ........................ 12-26

xiii



xiv

Contents

Step Through Reduce Function ...................... 12-28

Analyze Big Data in MATLAB Using MapReduce ......... 12-32
Find Maximum Value with MapReduce ................. 12-43
Compute Mean Value with MapReduce ................. 12-46
Compute Mean by Group Using MapReduce ............. 12-50
Create Histograms Using MapReduce .................. 12-56
Simple Data Subsetting Using MapReduce .............. 12-64
Using MapReduce to Compute Covariance and Related
Quantities . ........ ... ... 12-72
Compute Summary Statistics by Group Using MapReduce
............................................... 12-79
Using MapReduce to Fit a Logistic Regression Model . . . .. 12-87
Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce
............................................... 12-95
Compute Maximum Average HSV of Images with MapReduce
.............................................. 12-101
Getting Started with Datastore . ..................... 12-109
What Isa Datastore? . .......... ..., 12-109
Create and Read from a Datastore .................. 12-110
Select Datastore for File Format or Application ......... 12-114
Datastores for Standard File Formats ................ 12-114
Datastores for Specific Applications ................. 12-115
Custom File Formats . .............ccoiiinnnnnn. 12-117
Nondeterministic Datastores ...................... 12-117
Work with Remote Data ............................ 12-118
Amazon S3 ... .. 12-118
Microsoft Azure Storage Blob . ..................... 12-120
Hadoop Distributed File System .................... 12-122



Read and Analyze Large Tabular Text File .............. 12-125

Read and Analyze Image Files .. ..................... 12-128
Read and Analyze MAT-File with Key-Value Data . ....... 12-133
Read and Analyze Hadoop Sequence File . ............. 12-137
Develop Custom Datastore . ......................... 12-139
OVETVIEW . . ottt e e e e 12-139
Implement Datastore for Serial Processing ............ 12-140
Add Support for Parallel Processing ................. 12-143
Add Support forHadoop . ........... ... ... ....... 12-144
Add Support for Shuffling ......................... 12-145
Validate Custom Datastore ........................ 12-146
Testing Guidelines for Custom Datastores ............. 12-148
UnitTests . ... .. e 12-148
Workflow Tests .. ....... ... . . 12-156
Next Steps ... oo 12-158

Set Up Datastore for Processing on Different Machines or
Clusters ............. ... ... .. 12-159
Save Datastore and Load on Different File System Platform

.......................................... 12-159

Process Datastore Using Parallel and Distributed Computing
.......................................... 12-160
Apache Parquet Data Type Mappings ................. 12-163
Numeric Data Types .. ..., 12-164
TextData Types ... oo v e e e 12-165
Date and Time Data Types . .............n.... 12-165
Tall Arrays for Out-of-MemoryData ................... 12-167
WhatisaTallArray? ............ ... 12-167
Benefitsof TallArrays .. ........ccvviiinn.. 12-167
Creating Tall Tables .. ........ .. ... .. ... 12-167
Creating Tall Timetables ... ...... ... ... ... ... ... 12-169
Creating Tall Arrays . ....... ... .. 12-170
Deferred Evaluation ............................. 12-170
Evaluation withgather ........................... 12-172
Saving, Loading, and Checkpointing Tall Arrays ........ 12-173
Supporting Functions . .............. .. ... ... .. ... 12-174



Deferred Evaluation of Tall Arrays .................... 12-175

Display of Unevaluated Tall Arrays .................. 12-175
Evaluation with gather .. ......................... 12-176
Resolve Errors with gather . ....................... 12-177
Example: Calculate Size of Tall Array ................ 12-177
Example: Multi-pass Calculations with Tall Arrays . ..... 12-178
Summary of Behavior and Recommendations .......... 12-180
Index and View Tall Array Elements . ................. 12-181
Extract Top Rowsof Array ........................ 12-181
Extract Bottom Rows of Array ..................... 12-182
Indexing Tall Arrays ............. ... 12-182
Extract Tall Table Variables ....................... 12-185
Concatenation with Tall Arrays . .................... 12-187
Assignment and Deletion with Tall Arrays ............. 12-187
Extract Specified Number of Rows in Sorted Order . . ... 12-188
Summarize Tall Array Contents . ................... 12-189
Return Subset of Calculation Results . ............... 12-191
Histograms of Tall Arrays ........................... 12-192
Visualization of Tall Arrays .......................... 12-198
Tall Array Plotting Examples . ...................... 12-199
Grouped Statistics Calculations with Tall Arrays ........ 12-207
Extend Tall Arrays with Other Products ............... 12-215
Statistics and Machine Learning . ................... 12-215
Control Where Your Code Runs ..................... 12-215
Work with Databases . ........................... 12-216
Analyze Big Data in MATLAB Using Tall Arrays ......... 12-217
Develop Custom Tall Array Algorithms . ............... 12-228
Reasons to Implement Custom Algorithms ............ 12-228
Supported APIS . ... .. ... . . . ... 12-229
Background: Tall Array Blocks . .................... 12-229
Single-Step Transformation Operation ............... 12-231
Two-Step Reduction Operation . .................... 12-235
Sliding-Window Operations . ....................... 12-239
Control Output Data Type .. ......... ... ... ... ..... 12-245
Coding and Performance Tips . ..................... 12-246

xvi Contents



TCP/IP Support in MATLAB

13|

TCP/IP Communication Overview . ...................... 13-2
Create a TCP/IP Connection ........................... 13-3
Configure Properties for TCP/IP Communication .......... 13-6
Write and Read Data over TCP/IP Interface .............. 13-9
WriteData . ...... ... 13-9
ReadData .........c 13-9
Acquire Data from a Weather Station Server ............ 13-10
Read and Writeuint8 Data .. ............ ... ... ..... 13-11

Bluetooth Low Energy Communication

14

Bluetooth Low Energy Communication Overview . ......... 14-2
Prerequisitesand Setup . .............. ... . ... ... ... 14-2
Bluetooth Low Energy Concepts . ..................... 14-2
Services, Characteristics, and Descriptors .............. 14-3

Find Your Bluetooth Low Energy Peripheral Devices . ... ... 14-5
ScanforDevices ... ... 14-5
ConnecttoaDevice ....... ... . 14-7

Work with Device Characteristics and Descriptors . ........ 14-9
Access Device Characteristics ....................... 14-9
Access Device Descriptors . .......... ... .. 14-12

Collect Data from Fitness Monitoring Devices ........... 14-15

Track Orientation of Bluetooth Low Energy Device . ... ... 14-23

Troubleshooting Bluetooth Low Energy ................ 14-30
Supported Platforms ............ .. ... .. ... ... ..., 14-30
Device Discovery and Connection .................... 14-30
Readand WriteData . ............................ 14-31

xvii






File Opening, Loading, and Saving

* “Supported File Formats for Import and Export” on page 1-2

* “Methods for Importing Data” on page 1-7

* “Import Images, Audio, and Video Interactively” on page 1-9

* “Import or Export a Sequence of Files” on page 1-13

* “Save and Load Parts of Variables in MAT-Files” on page 1-14

* “MAT-File Versions” on page 1-19

* “Growing Arrays Using matfile Function” on page 1-23

» “Unexpected Results When Loading Variables Within a Function” on page 1-25
* “Create Temporary Files” on page 1-27



1 Fie Opening, Loading, and Saving

Supported File Formats for Import and Export

The following table shows the file formats that you can import and export from the
MATLAB application.

In addition to the functions in the table, you also can use the Import Tool to import text
or spreadsheet file formats interactively.

File Content Extension Description Import Export
Function Function
MATLAB formatted |MAT Saved MATLAB load save
data workspace
Partial access of variables [matfile matfile
in MATLAB workspace
Text any, including: |Comma delimited readmatrix writematrix
CSv numbers
XT Delimited numbers readmatrix writematrix
Delimited numbers, ora |textscan none
mix of text and numbers
Column-oriented readtable writetable
delimited numbers or a _
mix of text and numbers |readcell writecell
readvars

1-2




Supported File Formats for Import and Export

File Content Extension Description Import Export
Function Function
Spreadsheet XLS Column-oriented data in |readmatrix writematrix
XLSX worksheet or range of
XLSM spreadsheet readtable writetable
XLSB readcell writecell
(Systems with
Microsoft® readvars
Excel® for
Windows®
only)
XLTM (import
only)
XLTX (import
only)
ODS (Systems
with Microsoft
Excel for
Windows only)
Extensible Markup |XML XML-formatted text xmlread xmlwrite
Language
Data Acquisition DAQ Data Acquisition Toolbox |daqread none
Toolbox™ file
Scientific data CDF Common Data Format See “Common See cdflib
Data Format”
FITS Flexible Image Transport |See “FITS Files” |See “FITS Files”
System
HDF Hierarchical Data Format, |See “HDF4 See “HDF4
version 4, or HDF-EOS v. |Files” Files”
2
H5 HDF or HDF-EOS, version |See “HDF5 See “HDFb5
5 Files” Files”
NC Network Common Data |See “NetCDF See “NetCDF
Form (netCDF) Files” Files”

1-3




1 Fie Opening, Loading, and Saving

File Content Extension Description Import Export
Function Function
Image BMP Windows Bitmap imread imwrite
GIF Graphics Interchange
Format
HDF Hierarchical Data Format
JPEG Joint Photographic
JPG Experts Group
JP2 JPEG 2000
JPF
JPX
J2C
J2K
PBM Portable Bitmap
PCX Paintbrush
PGM Portable Graymap
PNG Portable Network
Graphics
PNM Portable Any Map
PPM Portable Pixmap
RAS Sun™ Raster
TIFF Tagged Image File
TIF Format
XWD X Window Dump
CUR Windows Cursor imread none
resources
ICO Windows Icon resources
Audio (all platforms) |[AU NeXT/Sun sound audioread audiowrite
SND
AIFF Audio Interchange File

1-4

Format




Supported File Formats for Import and Export

File Content Extension Description Import Export
Function Function
AIFC Audio Interchange File
Format, with compression
codecs
FLAC Free Lossless Audio
Codec
OGG Ogg Vorbis
WAV Microsoft WAVE sound
Audio (Windows) M4A MPEG-4 audioread audiowrite
MP4
any Formats supported by audioread none
Microsoft Media
Foundation
Audio (Mac) M4A MPEG-4 audioread audiowrite
MP4
Audio (Linux®) any Formats supported by audioread none
GStreamer
Video (all platforms) |AVI Audio Video Interleave VideoReader |[VideoWriter
M]2 Motion JPEG 2000
Video (Windows) MPG MPEG-1 VideoReader |none
ASF Windows Media®
ASX
WMV
any Formats supported by
Microsoft DirectShow®
Video (Windows 7 or |MP4 MPEG-4 VideoReader |VideoWriter
later) M4V
MOV QuickTime VideoReader |none
any Formats supported by
Microsoft Media
Foundation

1-5




1 Fie Opening, Loading, and Saving

File Content Extension Description Import Export
Function Function
Video (Mac) MP4 MPEG-4 VideoReader |VideoWriter
M4V
MPG MPEG-1 VideoReader |none
MOV QuickTime
any Formats supported by
QuickTime,
including .3gp, .392,
and .dv
Video (Linux) any Formats supported by VideoReader |none
your installed GStreamer
plug-ins, including . ogg
Triangulation STL Stereolithography stlread stlwrite

You can use web services such as a RESTful or WSDL to read and write data in an
internet media type format such as JSON, XML, image, or text. For more information, see:

1-6

“Web Access”

“WSDL (Web Services Description Language)”




Methods for Importing Data

Methods for Importing Data

In this section...

“Tools that Import Multiple File Formats” on page 1-7
“Importing Specific File Formats” on page 1-7

“Importing Data with Low-Level I/O” on page 1-8

Caution When you import data into the MATLAB workspace, the new variables you
create overwrite any existing variables in the workspace that have the same name.

Tools that Import Multiple File Formats
You can import data into MATLAB from a disk file or the system clipboard interactively.

To import data from a file, do one of the following:

JL
On the Home tab, in the Variable section, select Import Data %1,
* Double-click a file name in the Current Folder browser.
* Call uiimport.

To import data from the clipboard, do one of the following:

On the Workspace browser title bar, click (!, and then select Paste.
* Call uiimport.

To import without invoking a graphical user interface, the easiest option is to use the
importdata function.

For a complete list of the formats you can import interactively or with importdata, see
“Supported File Formats for Import and Export” on page 1-2.

Importing Specific File Formats
MATLAB includes functions tailored to import specific file formats. Consider using format-

specific functions instead of importing data interactively when you want to import only a
portion of a file. Many of the format-specific functions provide options for selecting

1-7



1 Fie Opening, Loading, and Saving

1-8

ranges or portions of data. Some format-specific functions allow you to request multiple
optional outputs. This option is not available when you import interactively.

For a complete list of the format-specific functions, see “Supported File Formats for
Import and Export” on page 1-2.

For binary data files, consider “Overview of Memory-Mapping” on page 10-2. Memory-
mapping enables you to access file data using standard MATLAB indexing operations.

Alternatively, MATLAB toolboxes perform specialized import operations. For example, use
Database Toolbox™ software for importing data from relational databases. Refer to the
documentation on specific toolboxes to see the available import features.

Importing Data with Low-Level 1/0

If the Import Wizard, importdata, and format-specific functions cannot read your data,
use low-level I/O functions such as fscanf or fread. Low-level functions allow the most
control over reading from a file, but require detailed knowledge of the structure of your

data. For more information, see:

* “Import Text Data Files with Low-Level I/O” on page 4-2
* “Import Binary Data with Low-Level I/0” on page 4-10



Import Images, Audio, and Video Interactively

Import Images, Audio, and Video Interactively

Import data interactively into MATLAB workspace.

In this section...

“Viewing the Contents of a File” on page 1-9
“Specifying Variables” on page 1-10
“Generating Reusable MATLAB Code” on page 1-11

Note For information on importing text files, see “Read Text File Data Using Import Tool”
on page 2-5. For information on importing spreadsheets, see “Read Spreadsheet Data
Using Import Tool” on page 3-5. For information on importing HDF4 files, see “Import
HDF4 Files Interactively” on page 7-63.

Viewing the Contents of a File

JL
Start the Import Wizard by selecting Import Data <1 or calling uiimport.

To view images or video, or to listen to audio, click the Back button on the first window
that the Import Wizard displays.

A\ Import Wizard IEI@

Selectvariables to import using checkboxes
@ Create variables matching previews,
Create wectars frorm each column using column names,

Create wectars frorm each rony using row narmes,

Wariables in ChTempirmylmage.jpg

Import Marme Siza Bytes Class Mo variable selected For preview,

Bamylmage Ga0xE00:3 1170000 wintd

Help < Back[ Mext = [] Gererate MATLAB code

1-9



1 Fie Opening, Loading, and Saving

1-10

The right pane of the new window includes a preview tab. Click the button in the preview
tab to show an image or to play audio or video.

Irnage Preview mylmage

Shiovy Image

Specifying Variables

The Import Wizard generates default variable names based on the format and content of
your data. You can change the variables in any of the following ways:

* “Renaming or Deselecting Variables” on page 1-10
* “Importing to a Structure Array” on page 1-11

The default variable name for data imported from the system clipboard is
A pastespecial.

If the Import Wizard detects a single variable in a file, the default variable name is the file
name. Otherwise, the Import Wizard uses default variable names that correspond to the
output fields of the importdata function. For more information on the output fields, see
the importdata function reference page.

Renaming or Deselecting Variables
To override the default variable name, select the name and type a new one.

Wariables in C\Termnphlogo.mat

Irmport Mame Size Brytes Class
HE‘ExpoMapFigurePns 1:4 32 double -
HL 4343 14792 daouble
HH m £0x3 1440 double
R 4343 14792 daouble
HH axon 1x1 8 double |E
HH facet 1 & double
HH light 11 8 double
Basnurce 3xl 24 double
HH b 721 56 double
HH g Tl 56 double
HH <k 721 56 double ~



Import Images, Audio, and Video Interactively

To avoid importing a particular variable, clear the check box in the Import column.
Importing to a Structure Array

To import data into fields of a structure array rather than as individual variables, start the
Import Wizard by calling uiimport with an output argument. For example, the sample
file durer.mat contains three variables: X, caption, and map. If you issue the command

durerStruct = uiimport('durer.mat')

and click the Finish button, the Import Wizard returns a scalar structure with three
fields:

durerStruct =
X: [648x509 double]
map: [128x3 double]
caption: [2x28 char]
To access a particular field, use dot notation. For example, view the caption field:
disp(durerStruct.caption)

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Access Data in Structure Array”.

Generating Reusable MATLAB Code

To create a function that reads similar files without restarting the Import Wizard, select
the Generate MATLAB code check box. When you click Finish to complete the initial
import operation, MATLAB opens an Editor window that contains an unsaved function.
The default function name is importfile.mor importfileN.m, where N is an integer.

The function in the generated code includes the following features:

» For text files, if you request vectors from rows or columns, the generated code also
returns vectors.

*  When importing from files, the function includes an input argument for the name of
the file to import, fileToReadl.

1-11



1 Fie Opening, Loading, and Saving

1-12

* When importing into a structure array, the function includes an output argument for
the name of the structure, newDatal.

However, the generated code has the following limitations:
» If you rename or deselect any variables in the Import Wizard, the generated code does

not reflect those changes.

* Ifyou do not import into a structure array, the generated function creates variables in
the base workspace. If you plan to call the generated function from within your own
function, your function cannot access these variables. To allow your function to access
the data, start the Import Wizard by calling uiimport with an output argument. Call
the generated function with an output argument to create a structure array in the
workspace of your function.

MATLAB does not automatically save the function. To save the file, select Save. For best
results, use the function name with a . m extension for the file name.

See Also

VideoReader | audioread | imread

More About

. “Read Video Files” on page 8-10

. “Read and Write Audio Files” on page 8-2
. “Importing Images” on page 6-2



Import or Export a Sequence of Files

Import or Export a Sequence of Files

To import or export multiple files, create a control loop to process one file at a time. When
constructing the loop:

* To build sequential file names, use sprintf.

* To find files that match a pattern, use dir.

» Use function syntax to pass the name of the file to the import or export function. (For
more information, see “Command vs. Function Syntax”.)

For example, to read files named filel. txt through file20.txt with importdata:

numfiles = 20;
mydata = cell(l, numfiles);

for k = 1l:numfiles
myfilename = sprintf('file%d.txt', k);
mydata{k} = importdata(myfilename);
end

To read all files that match *. jpg with imread:
jpegFiles = dir('*.jpg');

numfiles = length(jpegFiles);

mydata = cell(1l, numfiles);

for k = 1l:numfiles

mydata{k} = imread(jpegFiles(k).name);
end

1-13



1 Fie Opening, Loading, and Saving

Save and Load Parts of Variables in MAT-Files

1-14

In this section...

“Save and Load Using the matfile Function” on page 1-14

“Load Parts of Variables Dynamically” on page 1-16

“Avoid Inadvertently Loading Entire Variables” on page 1-17

“Partial Loading and Saving Requires Version 7.3 MAT-Files” on page 1-17

You can save and load parts of variables directly in MAT-files without loading them into
memory using the matfile function. The primary advantage of using the matfile
function over the lLoad or save functions is that you can process parts of very large data
sets that are otherwise too large to fit in memory. When working with these large
variables, read and write as much data into memory as possible at a time. Otherwise,
repeated file access can negatively impact the performance of your code.

Save and Load Using the matfile Function

This example shows how to load, modify, and save part of a variable in an existing MAT-
file using the matfile function.

Create a Version 7.3 MAT-file with two variables, A and B.
A = rand(5);
B = magic(10);

save example.mat A B -v7.3;
clear A B

Construct a MatFile object from the MAT-file, example.mat. The matfile function
creates a MatFile object that corresponds to the MAT-file and contains the properties of
the MatFile object. By default, matfile only permits loading from existing MAT-files.

exampleObject = matfile('example.mat');

To enable saving, call matfile with the Writable parameter.

exampleObject = matfile('example.mat', 'Writable', true);

Alternatively, construct the object and set Properties.Writable in separate steps.

exampleObject = matfile('example.mat');
exampleObject.Properties.Writable = true;



Save and Load Parts of Variables in MAT-Files

Load the first row of B from example.mat into variable firstRowB and modify the data.
When you index into objects associated with Version 7.3 MAT-files, MATLAB® loads only
the part of the variable that you specify.

firstRowB
firstRowB

= exampleObject.B(1,:);

= 2 * firstRowB;

Update the values in the first row of variable B in example.mat using the values stored
in firstRowB.

exampleObject.B(1,:) = firstRowB;

For very large files, the best practice is to read and write as much data into memory as
possible at a time. Otherwise, repeated file access negatively impacts the performance of
your code. For example, suppose that your file contains many rows and columns, and that
loading a single row requires most of the available memory. Rather than updating one
element at a time, update each row.

[nrowsB,ncolsB] = size(exampleObject, 'B');
for row = 1l:nrowsB

exampleObject.B(row,:) = row * exampleObject.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable at a time.

exampleObject.B = 10 * exampleObject.B;

Alternatively, update a variable by calling the save function with the -append option.
The -append option requests that the save function replace only the specified variable,
B, and leave other variables in the file intact. This method always requires that you load
and save the entire variable.

load('example.mat', 'B');

B(l,:) =2 * B(lr:);

save('example.mat','-append','B');

Add a variable to the file using the matlab.io.MatFile object.

exampleObject.C = magic(8);

You also can add the variable by calling the save function with the -append option.
C = magic(8);

save('example.mat',
clear C

-append', 'C');

1-15



1 Fie Opening, Loading, and Saving

1-16

Load Parts of Variables Dynamically

This example shows how to access parts of variables from a MAT-file dynamically. This is
useful when working with MAT-files whose variables names are not always known.

Consider the example MAT-file, topography.mat, that contains one or more arrays with
unknown names. Construct a MatFile object that corresponds to the file,
topography.mat. Call who to get the variable names in the file.

exampleObject = matfile('topography.mat');
varlist = who(exampleObject)

varlist = 4x1 cell array
{'topo’ }
{'topolegend'}
{'topomapl' }
{'topomap2' }

varlist is a cell array containing the names of the four variables in topography.mat.

The third and fourth variables, topomapl and topomap2, are both arrays containing
topography data. Load the elevation data from the third column of each variable into a
field of the structure array, S. For each field, specify a field name that is the original
variable name prefixed by elevationOf . Then, access the data in each variable as
properties of exampleObject. Because varName is a variable, enclose it in parentheses.

for index = 3:4

varName = varlist{index};

S(1).(['elevationOf ',varName]) = exampleObject.(varName)(:,3);
end

View the contents of the structure array, S.
S

S = struct with fields:
elevationOf topomapl: [64x1 double]
elevationOf topomap2: [128x1 double]

S has two fields, elevationOf topomapl and elevationOf topomap2, each
containing a column vector.



Save and Load Parts of Variables in MAT-Files

Avoid Inadvertently Loading Entire Variables

When you do not know the size of a large variable in a MAT-file and want to load only
parts of that variable at a time, avoid using the end keyword. Using the end keyword
temporarily loads the entire contents of the variable in question into memory. For very
large variables, loading takes a long time or generates Out of Memory errors. Instead,
call the size method for MatFile objects.

For example, this code temporarily loads the entire contents of B in memory:
lastColB = exampleObject.B(:,end);

Use this code instead to improve performance:

[nrows,ncols] = size(exampleObject, 'B');
lastColB = exampleObject.B(:,ncols);

Similarly, any time you refer to a variable with syntax of the form matObj .varName, such
as exampleObject.B, MATLAB temporarily loads the entire variable into memory.
Therefore, make sure to call the size method for MatFile objects with syntax such as:

[nrows,ncols] = size(exampleObject, 'B');
rather than passing the entire contents of exampleObject.B to the size function,
[nrows,ncols] = size(exampleObject.B);

The difference in syntax is subtle, but significant.

Partial Loading and Saving Requires Version 7.3 MAT-Files

Any load or save operation that uses a MatFile object associated with a Version 7 or
earlier MAT-file temporarily loads the entire variable into memory.

Use the matfile function to create files in Version 7.3 format. For example, this code

newfile = matfile('newfile.mat');
creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert existing MAT-
files to Version 7.3 by calling the save function with the -v7. 3 option, such as:

1-17



1 Fie Opening, Loading, and Saving

load('durer.mat');
save('mycopy durer.mat','-v7.3");

To change your preferences to save new files in Version 7.3 format, access the

Environment section on the Home tab, and click {& Preferences. Select MATLAB >
General > MAT-Files. This preference is not available in MATLAB Online™.

See Also

load | matfile | save

More About

. “Save and Load Workspace Variables”
. “Growing Arrays Using matfile Function” on page 1-23
. “MAT-File Versions” on page 1-19

1-18



MAT-File Versions

MAT-File Versions

In this section...

“Overview of MAT-File Versions” on page 1-19

“Save to Nondefault MAT-File Version” on page 1-21

“Data Compression” on page 1-21

“Accelerate Save and Load Operations for Version 7.3 MAT-Files” on page 1-22

Overview of MAT-File Versions

MAT-files are binary MATLAB files that store workspace variables. Starting with MAT-file
Version 4, there are several subsequent versions of MAT-files that support an increasing
set of features. MATLAB releases R2006b and later all support all MAT-file versions.

By default, all save operations create Version 7 MAT-files. The only exception to this is
when you create new MAT-files using the matfile function. In this case, the default MAT-
file version is 7.3.

To identify or change the default MAT-file version, access the MAT-Files Preferences.

On the Home tab, in the Environment section, click {& Preferences.
e Select MATLAB > General > MAT-Files.

The preferences apply to both the save function and the Save menu options.
The maximum size of a MAT-file is imposed only by your native file system.

This table lists and compares all MAT-file versions.

1-19



1 Fie Opening, Loading, and Saving

1-20

MAT-File [Support |Supported Compres |Maximum [Value of |Preferenc
Version |ed Features sion Size of version |e Option
MATLAB Each argument

Releases Variable |in save
function
Version |[R2006b |Saving and loading |Yes =2GBon |'-v7.3'" |MATLAB
7.3 (Version |parts of variables, 64-bit Version
7.3) or |and all Version 7 computers 7.3 or
later features later
(save -
v7.3)
Version 7 |R14 Unicode® character|Yes 2731 bytes | ' -v7' MATLAB
(Version |encoding, which per Version 7
7.0) or  |enables file sharing variable or later
later between systems (save -v7)
that use different
default character
encoding schemes,
and all Version 6
features.
Version 6 |R8 N-dimensional No 2731 bytes |'-v6' MATLAB
(Version |arrays, cell arrays, per Version 5
5) or structure arrays, variable or later
later variable names (save -v6)
longer than 19
characters, and all
Version 4 features.
Version 4 [All Two-dimensional |No 100,000,00 | " -v4' n/a
double, character, 0 elements
and sparse arrays per array,
and 2731
bytes per
variable

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead
storage to describe the contents of the file. For cell arrays, structure arrays, or other




MAT-File Versions

containers that can store heterogeneous data types, Version 7.3 MAT-files are sometimes
larger than Version 7 MAT-files.

Save to Nondefault MAT-File Version

Save to a MAT-file version other than the default version when you want to:

» Allow access to the file using earlier versions of MATLAB.

» Take advantage of Version 7.3 MAT-file features.

* Reduce the time required to load and save some files by storing uncompressed data.
* Reduce the size of some files by storing compressed data.

To save to a MAT-file version other than the default version, specify a version as the last
input to the save function. For example, to create a Version 6 MAT-file named
myfile.mat, type:

save('myfile.mat','-v6")

Data Compression

Beginning with Version 7, MATLAB compresses data when writing to MAT-files to save
storage space. Data compression and decompression slow down all save operations and
some load operations. In most cases, the reduction in file size is worth the additional time
spent.

In some cases, loading compressed data actually can be faster than loading
uncompressed data. For example, consider a block of data in a numeric array saved to
both a 10 MB compressed file and a 100 MB uncompressed file. Loading the first 10 MB
takes the same amount of time for each file. Loading the remaining 90 MB from the
uncompressed file takes nine times as long as loading the first 10 MB. Completing the
load of the compressed file requires only the relatively short time to decompress the data.

The benefits of data compression are negligible in the following cases:

* The amount of data in each item is small relative to the complexity of its container. For
example, simple numeric arrays take less time to compress and uncompress than cell
or structure arrays of the same size. Compressing arrays that result in an
uncompressed file size of less than 3 MB offers limited benefit, unless you are
transferring data over a network.

1-21



1 Fie Opening, Loading, and Saving

1-22

* The data is random, with no repeated patterns or consistent values.

Accelerate Save and Load Operations for Version 7.3 MAT-
Files

Version 7.3 MAT-files use an HDF5-based format that stores data in compressed chunks.
The time required to load part of a variable from a Version 7.3 MAT-file depends on how
that data is stored across one or more chunks. Each chunk that contains any portion of
the data you want to load must be fully uncompressed to access the data. Rechunking
your data can improve the performance of the load operation. To rechunk data, use the
HDF5 command-line tools, which are part of the HDF5 distribution.

See Also

matfile | save

More About

. “Save and Load Workspace Variables”



Growing Arrays Using matfile Function

Growing Arrays Using matfile Function

When writing a large number of large values to a MAT-file, the size of the file increases in
a nonincremental way. This method of increase is expected. To minimize the number of
times the file must grow and ensure optimal performance though, assign initial values to
the array prior to populating it with data.

For example, suppose that you have a writable MatFile object.

fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;

Define parameters of the values to write. In this case, write one million values, fifty
thousand at a time. The values should have a mean of 123.4, and a standard deviation of
56.7.

size = 1000000;
chunk = 50000;

mean = 123.4;
std = 56.7;

Assign an initial value of zero to the last element in the array prior to populating it with
data.

matObj.data(l,size) = 0;
View the size of the file.
* On Windows systems, use dir.

system('dir matFileOfDoubles.mat');
* On UNIX® systems, use 1s -1s:

system('ls -1s matFileOfDoubles.mat');

In this case, matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value
to the last element of the array does not create a large file. It does, however, prepare your
system for the potentially large size increase of matFileOfDoubles.mat.

Write data to the array, one chunk at a time.

nout = 0;
while(nout < size)

1-23



1 Fie Opening, Loading, and Saving

1-24

end

fprintf('Writing %d of %d\n',nout,size);
chunkSize = min(chunk,size-nout);

data = mean + std * randn(1,chunkSize);
matObj.data(1l, (nout+l): (nout+chunkSize)) = data;
nout = nout + chunkSize;

View the size of the file.

system('dir matFileOfDoubles.mat');

The file size is now larger because the array is populated with data.

See Also

matfile

More About

“Save and Load Parts of Variables in MAT-Files” on page 1-14



Unexpected Results When Loading Variables Within a Function

Unexpected Results When Loading Variables Within a
Function

If you have a function that loads data from a MAT-file and find that MATLAB does not
return the expected results, check whether any variables in the MAT-file share the same
name as a MATLAB function. Common variable names that conflict with function names
include i, j, mode, char, size, and path.

These unexpected results occur because when you execute a function, MATLAB
preprocesses all the code in the function before running it. However, calls to load are not
preprocessed, meaning MATLAB has no knowledge of the variables in your MAT-file.
Variables that share the same name as MATLAB functions are, therefore, preprocessed as
MATLAB functions, causing the unexpected results. This is different from scripts, which
MATLAB preprocesses and executes line by line, similar to the Command Window.

For example, consider a MAT-file with variables height, width, and length. If you load
these variables in a function such as findVolume, MATLAB interprets the reference to
length as a call to the MATLAB length function, and returns an error.

function vol = findVolume(myfile)

load(myfile);
vol = height * width * length;
end

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of these
approaches:

* Load the variables into a structure array. For example:

function vol = findVolume(myfile)

dims = load(myfile);

vol = dims.height * dims.width * dims.length;
end

» Explicitly include the names of variables in the call to the Lload function. For example:
function vol = findVolume(myfile)
load(myfile, 'height', 'width', 'length')

vol = height * width * length;
end

1-25



1 Fie Opening, Loading, and Saving

» [Initialize the variables within the function before calling Load. To initialize a variable,
assign it to an empty matrix or an empty character vector. For example:

function vol = findVolume(myfile)

height = [];
width = [];

length = [];
load(myfile);

vol = height * width * length;
To determine whether a particular variable name is associated with a MATLAB function,

use the exist function. A return value of 5 determines that the name is a built-in
MATLAB function.

See Also
load

More About

. “Save and Load Workspace Variables”

1-26



Create Temporary Files

Create Temporary Files

Use the tempdir function to return the name of the folder designated to hold temporary
files on your system. For example, issuing tempdir on The Open Group UNIX systems
returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder. The returned
file name is a suitable destination for temporary data. For example, if you need to store
some data in a temporary file, then you might issue the following command first:

fileID = fopen(tempname, 'w');

In most cases, tempname generates a universally unique identifier (UUID). However, if
you run MATLAB without JVM™, then tempname generates a random name using the
CPU counter and time, and this name is not guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On other systems,
designating a file as temporary means only that the file is not backed up.

1-27






Text Files

* “Import Text Files” on page 2-2

* “Read Text File Data Using Import Tool” on page 2-5

* “Import Dates and Times from Text Files” on page 2-10

* “Import Numeric Data from Text Files into Matrix” on page 2-15

* “Import Mixed Data from Text File into Table” on page 2-18

* “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-22
* “Write Data to Text Files” on page 2-27

» “Write to a Diary File” on page 2-31

+ “Read Collection or Sequence of Text Files” on page 2-32

* “Import Block of Numeric Data from Text File” on page 2-35



2 Text Files

Import Text Files

Text files often contains a mix of numeric and text data as well as variable and row names,
which is best represented in MATLAB as a table. You can import tabular data from text
files into a table using the Import Tool or the readtable function.

Import Text Files Using the Import Tool

The Import Tool allows you to import into a table or other data type. For example, read a
subset of data from the sample file airlinesmall. csv. Open the file using the Import
Tool and select options such as the range of data to import and the output type. Then,
click on the Import Selection button Qﬁ
workspace.

to import the data into the MATLAB

wor IR . 506@
O Delimited Column delimiters: V
Comma  ~
L : SELECTION IMPORTED DATA UNIMPORTABLE CELLS e
Fixed Width @ Delimiter Opt__ ~ Selosgm v
- - —
DELIMITERS IMPORT s
'I airlinesmall.csv I\ B
A B C E F G
ETabIe -
ETabIE
Year Month DaryofMontEtn Column vectors Time CRSDepTime ArrTime
Number * MNumber *MNumber EE| Mumeric Matrix r * Mumber * MNumber
1 |Year Month Dayof“«‘lonthﬁsmng Array me CRSDepTime |ArTime ™
{1
2 [1087 10 21 L cellarmay 630 735
3 |1987 10 26 1 1021 1020 1124
4 11987 10 23 5 2055 2035 2218
5 [|1987 10 23 5 1332 1320 1431
6 1987 10 22 4 629 630 746
7 |1987 10 28 3 1446 1343 1547 W
< >

2-2




See Also

Import Text Files Using readtable

Alternatively, you can read tabular data from a text file into a table using the readtable
function with the file name, for example:

T = readtable('airlinesmall.csv');

Display the first five rows and columns from the table.

T(1:5,1:5)

ans =
5x5 table

Year Month DayofMonth DayOfWeek DepTime

1987 10 21 3 {'642"' }
1987 10 26 1 {'1021"'}
1987 10 23 5 {'2055"}
1987 10 23 5 {'1332"'}
1987 10 22 4 {'629"' }

Import Data from Text Files as Other Data Types

In addition to tables, you can import tabular data from a text file into the MATLAB
workspace as a timetable, a numeric matrix, a cell array, or separate column vectors.
Based on the data type you need, use one of these functions.

Data Type of Output Function
Timetable readtimetable
Numeric Matrix readmatrix
Cell Array readcell
Separate Column Vectors readvars

See Also
Import Tool | readtable

2-3



2 Text Files

More About

2-4

“Read Text File Data Using Import Tool” on page 2-5
“Import Mixed Data from Text File into Table” on page 2-18
“Access Data in Tables”



Read Text File Data Using Import Tool

Read Text File Data Using Import Tool

In this section...

“Select Data Interactively” on page 2-5

“Import Data from Multiple Text Files” on page 2-8

Import data from a text file by selecting data interactively. You also can repeat this import
operation on multiple text files by using the generate code feature of the import tool.

Select Data Interactively

This example shows how to import data from a text file with column headers and numeric
data using the Import Tool. The file in the example, grades. txt, contains this data:

John Ann Mark Rob
88.4 91.5 89.2 77.3
83.2 88.0 67.8 91.0
77.8 76.3 92.5
92.1 96.4 81.2 84.6

To create the file, copy and paste the data using any text editor.

On the Home tab, in the Variable section, click Import Data Iil Alternatively, right-
click the name of the file in the Current Folder browser and select Import Data. The
Import Tool opens.

2-5



2 Text Files

IMPORT

- o Column delimiters:
Delimited

|S|::an::E -

O Fixed Width @ ier Onti . “fariable Names Row: 1

Output Type:

Murnber «MNumber wMumber = Number -

DELIMITERS IMPORTED DAT,
| grades.bd [
A B C D
John Ann Mark Rob

1 John Ann Mark Rob

2 BE.4 915 9.2 77.3
3 3.2 g8.0 67.8 91.0
4 T7.8 76.3 92.5
5 92.1 4.8

The Import Tool recognizes that grades. txt is a fixed width file. In the Imported Data
section, select how you want the data to be imported. The following table indicates how
data is imported depending on the option you select.

Option Selected

How Data is Imported

Table

Import selected data as a table.

Column vectors

Import each column of the selected data as
an individual m-by-1 vector.

Numeric Matrix

Import selected data as an m-by-n numeric
array.

String Array Import selected data as a string array that
contains text.
Cell Array Import selected data as a cell array that can

contain multiple data types, such as
numeric data and text.

2-6




Read Text File Data Using Import Tool

Under Delimiter Options, you can specify whether the Import Tool should use a period
or a comma as the decimal separator for numeric values.

IMPORT

o Column delimiters:
 Delimited

Murnber  MNumil O . (period)

& (comma)

Double-click a variable name to rename it.

A = fe D
John TN Mark Rob
M... YNUMBE%'NUMBER T NUMEBER =
L||||_||||||||_||||||||_|||||||

1 |John Ann Mark Eob
2 |gg. 9l1.5 89.2 T7.3
3183.2 ga.o 67.8 91.0
4 177.8 T6.3 92.5
5192.1 96.4 gl.2 4.6

You also can use the Variable Names Row box in the Selection section to select the row
in the text file that you want the Import Tool to use for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are cells that contain
data that cannot be imported in the format specified for that column. In this example, the
cell at row 3, column C, is considered unimportable because a blank cell is not numeric.
Highlight colors correspond to proposed rules to make the data fit into a numeric array.

2-7



2 Text Files

You can add, remove, reorder, or edit rules, such as changing the replacement value from
NaN to another value.

»

L1 Replace ¥ unimpertable cells with = MNalM -+

4

UNMIMFORTABLE CELLS

All rules apply to the imported data only and do not change the data in the file. Any time
you are importing into a matrix or into numeric column vectors and the range includes
non-numeric data, then you must specify the rules.

To see how your data is imported, place the cursor over individual cells.

A B C B)
John Ann Mark Rob
M... *MUMBER ~ MUMEER ~NUMEER ™

B Lt R Rriiraaa
1 [John Ann Mark Eob
2 |ze.4 91.5 89.2 77.3
3lzs.2 BE.0 [Replaced I::l}r:NaNl
4|77.8 76.3 Hall | 92.5
5fa2.1 96. 4 a1tz R4.6

V4

When you click the Import Selection button
your workspace.

, the Import Tool creates variables in

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files
To perform the same import operation on multiple files, use the code generation feature

of the Import Tool. If you import a file one time and generate code from the Import Tool,
you can use this code to make it easier to repeat the operation. The Import Tool generates

2-8


https://www.mathworks.com/videos/import-tool-enhancements-for-text-files-101466.html

See Also

a program script that you can edit and run to import the files, or a function that you can
call for each file.

Suppose you have a set of text files in the current folder. The files are named
myfile0l.txt through myfile25. txt, and you want to import the data from each file,
starting from the second row. Generate code to import the entire set of files as follows:
Open one of the files in the Import Tool.
Click Import Selection =, and then select Generate Function. The Import Tool
generates code similar to the following excerpt, and opens the code in the Editor.

function data = importfile(filename, startRow, endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.

3 Save the function.

In a separate program file or at the command line, create a for loop to import data
from each text file into a cell array named myData:

numFiles = 25;

startRow = 2;
endRow = inf;
myData = cell(1l,numFiles);

for fileNum = 1l:numFiles
fileName = sprintf('myfile%02d.txt', fileNum);
myData{fileNum} = importfile(fileName,startRow,endRow);
end

Each cell in myData contains an array of data from the corresponding text file. For
example, myData{1l} contains the data from the first file, myfile01. txt.

See Also

readcell | readmatrix | readtable | readtimetable | readvars | textscan

More About
. “Import Text Files” on page 2-2

2-9



2 Text Files

Import Dates and Times from Text Files

Import formatted dates and times (such as '01/01/01"' or '12:30:45") from column
oriented tabular data in three ways.

* Import Tool — Interactively select and import dates and times.

* readtable function — Automatically detect variables with dates and times and
import them into a table.

* Import Options — Use readtable with detectImportOptions function for more
control over importing date and time variables. For example, you can specify
properties such as FillValue and DatetimeFormat.

This example shows you how to import dates and times from text files using each of these
methods.

Import Tool

Open the file outages. csv using the Import Tool. Specify the formats of dates and times
using the drop-down menu for each column. You can select from a predefined date format,
or enter a custom format. To import the OutageTime column, specify the custom format
yyyy-MM-dd HH:mm. Then, click the Import Selection button to import the data into
the workspace.

2-10



Import Dates and Times from Text Files

IMPORT

O Delimited

Column delimiters: Qutput Type:

Range: |B1:81469
\Comma v |_ Table

Variable Names Row: 1 =

)
Fixed Width &, bcjimiter Options = {O) Text Options  ~
DELIMITERS | SELECTION | IMPORTED DATA
| outages.csy |
A B C D E
outages
Region OutageTime Loss Customers RestorationTim
Categorical +|Datetime * Number * Number w Text
1 |Region 2 P —
‘I—m Click here to change the data t_l.rpe for this column.
2 |SouthWest 2000207 T30
Text \
3 SouthEast Text like 1.234 will convert to string ™1.234™
(= -"q'lﬁq 02 7 ﬁl;
4 SouthEast | ISP 003-02-17 08:14 A
5 | West — 2004-04-06 0:10 1
: ; umaoer
& |MidWest 2002-03-18 23:23
Text like "1.2234™ will convert to number 1.224
T I"'Ert . . . Llu'u'_p Lp'L_.' 1; 1u' -\'—1'
Categories (categorical)
8 |West 2004-06-20 1916
9 West Categarical 3002-06-07 00:5
Text like "orange’ will convert to categorical orange -
10 NorthEast = = - 2003-07-17 01:12
rosmmeemeemmn| Dates and Times (datetime)
11 | MidWest 2004-09-27 16:37
12 |SouthEast | YWyy-MM-dd HH:mm 2004-09-05 20:46
13 West [Custom Date Format like MM-dd-yyyy hh:mm:ss.555 2004-05-22 04:23
14 Southfast | [MOre date formats ... 2002-09-01 18:12
15 SouthEast 2003-09-27 07:32 3551706825 (2003-10-04 0702
16 'West 2003-11-12 06:12 2540860816 (924291.6474 |2003-11-17 0204

-09-18 05:54 0

2-11



2 Text Files

2-12

readtable Function

Use the readtable function and display 10 rows of the QutageTime variable.
readtable automatically detects the date time variables and formats.

filename = 'outages.csv';
T = readtable(filename);
T.OutageTime(1:10)

ans = 10x1 datetime array
2002-02-01 12:18
2003-01-23 00:49
2003-02-07 21:15
2004-04-06 05:44
2002-03-16 06:18
2003-06-18 02:49
2004-06-20 14:39
2002-06-06 19:28
2003-07-16 16:23
2004-09-27 11:09

Import Options

Use an import options object for more control over importing date and time variables. For
example, change the date-time display format or specify a fill value for missing dates.

Create an import options object for the outages. csv file and display the variable import
options for the variable RestorationTime. The detectImportOptions function
automatically detects the data types of the variables.

opts = detectImportOptions(filename);
getvaropts(opts, 'RestorationTime")

ans =
DatetimeVariableImportOptions with properties:

Variable Properties:
Name: 'RestorationTime'
Type: 'datetime'’
FillValue: NaT
TreatAsMissing: {}
QuoteRule: 'remove'
Prefixes: {}
Suffixes: {}



Import Dates and Times from Text Files

EmptyFieldRule: 'missing'

Datetime Options:
DatetimeFormat: 'default'
DatetimelLocale: 'en US'

InputFormat: '
TimeZone:

Import the data and display the first 10 rows of the variable RestorationTime. The
second row contains a NaT, indicating a missing date and time value.

T = readtable(filename,opts);
T.RestorationTime(1:10)

ans = 10x1 datetime array

07-Feb-2002 16:50:00
NaT

17-Feb-2003 08:14:00
06-Apr-2004 06:10:00
18-Mar-2002 23:23:00
18-Jun-2003 10:54:00
20-Jun-2004 19:16:00
07-Jun-2002 00:51:00
17-Jul-2003 01:12:00
27-Sep-2004 16:37:00

To use a different date-time display format, update the DatetimeFormat property, and
then replace missing values with the current date and time by using the FillValue
property. Display the updated variable options.

opts = setvaropts(opts, 'RestorationTime’,
'DatetimeFormat', '"MMMM d, yyyy HH:mm:ss Z',...
'"FillValue', 'now');

getvaropts(opts, 'RestorationTime")

ans =
DatetimeVariableImportOptions with properties:

Variable Properties:
Name: 'RestorationTime’
Type: 'datetime'’
FillValue: 27-Aug-2019 02:18:56
TreatAsMissing: {}

2-13



2 Text Files

2-14

QuoteRule: 'remove'
Prefixes: {}
Suffixes: {}

EmptyFieldRule: 'missing'

Datetime Options:
DatetimeFormat: 'MMMM d, yyyy HH:mm:ss Z'
DatetimelLocale: 'en US'

InputFormat: '
TimeZone:

Read the data with the updated import options and display the first 10 rows of the
variable.

T = readtable(filename,opts);
T.RestorationTime(1:10)

ans = 10x1 datetime array
February 7, 2002 16:50:00 *
August 27, 2019 02:18:56 *
February 17, 2003 08:14:00 *
April 6, 2004 06:10:00 *
March 18, 2002 23:23:00 *
June 18, 2003 10:54:00 *
June 20, 2004 19:16:00 *
June 7, 2002 00:51:00 *
July 17, 2003 01:12:00 *
September 27, 2004 16:37:00 *

For more information on the datetime variable options, see the setvaropts reference
page.

See Also

Import Tool | detectImportOptions | readcell | readmatrix | readtable |
readtimetable | readvars | setvaropts

More About
. “Import Mixed Data from Text File into Table” on page 2-18



Import Numeric Data from Text Files into Matrix

Import Numeric Data from Text Files into Matrix

Import numeric data as MATLAB arrays from files stored as comma-separated or
delimited text files.

Import Comma-Separated Data

This example shows how to import comma-separated numeric data from a text file. Create
a sample file, read all the data in the file, and then read only a subset starting from a
specified location.

Create a sample file named ph.dat that contains comma-separated data and display the
contents of the file.

A = 0.9*gallery('integerdata',99,[3 41,1);
writematrix (A, 'ph.dat', 'Delimiter',"',")
type('ph.dat")

85.5,54,74.7,34.2
63,75.6,46.8,80.1
85.5,39.6,2.7,38.7

Read the file using the readmat rix function. The function returns a 3-by-4 double array
containing the data from the file.

M = readmatrix('ph.dat')
M = 3x4

85.5000 54.0000 74.7000 34.2000
63.0000 75.6000 46.8000 80.1000
85.5000  39.6000 2.7000 38.7000

Import only the rectangular portion of data starting from the first row and third column in
the file. Create an import options object and specify the columns and rows to import using
the SelectedVariableNames and Datalines properties. Then, import the selected
portion of the data from the file.

opts = detectImportOptions('ph.dat');
opts.SelectedVariableNames = {'Var3', 'Var4d'};
opts.DataLines = [1 3];
readmatrix('ph.dat',opts)

2-15



2 Text Files

ans = 3x2

74.7000  34.2000
46.8000 80.1000
2.7000  38.7000

Import Delimited Numeric Data

This example shows how to import numeric data delimited by any single character using
the writematrix function. Create a sample file, read the entire file, and then read a
subset of the file starting at the specified location.

Create a tab-delimited file named num. txt that contains a 4-by-4 numeric array and
display the contents of the file.

A = gallery('integerdata',99,[4,4]1,0);
writematrix (A, 'num.txt', 'Delimiter', "\t")
type('num.txt")

95 89 82 92
23 76 45 74
61 46 61 18
49 2 79 41

Read the entire file. The readmatrix function determines the delimiter automatically
and returns a 4-by-4 double array.

M = readmatrix('num.txt")
M = 4x4

95 89 82 92
23 76 45 74
61 46 61 18
49 2 79 41

Read only the rectangular block of data beginning from the second row, third column, in
the file. Create an import options object and specify the columns and rows to import using
the SelectedVariableNames and Datalines properties. Then, import the selected
portion of the data from the file.

2-16



See Also

opts = detectImportOptions('num.txt"');
opts.SelectedVariableNames = {'Var3', 'Var4d'};
opts.DataLines = [2 4];
readmatrix('num.txt',opts)

ans = 3x2
45 74

61 18
79 41

See Also

readcell | readmatrix | readtimetable | readvars

More About
. “Import Text Files” on page 2-2

2-17



2 Text Files

Import Mixed Data from Text File into Table

2-18

This example shows how to use the readtable function to import mixed text and
numeric data into a table, specify the data types for the variables, and then append a new
variable to the table.

Sample File Overview

The sample file, outages. csv, contains data representing electric utility outages in the
US. The first few lines of the file are:

Region,QutageTime, Loss,Customers,RestorationTime, Cause
SouthWest,2002-01-20 11:49,672,2902379,2002-01-24 21:58,winter storm

SouthEast,2002-01-30 01:18,796,336436,2002-02-04 11:20,winter storm

SouthEast,2004-02-03 21:17,264.9,107083,2004-02-20 03:37,winter

storm

West,2002-06-19 13:39,391.4,378990,2002-06-19 14:27,equipment fault

Read Text File

Import the data using readtable and display the first five rows. The readtable
function automatically detects the delimiter and the variable types.

T = readtable('outages.csv');

head(T,5) % show first 5 rows of table

ans=5x6 table

Region OutageTime Loss Customers RestorationTime
{'SouthWest'} 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50
{'SouthEast'} 2003-01-23 00:49 530.14 2.1204e+05 NaT
{'SouthEast'} 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14
{'West"' } 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10
{'Midwest' } 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23

Specify Variable Data Types Before Import

A e



Import Mixed Data from Text File into Table

Updating the variable data types to the appropriate MATLAB data types can benefit your
data, based on the type of variables in your file. For example, the first and sixth columns
in outages.csv are categorical. By designating these two columns as categorical
arrays you can leverage MATLAB functions for processing categorical data.

Designate and specify the data types of the variables in one of these ways:

* Specify the Format name-value pair in readtable
* Set the VariableTypes property of the import options for the file

Use the Format name-value pair to specify the variable data types, read the data, and
display the first five rows. In the %{yyyy-MM-dd HH:mm}D part of the formatSpec
specifier, the text between the curly braces describes the format of the date and time
data. The values specified in Format designate the:

* First and last columns in the file as categorical data

* Second and fifth columns as formatted date and time data

* Third and fourth columns as floating-point values

formatSpec = '%C%{yyyy-MM-dd HH:mm}D%f%f%{yyyy-MM-dd HH:mm}D%C";

T = readtable('outages.csv', 'Format', formatSpec);
head(T,5)

ans=5x6 table
Region OutageTime Loss Customers RestorationTime

SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50

SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14
West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23

Alternatively, specify the data types for the variables by using the setvartype function
of the import options. First, create an import options object for the file. The data file
contains different types of variables. Designate the first and last variables as
categorical arrays, the second and fifth variables as datetime arrays, and the
remaining variables as double.

opts = detectImportOptions('outages.csv');
varNames = opts.VariableNames ; % variable names
varTypes = {'categorical', 'datetime', 'double’, ...

2-19

winte
winte
winte
equipr
severt



2 Text Files

opts

‘double', 'datetime’, 'categorical'};

= setvartype(opts,varNames,varTypes);

Import the data using readtable with opts, and then display the first five rows.

T readtable('outages.csv',opts);

head(T,5)

ans=5x6 table

Region OutageTime Loss Customers RestorationTime

SouthWest 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00
SouthEast 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT
SouthEast 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00
West 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00
MidWest 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00

Append New Variable to Table

Table T contains OutageTime and RestorationTime. Calculate the duration of each
electrical outage and append this data to the table.

T.Duration = T.RestorationTime - T.OutageTime;

head(T,5)
ans=5x7 table
Region OutageTime Loss Customers RestorationTime

SouthWest 01-Feb-2002 12:18:00 458.98 1.8202e+06 07-Feb-2002 16:50:00
SouthEast 23-Jan-2003 00:49:00 530.14 2.1204e+05 NaT
SouthEast 07-Feb-2003 21:15:00 289.4 1.4294e+05 17-Feb-2003 08:14:00
West 06-Apr-2004 05:44:00 434.81 3.4037e+05 06-Apr-2004 06:10:00
MidWest 16-Mar-2002 06:18:00 186.44 2.1275e+05 18-Mar-2002 23:23:00

See Also

detectImportOptions | head | preview | readtable | readtimetable |
setvaropts | setvartype

2-20



See Also

More About
. “Create and Work with Tables”
. “Import Dates and Times from Text Files” on page 2-10

. “Access Data in Tables”

2-21



2 Text Files

Import Block of Mixed Data from Text File into Table or
Cell Array

This example reads a block of mixed text and numeric data from a text file, and then
imports the block of data into a table or a cell array.

Data File Overview

The sample file bigfile.txt contains commented lines beginning with ##. The data is
arranged in five columns: The first column contains text indicating timestamps. The
second, third, and fourth columns contain numeric data indicating temperature, humidity
and wind speed. The last column contains descriptive text. Display the contents of the file
bigfile. txt.

type('bigfile.txt")

## A ID = 02476

## YKZ Timestamp Temp Humidity Wind Weather

06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear
## B ID = 02477

## YVR Timestamp Temp Humidity Wind Weather

09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19. 94 7 n/a
09-Sep-2013 09:00:00 18. 94 4 fog
09-Sep-2013 13:00:00 20. 81 15 mainly clear
09-Sep-2013 17:00:00 20. 77 17 n/a
09-Sep-2013 18:00:00 20. 75 17 n/a
09-Sep-2013 21:00:00 16. 90 25 mainly clear
## C ID = 02478

## YYZ Timestamp Temp Humidity Wind Weather

OO K= U=

Import Block of Data as Table
To import the data as a table, use readtable with import options.

Create an import options object for the file using the detectImportOptions function.
Specify the location of the data using the DatalLines property. For example, lines 3
through 8 contain the first block of data. Optionally, you can specify the names of the

2-22



Import Block of Mixed Data from Text File into Table or Cell Array

variables using the VariableNames property. Finally import the first block of data using
readtable with the opts object.

opts = detectImportOptions('bigfile.txt");

opts.DataLines = [3 8];

opts.VariableNames = {'Timestamp', 'Temp',...
"Humidity', 'Wind', 'Weather'};

T first = readtable('bigfile.txt',opts)

T first=6x5 table

Timestamp Temp Humidity Wind Weather
06-Sep-2013 01:00:00 6.6 89 4 {'clear’ }
06-Sep-2013 05:00:00 5.9 95 1 {'clear"’ }
06-Sep-2013 09:00:00 15.6 51 5 {'mainly clear' }
06-Sep-2013 13:00:00 19.6 37 10 {'mainly clear' }
06-Sep-2013 17:00:00 22.4 41 9 {'mostly cloudy'}
06-Sep-2013 21:00:00 17.3 67 7 {'mainly clear' }

Read the second block by updating the Datalines property to the location of the second
block.

opts.DatalLines = [11 17];
T second = readtable('bigfile.txt',opts)

T second=7x5 table

Timestamp Temp Humidity Wind Weather
09-Sep-2013 01:00:00 15.2 91 8 {'clear!’ }
09-Sep-2013 05:00:00 19.1 94 7 {'n/a’ }
09-Sep-2013 09:00:00 18.5 94 4 {'fog' }
09-Sep-2013 13:00:00 20.1 81 15 {'mainly clear'}
09-Sep-2013 17:00:00 20.1 77 17 {'n/a’ }
09-Sep-2013 18:00:00 20 75 17 {'n/a’ }
09-Sep-2013 21:00:00 16.8 90 25 {'mainly clear'}

Import Block of Data as Cell Array

You can import the data as cell array using the readcell function with
detectImportOptions, or by using the textscan function. First import the block of
data using the readcell function and then perform the same import by using textscan.

2-23



2 Text Files

2-24

To perform the import using the readcell function, create an import options object for the
file using the detectImportOptions function. Specify the location of the data using the
DatalLines property. Then, perform the import operation using the readcell function
and import options object opts.

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8]; % fist block of data
C = readcell('bigfile.txt"',opts)

C=6x5 cell
Columns 1 through 4
{[06-Sep-2013 01:00:00]} {[ 6.6000]} {[891} {[ 41}
{[06-Sep-2013 05:00:00]} {[ 5.9000]} {[951} {[ 11}
{[06-Sep-2013 09:00:00]} {[15.6000]} {[511} {[ 51}
{[06-Sep-2013 13:00:00]} {[19.6000]} {[371} {[10]1}
{[06-Sep-2013 17:00:00]} {[22.4000]} {[41]1} {[ 91}
{[06-Sep-2013 21:00:00]} {[17.3000]} {[671} {[ 71}
Column 5
{'clear' }
{'clear' }

{'mainly clear' }
{'mainly clear' }
{'mostly cloudy'}
{'mainly clear' }

To perform the import using the textscan function, specify the size of block using N and
the format of the data fields using formatSpec. For example, use '%s' for text variables,
'%D' for date and time variables, or '%c' for categorical variables. Use fopen to open
the file. The function then returns a file identifier, fileID. Next, read from the file by
using the textscan function.

N =6;
formatSpec = '%D ST ST ST %c';
fileID = fopen('bigfile.txt');

Read the first block and display the contents of the variable Humidity.
C first = textscan(filelID, formatSpec,N, 'CommentStyle', '##', 'Delimiter','\t")

C first=1x5 cell
Columns 1 through 4



Import Block of Mixed Data from Text File into Table or Cell Array

{6x1 datetime} {6x1 double} {6x1 double} {6x1 double}

Column 5

{6x1 char}

C first{3}
ans = 6x1

89
NaN
95
NaN
51
NaN

Update the block size N, and read the second block. Display the contents of the fifth
variable Weather.

N=7;

C second = textscan(fileID, formatSpec,N, 'CommentStyle', '##', 'Delimiter','\t")

C second=1x5 cell
Columns 1 through 4

{7x1 datetime} {7x1 double} {7x1 double} {7x1 double}

Column 5

{7x1 char}

C second{5}
ans 7x1 char array
m 1

m

m

2-25



2 Text Files

Close the file.

fclose(filelD);

See Also

detectImportOptions | fopen | readcell | readtable | textscan

More About

. “Access Data in Cell Array”
. “Moving within a File” on page 4-14

2-26



Write Data to Text Files

Write Data to Text Files

In this section...

“Export Table to Text File” on page 2-27
“Export Cell Array to Text File” on page 2-28
“Export Numeric Array to Text File” on page 2-30

Export tabular data contained in tables, cell arrays, or numeric arrays from the MATLAB
workspace to text files.

Export Table to Text File

You can export tabular data from MATLAB® workspace into a text file using the
writetable function. Create a sample table, write the table to text file, and then write
the table to text file with additional options.

Create a sample table, T, containing the variables Pitch, Shape, Price and Stock.

Pitch = [0.7;0.8;1;1.25;1.5];
Shape = {'Pan';'Round'; 'Button';'Pan'; 'Round'};
Price = [10.0;13.59;10.50;12.00;16.69];
Stock = [376;502;465;1091;562];
T = table(Pitch,Shape,Price,Stock)
T=5x4 table
Pitch Shape Price Stock
0.7 {'Pan' } 10 376
0.8 {'Round' } 13.59 502
1 {'Button'} 10.5 465
1.25 {'Pan' } 12 1091
1.5 {'Round' } 16.69 562

Export the table, T, to a text file named tabledata. txt. View the contents of the file. By
default, writetable writes comma-separated data, includes table variable names as
column headings.

writetable(T, 'tabledata.txt');
type tabledata.txt

2-27



2 Text Files

2-28

Pitch,Shape,Price,Stock
0.7,Pan,10,376
0.8,Round,13.59,502
1,Button,10.5,465
1.25,Pan, 12,1091
1.5,Round, 16.69,562

Create a table T2 which includes row names using the RowNames name-value pair
argument.

rowNames = {'M4';'M5"';'M6"';'M8"'; 'M10"'};
T2 = table(Pitch,Shape,Price,Stock, 'RowNames', rowNames)

T2=5x4 table

Pitch Shape Price Stock
M4 0.7 {'Pan' } 10 376
M5 0.8 {'Round" } 13.59 502
M6 1 {'Button'} 10.5 465
M8 1.25 {'Pan' } 12 1091
M10 1.5 {'Round' } 16.69 562

Export T2 to a tab-delimited text file named tabledata2.txt. Use the Delimiter
name-value pair argument to specify a tab delimiter, and the WriteRowNames name-value
pair argument to include row names. View the contents of the file.

writetable(T2, 'tabledata2.txt', 'Delimiter"', '\t', 'WriteRowNames',true);
type tabledata2.txt

Row Pitch Shape Price Stock

M4 0.7 Pan 10 376

M5 0.8 Round 13.59 502
M6 1 Button 10.5 465
M8 1.25 Pan 12 1091

M10 1.5 Round 16.69 562

Export Cell Array to Text File

You can export a cell array from MATLAB® workspace into a text file in one of these
ways:



Write Data to Text Files

» Use the writecell function to export the cell array to a text file.
* Use fprintf to export the cell array by specifying the format of the output data.

Create a sample cell array C.

C = {'Atkins"',32,77.3,'M"; 'Cheng',30,99.8,'F'; 'Lam',31,80.2,'M"'}
C = 3x4 cell array

{'Atkins'} {[321} {[77.3000]1} {'M"'}

{'Cheng"' } {[30]1} {[99.80001]1} {'F'}

{'Lam' } {[311} {[80.20001} {'M"'}

Export the cell array using writecell.

writecell(C, 'data.dat")

View the contents of the file.
type data.dat

Atkins,32,77.3,M
Cheng,30,99.8,F
Lam,31,80.2,M

Alternatively, import the cell array using fprintf. Open a file that you can write to
named celldata.dat. Define formatSpec using the format specifiers to describe the
pattern of the data in the file. Typical format specifiers include '%s' for a character
vector, '%d' for an integer, or '%f' for a floating-point number. Separate each format
specifier with a space to indicate a space delimiter for the output file. Include a newline
character at the end of each row of data ('\n").

fileID = fopen('celldata.dat','w');
formatSpec = '%s %d %2.1f %s\n';

Determine the size of C and export one row of data at a time using the fprintf function.
Then close the file. fprintf writes a space-delimited file.

[nrows,ncols] = size(C);
for row = l:nrows
fprintf(filelID, formatSpec,C{row,:});
end
fclose(filelD);

View the contents of the file.

2-29



2 Text Files

2-30

type celldata.dat

Atkins 32 77.3 M
Cheng 30 99.8 F

Lam 31 80.2 M

Export Numeric Array to Text File
You can export a numerical array to a text file using writematrix.

Create a numeric array A.

A = magic(5)/10

A = 5x5
1.7000 2.4000
2.3000 0.5000
0.4000 0.6000
1.0000 1.2000
1.1000 1.8000

Write the numeric array to myData.dat and specify the delimiter to be

the contents of the file.

writematrix (A, 'myData.dat', 'Delimiter',';")

type myData.dat

See Also

0.1000
0.7000
1.3000
1.9000
2.5000

0.8000
1.4000
2.0000
2.1000
0.2000

1.5000
1.6000
2.2000
0.3000
0.9000

;' Then, view

fprintf | type |writecell |writematrix |writetable |writetimetable



Write to a Diary File

Write to a Diary File

To keep an activity log of your MATLAB session, use the diary function. diary creates a
verbatim copy of your MATLAB session in a disk file (excluding graphics).

For example, if you have the array A in your workspace,

A=[1234,567281;
execute these commands at the MATLAB prompt to export this array using diary:

1 Turn on the diary function. Optionally, you can name the output file diary creates:

diary my data.out
2 Display the contents of the array you want to export. This example displays the array
A. You could also display a cell array or other MATLAB class:

A =
1 2 3 4
5 6 7 8
3 Turn off the diary function:

diary off

diary creates the file my data.out and records all the commands executed in the
MATLAB session until you turn it off:

A =
1 2 3 4
5 6 7 8
diary off
4 Openthediary filemy data.out in a text editor and remove the extraneous text, if
desired.

2-31



2 Text Files

Read Collection or Sequence of Text Files

2-32

When your data is stored across multiple text files, you can use tabularTextDatastore
to manage and import the data. This example shows how to use
tabularTextDatastore to read the data from the collection of text files all together, or

to read one file at a time.

Data

For this example, the folder C:\DataTxt contains a collection of text files. Capture this
location in the variable location. The data contains 10 text files, where each file
contains 10 rows of data. The results differ based on your files and data.

location = 'C:\DataTxt';

dir(location)
File@l.csv File03.csv FileO®5.csv FileO7.csv File09.csv
File02.csv FileO4.csv File0@6.csv File08.csv FilelO.csv

Create Datastore

Create a datastore using the location of the files.

ds = tabularTextDatastore(location)

ds =
TabularTextDatastore with properties:
Files: {
"C:\DataTxt\FileOl.csv';
"C:\DataTxt\File02.csv';
"C:\DataTxt\File@3.csv'
. and 7 more
}
FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' . and 7 more}
DatetimeLocale: en_US
Text Format Properties:
NumHeaderLines: 0
Delimiter: ',"'
RowDelimiter: '\r\n'



Read Collection or Sequence of Text Files

TreatAsMissing: ''
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'%q', '%q', 'Ssf' ... and 7 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle: "'
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
SelectedFormats: {'%q', '%q', 'Sf' ... and 7 more}
ReadSize: 20000 rows

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data
from the collection fits in the memory, you can import it all at once using the readall
function.

allData = readall(ds);
size(allData)

ans = 1Ix2

100 10

Alternatively, import the data one file at a time using the read function. To control the

amount of data imported, before you call read, adjust the ReadSize property of the

datastore. Set the ReadSize to 'file' or a positive integer.

+ IfReadSizeis 'file’, then each call to read reads all the data one file at a time.

» IfReadSize is a positive integer, then each call to read reads the number of rows
specified by ReadSize, or fewer, if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10x10 table
LastName Gender Age Location Height Weight

2-33



2 Text Files

2-34

'Smith'
'Johnson'
'Williams'
'Jones’
'Brown'
'Davis’
'Miller'
'Wilson'
'Moore'
'Taylor'

'Male'
'Male'
'Female'
'Female'
'Female'
'Female'
'Female'
'Male'
'Male'
'Female'

secondFile = read(ds) % reads

secondFile=10x10 table

38
43
38
40
49
46
33
40
28
31

second

Age

45
42
25
39
36
48
32
27
37
50

"County General Hospital' 71 176
'VA Hospital' 69 163
'St. Mary's Medical Center' 64 131
'"VA Hospital' 67 133
"County General Hospital' 64 119
'St. Mary's Medical Center' 68 142
'VA Hospital' 64 142
'VA Hospital' 68 180
'St. Mary's Medical Center' 68 183
"County General Hospital' 66 132
file
Location Height Weight

"County General Hospital' 68 128
'St. Mary's Medical Center' 66 137
'VA Hospital' 71 174
'"VA Hospital' 72 202
'St. Mary's Medical Center' 65 129
'"VA Hospital' 71 181
'St. Mary's Medical Center' 69 191
'VA Hospital' 69 131
"County General Hospital' 70 179
"County General Hospital' 68 172

readcell | readmatrix | readtable | readtimetable | readvars |

LastName Gender
"Anderson' 'Female'
'Thomas' 'Female'
'Jackson' 'Male'
'White' 'Male'
'Harris' 'Female'
'Martin' 'Male'
'Thompson' 'Male'
'Garcia’' 'Female'
'Martinez' 'Male'
'Robinson' 'Male'
See Also
tabularTextDatastore
More About

. “Read and Analyze Large Tabular Text File” on page 12-125



Import Block of Numeric Data from Text File

Import Block of Numeric Data from Text File

This example shows how to read numeric data organized in blocks in a text file. Each
block within the file can have a different format. You can read all the blocks as cell arrays,
one block at a time, using textscan.

File Format Overview

The information in the sample text file, test80211. txt, is the result from a wireless
network communication quality test. The sample file consists of four lines of introduction
followed by several blocks of data. Each block represents a different environment (for
example, mobile, indoor, outdoor) and has the following format:

» Two header lines of description
* The text, Num SNR=, followed by a numeric value, m

* Numeric data organized in a table of m columns and an arbitrary number of rows (The
data is comma-delimited.)

* The text, *EOB, denoting the end of the block
For example, a block of data is formatted like this:
* Indoor2

* SNR Vs test No

Num SNR=3

,-5.00E+00,-4.00E+00,
1.00E+00,3.32E-07,9.12E-07
2.00E+00,1.49E-07,2.44E-07
3.00E+00,6.04E-07,2.53E-07
4.00E+00,1.53E-07,4.25E-07
5.00E+00,1.82E-07,1.83E-07
6.00E+00,6.27E-07,8.21E-07
7.00E+00,9.10E-08,1.53E-08

2-35



2 Text Files

2-36

8.00E+00,8.73E-07,6.45E-07
9.00E+00,4.40E-07,1.33E-07
*EOB

The numeric data represents error rates over a range of noise levels for a number of
independent tests. The first column indicates the test number. To view the entire sample
file, type at the command line:

open test80211.txt
Open Text File for Reading

Open the file and create a file identifier.
fileID = fopen('test80211.txt','r');

Read Introduction Lines

Read the four introductory lines, which contain text delimited by a newline character.
textscan returns a 1-by-1 cell array containing a 4-by-1 cell array of character vectors.

Intro = textscan(filelD, '%s',4, 'Delimiter','\n"')

Intro = 1x1 cell array
{4x1 cell}

View the contents of the first cell.
disp(Intro{l1})
"*CCX!
"*CCX WiFi conformance test'
'"*CCX BER Results'
"*CCX!
Read Each Block

For each block, we want to read a header, the numeric value m, column headers for the
data, then the data itself. First, initialize the block index.

Block = 1;



Import Block of Numeric Data from Text File

Read each block of data in a while loop. The loop executes until the end of the file is
reached and ~feof returns false. The textscan function returns the data in each block
as a cell array named InputText. Convert each cell array to a numeric array using
cell2mat and store the numeric array in a cell array named Data. A cell array allows the

storage of different size blocks.

while (~feof(filelD))

o°

o°

fprintf('Block: %s\n', num2str(Block))
InputText = textscan(filelD, '%s',2, 'delimiter', '\n
HeaderLines{Block,1} = InputText{l};
disp(HeaderLines{Block});

o°

InputText = textscan(fileID, 'Num SNR = %f');

NumCols = InputText{l};

d° o° o° o°

FormatString = repmat('sf',1,NumCols);

o° o° o° o°

InputText = textscan(fileID,FormatString,
'delimiter',"',"');

Data{Block,1} = cell2mat(InputText);

[NumRows ,NumCols] = size(Data{Block});

disp(cellstr(['Table data size: ' ...
num2str(NumRows) ' x ' num2str(NumCols)]));

disp(' ');

o°

o°

eob = textscan(filelD, '%s',1, 'delimiter','\n'); %
Block = Block+1; %
end
Block: 1
"% Mobilel'
L SNR Vs test No'

'Table data size: 30 x 19'

Block: 2
"% Mobile2'
'k SNR Vs test No'

For each block:

Print block number to the screen
'); % Read 2 header lines

Display header lines

Read the numeric value
following the text, Num SNR =
Specify that this is the
number of data columns

Create format string

based on the number

of columns
Read data block

Determine size of table

New line

Read and discard end-of-block mal
Increment block index

2-37



2 Text Files

2-38

'Table

Block: 3
'k
'k

'Table

Block: 4
'k
'k

'Table

Block: 5
'k
'k

'Table

Block: 6
'k
'k

'Table

Block: 7
'k
'k

'Table

Block: 8
'k
'k

'Table

data size: 30

Mobile3'
SNR Vs test

data size: 31

Mobile4'
SNR Vs test

data size: 28

Mobile5'
SNR Vs test

data size: 32

Mobile6'
SNR Vs test

data size: 30

Mobile7'
SNR Vs test

data size: 30

Mobile8'
SNR Vs test

data size: 20

No'

x 15"

No'

x 19'

No'

x 18"

No'

x 19'

No'

x 11'

No'

x 18"



Import Block of Numeric Data from Text File

Block: 9

P Indoor0'

P SNR Vs test No'

'Table data size: 9 x 3'
Block: 10

' Indoorl'

P SNR Vs test No'

'Table data size: 22 x 6'
Block: 11

' Indoor2'

' SNR Vs test No'

'Table data size: 25 x 3'
Block: 12

' Indoor3'

' SNR Vs test No'

'Table data size: 21 x 18'
Block: 13

' Outdoorl'

' SNR Vs test No'

'Table data size: 20 x 18
Block: 14

' Outdoor2'

' SNR Vs test No'

'Table data size: 23 x 3'

2-39



2 Text Files

2-40

Block: 15
"% Outdoor3'
P SNR Vs test
'Table data size: 22
Block: 16
"% Outdoor4'
P SNR Vs test
'Table data size: 21
Block: 17
"% Outdoor5'
P SNR Vs test

'Table data size: 18

Close Text File
fclose(filelD);

Total Number of Blocks

Determine the number of blocks in the file.

NumBlocks = Block-1

NumBlocks

17

View Numeric Data

Display the numeric data in one of the blocks using short scientific notation.

First, store the current Command Window output display format.

No'

x 18'

No'

x 18'

No'

user_format = get(0, 'format');

Change the display format to short scientific notation.

format shortE



See Also

Display the header lines for the ninth block and the numeric data.

Block = 9;
disp(HeaderLines{Block});

'k Indoor0'
'k SNR Vs test No'

fprintf('SNR %d %d\n',Data{Block,1}(1,2:end))
SNR -7 -6
disp(Data{Block,1}(2:end,2:end));

9.0600e-07 6.7100e-07
3.1700e-07  3.5400e-07
2.8600e-07 1.9600e-07
1.4800e-07  7.3400e-07
3.9500e-08 9.6600e-07
7.9600e-07  7.8300e-07
4.0000e-07 8.8100e-07
3.0100e-07 2.9700e-07

Restore the original Command Window output display format.

set(0, 'format', user format);

See Also

textscan

More About
. “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-22

2-41






Spreadsheets

* “Import Spreadsheets” on page 3-2

* “Read Spreadsheet Data Using Import Tool” on page 3-5

* “Read Spreadsheet Data into Array or Individual Variables” on page 3-9
* “Read Spreadsheet Data into Table” on page 3-12

* “Read Collection or Sequence of Spreadsheet Files” on page 3-16

* “Write Data to Excel Spreadsheets” on page 3-19

* “Define Import Options for Tables” on page 3-22



3 Spreadsheets

Import Spreadsheets

3-2

Spreadsheets often contain a mix of numeric and text data as well as variable and row
names, which is best represented in MATLAB as a table. You can import data into a table
using the Import Tool or the readtable function.

Import Spreadsheet Data Using the Import Tool

The Import Tool allows you to import into a table or other data type. For example, read
data from the sample spreadsheet file patients.x1ls as a table in MATLAB. Open the
file using the Import Tool and select options such as the range of data and the output

type. Then, click the Import Selection button Qﬁ to import the data into the MATLAB
workspace.



Import Spreadsheets

RN - GERRSSCION o

Range: [A2E5 - Output Type: V
Variable Names Row: 1 = g-::;lj '| R Import
th Column vectors - Selection ¥ _
' SELECTION _ F Numeric Matrix IMPORT s
| patients.xds | =] String Array
A B Ul Cell Ay E F G
patients
LastName Gender Age Location Height Weight Smol
Text - (Categorical ~MNumber - (Categorical ~MNumber T Mumber Text
1 |LastName |Gender Age Location Height Weight Smoker ™
2 [Smith Male 38|County Gen... 71 176
3 Pohnson Male 43\VA Hospital 69| 163
4 Williams Female 38/5t Mary's ... 64 131
5 lones Female 40|VA Hospital 67| 133
& [Brown Female 49| County Gen... 64 119
7 |Davis Female 46|5t. Mary's ... 68 142
8 [Miller Female 33|\VA Hospita 64 142 W
< >
Sheetl

Import Spreadsheet Data Using readtable

Alternatively, you can read spreadsheet data into a table using the readtable function
with the file name, for example:

T = readtable('patients.xls');

You can also select the range of data to import by specifying the range parameter. For
example, read the first five rows and columns of the spreadsheet. Specify the range in
Excel notation as 'A1:E5"'.

T = readtable('patients.xls', 'Range', 'Al:E5")

3-3



3 Spreadsheets

T =
4x5 table
LastName Gender Age Location Height
{'Smith" } {'Male' } 38 {'County General Hospital' } 71
{'Johnson"' } {'Male' } 43 {'VA Hospital' } 69
{'Williams'} {'Female'} 38 {'St. Mary's Medical Center'} 64
{'Jones" } {'Female'} 40 {'VA Hospital' } 67

Import Spreadsheet Data as Other Data Types

In addition to tables, you can import your spreadsheet data into the MATLAB workspace
as a timetable, a numeric matrix, a cell array, or separate column vectors. Based on the
data type you need, use one of these functions.

3-4

Data Type of Output Function
Timetable readtimetable
Numeric Matrix readmatrix
Cell Array readcell
Separate Column Vectors readvars

See Also
Import Tool | readtable

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-5
. “Read Spreadsheet Data into Table” on page 3-12

. “Access Data in Tables”




Read Spreadsheet Data Using Import Tool

Read Spreadsheet Data Using Import Tool

In this section...

“Select Data Interactively” on page 3-5
“Import Data from Multiple Spreadsheets” on page 3-7

“Paste Data from Clipboard” on page 3-7

This example shows how to import data from a spreadsheet into the workspace using the
Import Tool and also to import data from the clipboard.

Select Data Interactively

On the Home tab, in the Variable section, click Import Data I&I Alternatively, in the
Current Folder browser, double-click the name of a file with an extension
of .x1s, .x1lsx, .xlsb, or .x1lsm. The Import Tool opens.

Select the data you want to import. For example, the data in the following figure
corresponds to data for three column vectors. You can edit the variable name within the
tab, and you can select noncontiguous sections of data for the same variable.

A B C
Station Temp Date
Number * Number ~ Datetime =
1 |Station Temp |DatE |
2 12 | Replaced h}r:NaNlﬁI
3 13)NaN | 1072372013
4 14 “o7|  12/172013]

On the Import tab, in the Output Type section, select how you want the data to be
imported. The option you select dictates the data type of the imported data.

Option Selected How Data Is Imported

Column vectors Import each column of the selected data as
an individual m-by-1 vector.




3 Spreadsheets

3-6

Option Selected How Data Is Imported

Numeric Matrix Import selected data as an m-by-n numeric
array.

String Array Import selected data as an m-by-n string
array.

Cell Array Import selected data as a cell array that can
contain multiple data types, such as
numeric data and text.

Table Import selected data as a table.

If you choose to import the data as a matrix or as numeric column vectors, the tool
highlights any nonnumeric data in the worksheet. Each highlight color corresponds to a
proposed rule to make the data fit into a numeric array. For example, you can replace
nonnumeric values with NaN. Also, you can see how your data will be imported when you
place the cursor over individual cells.

[ Replace * unimpertable cells with = MalM -+

|

UMIMPORTABLE CELLS

You can add, remove, reorder, or edit rules, such as changing the replacement value from
NaN to another value. All rules apply to the imported data only and do not change the data
in the file. Specify rules any time the range includes nonnumeric data and you are
importing into a matrix or numeric column vectors.

Any cells that contain #Error? correspond to formula errors in your spreadsheet file,
such as division by zero. The Import Tool regards these cells as nonnumeric.

4

When you click the Import Selection button , the Import Tool creates variables in

your workspace.

For more information on interacting with the Import Tool, watch this video.


https://www.mathworks.com/videos/importing-spreadsheets-into-matlab-101491.html

Read Spreadsheet Data Using Import Tool

Import Data from Multiple Spreadsheets

If you plan to perform the same import operation on multiple files, you can generate code
from the Import Tool to make it easier to repeat the operation. On all platforms, the
Import Tool can generate a program script that you can edit and run to import the files.
On Microsoft Windows systems with Excel software, the Import Tool can generate a
function that you can call for each file.

For example, suppose that you have a set of spreadsheets in the current folder named
myfile0l.x1sx through myfile25.x1sx, and you want to import the same range of
data, A2:G100, from the first worksheet in each file. Generate code to import the entire
set of files as follows:

Open one of the files in the Import Tool.

2  From the Import Selection button, select Generate Function. The Import Tool
generates code similar to the following excerpt, and opens the code in the Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet

3  Save the function.

In a separate program file or at the command line, create a for loop to import data
from each spreadsheet into a cell array named myData:

numFiles = 25;

range = 'A2:G100';

sheet = 1;

myData = cell(1l,numFiles);

for fileNum = 1l:numFiles
fileName = sprintf('myfile%s02d.xlsx"',fileNum);
myData{fileNum} = importfile(fileName, sheet, range);
end

Each cell in myData contains an array of data from the corresponding worksheet. For
example, myData{1l} contains the data from the first file, myfile@1.x1lsx.

Paste Data from Clipboard

In addition to importing data interactively, you can also paste spreadsheet data from the
clipboard into MATLAB.



3 Spreadsheets

3-8

First, select and copy your spreadsheet data in Microsoft Excel, then use one of the
following methods:

On the Workspace browser title bar, click ), and then select Paste.

* Open an existing variable in the Variables editor, right-click, and then select Paste
Excel Data.

* Call uiimport -pastespecial.

See Also

detectImportOptions | readcell | readmatrix | readtable | readvars

More About

. “Define Import Options for Tables” on page 3-22
. “Read Spreadsheet Data into Array or Individual Variables” on page 3-9



Read Spreadsheet Data into Array or Individual Variables

Read Spreadsheet Data into Array or Individual
Variables
The best way to represent spreadsheet data in MATLAB® is in a table, which can store a
mix of numeric and text data. However, sometimes you need to import spreadsheet data

as a matrix, a cell array, or separate variables. Based on your data and the data type you
need in the MATLAB® workspace, use one of these functions:

* readmatrix — Import homogeneous numeric or text data as a matrix.
* readcell — Import mixed numeric and text data as a cell array.
* readvars — Import spreadsheet columns as separate variables.

Read Spreadsheet Data into Matrix

Import numeric data from basic matrix.x1ls into a matrix.

M = readmatrix('basic matrix.xls")
M = 5x4

6 8 3 1

5 4 7 3

1 6 7 10

4 2 8 2

2 7 5 9

You can also select the data to import from the spreadsheet by specifying the Sheet and
Range parameters. For example, specify the Sheet parameter as 'Sheetl' and the
Range parameter as 'B1:D3"'. The readmatrix function reads a 3-by-3 subset of the
data, starting at the element in the first row and second column of the sheet named

'Sheetl’.
M = readmatrix('basic matrix.xls', 'Sheet', 'Sheetl', 'Range', 'B1:D3")
M = 3x3

8 3 1

4 7 3

6 7 10

3-9



3 Spreadsheets

3-10

Read Spreadsheet Data into Cell Array

Import the mixed tabular data from airlinesmall subset.xlsx into a cell array.

C = readcell('airlinesmall subset.xlsx');

whos C
Name Size Bytes C(lass Attributes
C 1339x29 4587938 cell

You can also select the data to import from the spreadsheet by specifying the Sheet and
Range parameters. For example, specify the Sheet parameter as '2007' and the Range
parameter as 'G2:I11'. The readcell function imports ten rows of data for variables in
columns 7, 8, and 9, from the worksheet named '2007"'.

subC = readcell('airlinesmall subset.xlsx','Sheet', '2007', 'Range’,'G2:I11")

subC=10x3 cell

{[ 9351} {[ 9351} {'"WN"}
{[10411} {[10401} {'"WN'}
{[1430]} {[15001} {'WN'}
{[ 940]} {[ 950]} {'WN"'}
{[1515]1} {[1515]} {'WN"}
{[2042]} {[20351} {'WN"'}
{[21161} {[21301} {'"WN"}
{[1604]} {[16051} {'WN"'}
{[1258]} {[1230]} {'"WN"}
{[1134]1} {[1145]} {'WN"}

Read Spreadsheet Data Columns as Separate Variables

Import the first three columns from airlinesmall subset.xlsx as separate
workspace variables.

[Year,Month,DayOfMonth] = readvars('airlinesmall subset.xlsx');
whos Year Month DayOfMonth

Name Size Bytes C(lass Attributes
DayOfMonth 1338x1 10704 double
Month 1338x1 10704 double
Year 1338x1 10704 double



See Also

You can also select which subset to import from the spreadsheet by specifying the Sheet
and Range parameters. For example, import ten rows of the column DayOfMonth from
the worksheet named '2004'. Specify the column and number of rows using the Range
parameter.

DayOfMonth

readvars('airlinesmall subset.xlsx', 'Sheet','2004', 'Range','C2:C11')

DayOfMonth = 10x1

26
10
21
24
20
20

1

2
30
11

See Also

readcell | readmatrix | readtable | readvars

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-5
. “Read Spreadsheet Data into Table” on page 3-12
. “Read Collection or Sequence of Spreadsheet Files” on page 3-16

3-11



3 Spreadsheets

Read Spreadsheet Data into Table

3-12

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a
mix of numeric and text data, as well as variable and row names. You can read data into
tables interactively or programmatically. To interactively select data, click Import Data
on the Home tab, in the Variable section. To programmatically import data, use one of
these functions:

* readtable — Read a single worksheet.
* spreadsheetDatastore — Read multiple worksheets or files.

This example shows how to import spreadsheet data programmatically using both
functions. The sample data, airlinesmall subset.xlsx, contains one sheet for each
year between 1996 and 2008. The sheet names correspond to the year, such as 2003.

Read All Data from Worksheet

Call readtable to read all the data in the worksheet called 2008, and then display only
the first 10 rows and columns. Specify the worksheet name using the Sheet name-value
pair argument. If your data is on the first worksheet in the file, you do not need to specify
Sheet.

T = readtable('airlinesmall subset.xlsx', 'Sheet', '2008');
T(1:10,1:10)

ans=10x10 table
Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime

2008 1 3 4 1012 1010 1136
2008 1 4 5 1303 1300 1411
2008 1 6 7 2134 2115 2242
2008 1 7 1 1734 1655 54
2008 1 8 2 1750 1755 2018
2008 1 9 3 640 645 855
2008 1 10 4 1943 1945 2039
2008 1 11 5 1303 1305 1401
2008 1 13 7 1226 1230 1415
2008 1 14 1 1337 1340 1623

CR



Read Spreadsheet Data into Table

Read Selected Range from Specific Worksheet

From the worksheet named 1996, read only 10 rows of data from the first 5 columns by
specifying a range, 'Al:E11'. The readtable function returns a 10-by-5 table.

T selected = readtable('airlinesmall subset.xlsx','Sheet', '1996', 'Range', 'Al:E11")

T selected=10x5 table
Year Month DayofMonth DayOfWeek DepTime

1996 1 18 4 2117
1996 1 12 5 1252
1996 1 16 2 1441
1996 1 1 1 2258
1996 1 4 4 1814
1996 1 31 3 1822
1996 1 18 4 729
1996 1 26 5 1704
1996 1 11 4 1858
1996 1 7 7 2100

Convert Variables to Datetimes, Durations, or Categoricals

During the import process, readtable automatically detects the data types of the
variables. However, if your data contains nonstandard dates, durations, or repeated
labels, then you can convert those variable to their correct data types. Converting
variables to their correct data types lets you perform efficient computations and
comparisons and improves memory usage. For instance, represent the variables Year,
Month, and DayofMonth as one datetime variable, the UniqueCarrier as
categorical, and ArrDelay as duration in minutes.

data = T(:,{'Year', 'Month', 'DayofMonth', 'UniqueCarrier', 'ArrDelay'});
data.Date = datetime(data.Year,data.Month,data.DayofMonth);

data.UniqueCarrier = categorical(data.UniqueCarrier);
data.ArrDelay = minutes(data.ArrDelay);

Find the day of the year with the longest delay, and then display the date.

ind = find(data.ArrDelay == max(data.ArrDelay));
data.Date(ind)

3-13



3 Spreadsheets

ans = datetime
07-Apr-2008

Read All Worksheets from Spreadsheet File

A datastore is useful for processing arbitrarily large amounts of data that are spread
across multiple worksheets or multiple spreadsheet files. You can perform data import
and data processing through the datastore.

Create a datastore from the collection of worksheets in airlinesmall subset.xlsx,
select the variables to import, and then preview the data.

ds = spreadsheetDatastore('airlinesmall subset.xlsx');
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier', 'ArrDelay'};
preview(ds)

ans=8x5 table
Year Month DayofMonth UniqueCarrier ArrDelay

1996 1 18 {'HP"} 6
1996 1 12 {'HP"} 11
1996 1 16 {'HP"} -13
1996 1 1 {'HP"} 1
1996 1 4 {'US"} -9
1996 1 31 {'US"} 9
1996 1 18 {'US"} -2
1996 1 26 {'NwW"} -10

Before importing data, you can specify what data types to use. For this example, import
UniqueCarrier as a categorical variable.

ds.SelectedVariableTypes(4) = {'categorical'};

Import data using the readall or read functions. The readall function requires that
all the data fit into memory, which is true for the sample data. After the import, compute
the maximum arrival delay for this dataset.

alldata = readall(ds);
max(alldata.ArrDelay)/60

ans = 15.2333

3-14



See Also

For large data sets, import portions of the file using the read function. For more
information, see Read Collection or Sequence of Spreadsheet Files.

See Also

readtable | spreadsheetDatastore

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-5

. “Read Spreadsheet Data into Array or Individual Variables” on page 3-9
. “Read Collection or Sequence of Spreadsheet Files” on page 3-16

3-15



3 Spreadsheets

Read Collection or Sequence of Spreadsheet Files

3-16

When you have data stored across multiple spreadsheet files, use
spreadsheetDatastore to manage and import the data. After creating the datastore,
you can read all the data from the collection simultaneously, or you can read one file at a
time.

Data

If the folder C:\Data contains a collection of spreadsheet files, then capture the location
of the data in Llocation. The data used in this example contains 10 spreadsheet files,
where each file contains 10 rows of data. Your results will differ based on your files and
data.

location = 'C:\Data';
dir(location)

File0l.x1ls File02.xls File03.xls File04.x1ls File05.xls

Create Datastore

Create a datastore using the location of the files.
ds = spreadsheetDatastore(location)

ds =
SpreadsheetDatastore with properties:

Files: {
"C:\Data\File0l.x1ls"';
"C:\Data\File02.x1ls"';
"C:\Data\File03.x1s"

. and 7 more

}

AlternateFileSystemRoots: {}
Sheets: ''

Range: "'

Sheet Format Properties:
NumHeaderLines: 0
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
VariableTypes: {'char', ‘'char', 'double' ... and 7 more}

Fi



Read Collection or Sequence of Spreadsheet Files

Properties that control the table returned by preview, read, readall:

SelectedVariableNames:
SelectedVariableTypes: {'char',
ReadSize:

Read Data from Datastore

{'LastName', 'Gender', 'Age'

‘file'

'char', 'double'

. and 7 more}
. and 7 more}

Use the read or readall functions to import the data from the datastore. If the data
from the collection fits in the memory, then you can import it all at once using the

readall function.

allData = readall(ds);

size(allData)

ans = 1Ix2

100 10

Alternatively, you can import the data one file at a time using the read function. To
control the amount of data imported, before you call read, adjust the ReadSize property
of the datastore. You can set the ReadSize to 'file', 'sheet"', or a positive integer.

« IfReadSizeis 'file', then each call to read returns data one file at a time.
o IfReadSizeis 'sheet', then each call to read returns data one sheet at a time.

+ IfReadSize is a positive integer, then each call to read returns the number of rows
specified by ReadSize, or fewer if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10x10 table

LastName Gender
'Smith' 'Male'
'Johnson' 'Male'
'Williams' 'Female'
'Jones’ 'Female'
'Brown' 'Female'
'Davis’ 'Female'
'Miller' 'Female'
'Wilson' 'Male'

Age

38
43
38
40
49
46
33
40

Location Height Weight
"County General Hospital' 71 176
'VA Hospital' 69 163
'St. Mary's Medical Center' 64 131
'"VA Hospital' 67 133
"County General Hospital' 64 119
'St. Mary's Medical Center' 68 142
'"VA Hospital' 64 142
'VA Hospital' 68 180

3-17



3 Spreadsheets

'Moore' 'Male' 28 'St. Mary's Medical Center' 68 183
'Taylor' 'Female' 31 "County General Hospital' 66 132

secondFile = read(ds) % reads second file

secondFile=10x10 table

LastName Gender Age Location Height Weight
'Anderson' 'Female' 45 "County General Hospital' 68 128
'Thomas' 'Female' 42 'St. Mary's Medical Center' 66 137
'Jackson’ 'Male' 25 'VA Hospital' 71 174
'White' 'Male'’ 39 '"VA Hospital' 72 202
'Harris' 'Female' 36 'St. Mary's Medical Center' 65 129
'Martin' 'Male'’ 48 '"VA Hospital' 71 181
'Thompson' 'Male' 32 'St. Mary's Medical Center' 69 191
'Garcia’ 'Female’ 27 'VA Hospital' 69 131
'Martinez' 'Male' 37 "County General Hospital' 70 179
'Robinson’ 'Male' 50 "County General Hospital' 68 172
See Also

readtable | spreadsheetDatastore

More About
. “Read Spreadsheet Data into Table” on page 3-12

3-18



Write Data to Excel Spreadsheets

Write Data to Excel Spreadsheets

In this section...

“Write Tabular Data to Spreadsheet File” on page 3-19

“Write Numeric and Text Data to Spreadsheet File” on page 3-20
“Disable Warning When Adding New Worksheet” on page 3-21
“Format Cells in Excel Files” on page 3-21

Write Tabular Data to Spreadsheet File

To export a table in the workspace to a Microsoft® Excel® spreadsheet file, use the
writetable function. You can export data from the workspace to any worksheet in the
file, and to any location within that worksheet. By default, writetable writes your table
data to the first worksheet in the file, starting at cell Al.

For example, create a sample table of column-oriented data and display the first five rows.

load patients.mat
T = table(LastName,Age,Weight, Smoker);

T(1:5,:)
ans=5x4 table
LastName Age Weight Smoker

{'Smith' } 38 176 true
{'Johnson' } 43 163 false
{'Williams'} 38 131 false
{'Jones' } 40 133 false
{'Brown' } 49 119 false

Write table T to the first sheet in a new spreadsheet file named patientdata.xlsx,
starting at cell D1. To specify the portion of the worksheet you want to write to, use the
Range name-value pair argument. By default, writetable writes the table variable
names as column headings in the spreadsheet file.

filename = 'patientdata.xlsx';
writetable(T,filename, 'Sheet',1, 'Range', 'D1")

3-19



3 Spreadsheets

3-20

Write the table T without the variable names to a new sheet called 'MyNewSheet'. To
write the data without the variable names, specify the name-value pair
WriteVariableNames as false.

writetable(T, filename, 'Sheet', 'MyNewSheet', 'WriteVariableNames', false);

Write Numeric and Text Data to Spreadsheet File

To export a numeric array and a cell array to a Microsoft Excel spreadsheet file, use the
writematrix orwritecell functions. You can export data in individual numeric and
text workspace variables to any worksheet in the file, and to any location within that
worksheet. By default, the import functions write your matrix data to the first worksheet
in the file, starting at cell Al.

For example, create a sample array of numeric data, A, and a sample cell array of text and
numeric data, C.

A = magic(5)
C={'Time', 'Temp'; 12 98; 13 'x'; 14 97}
A —
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
C —
'Time' '"Temp'
[ 12] [ 98]
[ 13] "x'
[ 14] [ 97]

Write array A to the 5-by-5 rectangular region, E1: I5, on the first sheet in a new
spreadsheet file named testdata.xlsx.

filename = 'testdata.xlsx';
writematrix (A, filename, 'Sheet',1, 'Range', 'E1:I5")



See Also

Write cell array C to a rectangular region that starts at cell B2 on a worksheet named
Temperatures. You can specify range using only the first cell.

writecell(C,filename, 'Sheet', 'Temperatures', 'Range', 'B2');

writecell displays a warning because the worksheet, Temperatures, did not
previously exist, but you can disable this warning.

Disable Warning When Adding New Worksheet

If the target worksheet does not exist in the file, then the writetable and writecell
functions display this warning:

Warning: Added specified worksheet.

For information on how to suppress warning messages, see “Suppress Warnings”.

Format Cells in Excel Files

To write data to Excel files on Windows systems with custom formats (such as fonts or
colors), access the COM server directly using actxserver rather than writetable,
writetimetable, writematrix, or writecell. For example, Technical Solution 1-
QLD4K uses actxserver to establish a connection between MATLAB and Excel, write
data to a worksheet, and specify the colors of the cells.

For more information, see “Get Started with COM”.

See Also

writecell |writematrix |writetable

3-21


https://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K
https://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K

3 Spreadsheets

Define Import Options for Tables

3-22

Typically, you can import tables using the readtable function. However, sometimes
importing tabular data requires additional control over the import process. For example,
you might want to select the variables to import or handle rows with missing or error-
causing data. To control the import process, you can create an import options object. The
object has properties that you can adjust based on your import needs.

Create Import Options

To create an import options object for a sample data set, airlinesmall.csv, use the
detectImportOptions function. The detectImportOptions function creates a
DelimitedTextImportOptions object for this text file. For a full list of properties of
the import options object, see the detectImportOptions reference page.

opts = detectImportOptions('airlinesmall.csv');

Customize Table-Level Import Options

The import options object has properties that you can adjust to control the import
process. Some properties apply to the entire table while others apply to specific variables.
Properties that affect the entire table include rules to manage error-causing or missing
data. For example, remove rows with data that cause import errors by setting the
ImportErrorRule to 'omitrow'. Replace missing values by setting the MissingRule
to 'fill'. The FillValue property value determines what value replaces the missing
values. For example, you can replace missing values with NaN.

opts.ImportErrorRule = 'omitrow';
opts.MissingRule = 'fill';

Customize Variable-Level Import Options

To get and set options for specific variables use the getvaropts, setvartype, and
setvaropts functions. For example, view the current options for the variables named
FlightNum, Origin, Dest, and ArrDelay, using the getvaropts function.

getvaropts(opts, {'FlightNum', 'Origin', 'Dest"', '"ArrDelay'});
Change the data types for the variables using the setvartype function:

* Since the values in the variable Fl1ightNum are identifiers for the flight and not
numerical values, change its data type to char.



See Also

* Since the variables Origin and Dest designate a finite set of repeating text values,
change their data type to categorical.

opts = setvartype(opts,{'FlightNum', 'Origin', 'Dest', "ArrDelay'}, ...
{'char', 'categorical', 'categorical', 'single'});

Change other properties using the setvaropts function:

» For the FlightNum variable, remove any leading white spaces from the text by setting
the WhiteSpaceRule property to trimleading.

» For the ArrDelay variable, replace fields containing 0 or NA with the value specified
in FillValue property by setting the TreatAsMissing property.

opts = setvaropts(opts, 'FlightNum', 'WhitespaceRule', 'trimleading');
opts = setvaropts(opts, 'ArrDelay', 'TreatAsMissing',{'0"', 'NA"'});
Import Table

Specify the variables to get, import them using readtable, and display the first 8 rows
of the table.

opts.SelectedVariableNames = {'FlightNum', 'Origin', 'Dest"', 'ArrDelay'};
T = readtable('airlinesmall.csv',opts);
T(1:8,:)

ans=8x4 table
FlightNum Origin Dest ArrDelay

{'1503"'} LAX SJC 8
{'1550"'} SJC BUR 8
{'1589'} SAN SMF 21
{'1655"'} BUR SJC 13
{'1702"'} SMF LAX 4
{'1729'} LAX SJC 59
{'1763"'} SAN SFO 3
{'1800"'} SEA LAX 11
See Also

DelimitedTextImportOptions | SpreadsheetImportOptions |
detectImportOptions | getvaropts | readcell | readmatrix | readtable |
readvars | setvaropts | setvartype

3-23



3 Spreadsheets

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-5
. “Read Spreadsheet Data into Table” on page 3-12

3-24



Low-Level File 1/0

* “Import Text Data Files with Low-Level I/O” on page 4-2

* “Import Binary Data with Low-Level I/O” on page 4-10

» “Export to Text Data Files with Low-Level I/0” on page 4-18
« “Export Binary Data with Low-Level I/O” on page 4-24



4 Low-Level File 1/0

Import Text Data Files with Low-Level I/0

4-2

In this section...

“Overview” on page 4-2

“Reading Data in a Formatted Pattern” on page 4-3

“Reading Data Line-by-Line” on page 4-5

“Testing for End of File (EOF)” on page 4-6

“Opening Files with Different Character Encodings” on page 4-9

Overview

Low-level file I/O functions allow the most control over reading or writing data to a file.
However, these functions require that you specify more detailed information about your
file than the easier-to-use high-level functions, such as importdata. For more
information on the high-level functions that read text files, see “Import Text Files” on
page 2-2.

If the high-level functions cannot import your data, use one of the following:

» fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view
in a text editor. For more information, see “Reading Data in a Formatted Pattern” on
page 4-3.

+ fgetl and fgets, which read one line of a file at a time, where a newline character
separates each line. For more information, see “Reading Data Line-by-Line” on page 4-
5.

+ fread, which reads a stream of data at the byte or bit level. For more information, see
“Import Binary Data with Low-Level I/O” on page 4-10.

For additional information, see:

» “Testing for End of File (EOF)” on page 4-6
* “Opening Files with Different Character Encodings” on page 4-9

Note The low-level file I/O functions are based on functions in the ANSI® Standard C
Library. However, MATLAB includes vectorized versions of the functions, to read and
write data in an array with minimal control loops.




Import Text Data Files with Low-Level I/O

Reading Data in a Formatted Pattern

To import text files that importdata and textscan cannot read, consider using fscanf.
The fscanf function requires that you describe the format of your file, but includes many
options for this format description.

For example, create a text file mymeas.dat as shown. The data in mymeas .dat includes
repeated sets of times, dates, and measurements. The header text includes the number of
sets of measurements, N:

Measurement Data
N=3

12:00:00

01-Jan-1977

4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31

09:10:02

23-Aug-1990

2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46
15:03:40

15-Apr-2003

7.09 6.55 9.59 7.51
7.54 1.62 3.40 2.55
NaN 1.19 5.85 5.05
6.79 4.98 2.23 6.99

Opening the File

As with any of the low-level I/O functions, before reading, open the file with fopen, and
obtain a file identifier. By default, fopen opens files for read access, with a permission of
1 rl .

When you finish processing the file, close it with fclose(fid).

4-3



4 Low-Level File I/O

4-4

Describing the Data

Describe the data in the file with format specifiers, such as '%s' for text, '%d"' for an
integer, or '%f"' for a floating-point number. (For a complete list of specifiers, see the
fscanf reference page.)

To skip literal characters in the file, include them in the format description. To skip a data
field, use an asterisk (' *') in the specifier.

For example, consider the header lines of mymeas.dat:

Measurement Data % skip the first 2 words, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n
go to next line: \n

o°

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55

To read the headers and return the single value for N:
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);
Specifying the Number of Values to Read

By default, fscanf reapplies your format description until it cannot match the
description to the data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not attempt to read
the entire file. For example, in mymeas . dat, each set of measurements includes a fixed
number of rows and columns:

measrows = 4;
meascols = 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

Creating Variables in the Workspace

There are several ways to store mymeas.dat in the MATLAB workspace. In this case,
read the values into a structure. Each element of the structure has three fields: mtime,
mdate, and meas.



Import Text Data Files with Low-Level I/O

Note fscanf fills arrays with numeric values in column order. To make the output array
match the orientation of numeric data in a file, transpose the array.

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% read the file headers, find N (one value)

N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

% read each set of measurements

for n = 1:N
mystruct(n).mtime
mystruct(n).mdate

fscanf (fid,

s', 1);
fscanf (fid, '

s', 1);

1o
“©

1o
“©

% fscanf fills the array in column order,
% so transpose the results
mystruct(n).meas = ...
fscanf(fid, '%f', [measrows, meascols])';
end

% close the file
fclose(fid);

Reading Data Line-by-Line

MATLAB provides two functions that read lines from files and store them as character
vectors: fgetl and fgets. The fgets function copies the line along with the newline
character to the output, but fgetl does not.

The following example uses fgetl to read an entire file one line at a time. The function
litcount determines whether a given character sequence (Literal) appears in each
line. If it does, the function prints the entire line preceded by the number of times the
literal appears on the line.

function y = litcount(filename, literal)
% Count the number of times a given literal appears in each line.

fid = fopen(filename);



4 Low-Level File I/O

4-6

y =0;
tline = fgetl(fid);
while ischar(tline)
matches = strfind(tline, literal);
num = length(matches);
if num > 0
y =y + num;
fprintf (1, '%d:%s\n',num,tline);
end
tline = fgetl(fid);
end
fclose(fid);

Create an input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times 'an' appears in this file, call litcount:
litcount('badpoem', 'an')

This returns:

2: Oranges and lemons,

1: Pineapples and tea.

3: Orangutans and monkeys,

ans =
6

Testing for End of File (EOF)

When you read a portion of your data at a time, you can use feof to check whether you
have reached the end of the file. feof returns a value of 1 when the file pointer is at the
end of the file. Otherwise, it returns 0.

Note Opening an empty file does not move the file position indicator to the end of the
file. Read operations, and the fseek and frewind functions, move the file position
indicator.




Import Text Data Files with Low-Level I/O

Testing for EOF with feof

When you use textscan, fscanf, or fread to read portions of data at a time, use feof
to check whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas.dat has the following form, with
no information about the number of measurement sets. Read the data into a structure
with fields for mtime, mdate, and meas:

12:00:00

01-Jan-1977

4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02

23-Aug-1990

2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46

To read the file:
filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% make sure the file is not empty
finfo = dir(filename);
fsize finfo.bytes;

if fsize > 0

% read the file

block = 1;

while ~feof(fid)
mystruct(block) .mtime

fscanf(fid, '%s'
mystruct(block) .mdate %S’

fscanf(fid, '%s', 1);

% fscanf fills the array in column order,



4 Low-Level File I/O

4-8

% so transpose the results
mystruct(block).meas = ...
fscanf(fid, '%f', [measrows, meascols])';

block = block + 1;
end

end

[)

% close the file
fclose(fid);

Testing for EOF with fgetl and fgets

If you use fgetl or fgets in a control loop, feof is not always the best way to test for
end of file. As an alternative, consider checking whether the value that fgetl or fgets
returns is a character vector.

For example, the function litcount described in “Reading Data Line-by-Line” on page 4-
5 includes the following while loop and fgetl calls :

y =0;
tline = fgetl(fid);
while ischar(tline)
matches = strfind(tline, literal);
num = length(matches);
if num > 0
y =y + num;
fprintf (1, '%d:%s\n',num,tline);
end
tline = fgetl(fid);
end

This approach is more robust than testing ~feof (fid) for two reasons:

+ If fgetl or fgets find data, they return a character vector. Otherwise, they return a
number (-1).

» After each read operation, fgetl and fgets check the next character in the file for
the end-of-file marker. Therefore, these functions sometimes set the end-of-file
indicator before they return a value of - 1. For example, consider the following three-
line text file. Each of the first two lines ends with a newline character, and the third
line contains only the end-of-file marker:



Import Text Data Files with Low-Level I/O

123
456

Three sequential calls to fget1l yield the following results:

tl = fgetl(fid); % tl = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof (fid) = true

This behavior does not conform to the ANSI specifications for the related C language
functions.

Opening Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that
scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

4-9



4 Low-Level File 1/0

Import Binary Data with Low-Level I/O

4-10

In this section...

“Low-Level Functions for Importing Data” on page 4-10

“Reading Binary Data in a File” on page 4-10

“Reading Portions of a File” on page 4-13

“Reading Files Created on Other Systems” on page 4-15
“Opening Files with Different Character Encodings” on page 4-16

Low-Level Functions for Importing Data

Low-level file I/O functions allow the most direct control over reading or writing data to a
file. However, these functions require that you specify more detailed information about
your file than the easier-to-use high-level functions. For a complete list of high-level
functions and the file formats they support, see “Supported File Formats for Import and
Export” on page 1-2.

If the high-level functions cannot import your data, use one of the following:

+ fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view
in a text editor. For more information, see “Reading Data in a Formatted Pattern” on
page 4-3.

+ fgetl and fgets, which read one line of a file at a time, where a newline character
separates each line. For more information, see “Reading Data Line-by-Line” on page 4-
5.

+ fread, which reads a stream of data at the byte or bit level. For more information, see
“Reading Binary Data in a File” on page 4-10.

Note The low-level file I/O functions are based on functions in the ANSI Standard C
Library. However, MATLAB includes vectorized versions of the functions, to read and
write data in an array with minimal control loops.

Reading Binary Data in a File

As with any of the low-level I/O functions, before importing, open the file with fopen, and
obtain a file identifier. When you finish processing a file, close it with fclose(filelID).



Import Binary Data with Low-Level 1/0

By default, fread reads a file 1 byte at a time, and interprets each byte as an 8-bit
unsigned integer (uint8). fread creates a column vector, with one element for each byte
in the file. The values in the column vector are of class double.

For example, consider the file nine.bin, created as follows:
fid = fopen('nine.bin', 'w');

fwrite(fid, [1:9]);
fclose(fid);

To read all data in the file into a 9-by-1 column vector of class double:
fid = fopen('nine.bin');

col9 = fread(fid);
fclose(fid);

Changing the Dimensions of the Array

By default, fread reads all values in the file into a column vector. However, you can
specify the number of values to read, or describe a two-dimensional output matrix.

For example, to read nine.bin, described in the previous example:
fid = fopen('nine.bin');

% Read only the first six values
colé = fread(fid, 6);

% Return to the beginning of the file
frewind(fid);

% Read first four values into a 2-by-2 matrix
frewind(fid);
two dim4 = fread(fid, [2, 2]);

% Read into a matrix with 3 rows and
% unspecified number of columns
frewind(fid);

two dim9 = fread(fid, [3, inf]);

% Close the file
fclose(fid);

4-11



4 Low-Level File I/O

4-12

Describing the Input Values
If the values in your file are not 8-bit unsigned integers, specify the size of the values.

For example, consider the file fpoint.bin, created with double-precision values as
follows:

myvals = [pi, 42, 1/3];

fid = fopen('fpoint.bin','w');
fwrite(fid, myvals, 'double');
fclose(fid);

To read the file:

fid = fopen('fpoint.bin');

% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')’';

fclose(fid);
For a complete list of precision descriptions, see the fread function reference page.
Saving Memory

By default, fread creates an array of class double. Storing double-precision values in an
array requires more memory than storing characters, integers, or single-precision values.

To reduce the amount of memory required to store your data, specify the class of the
array using one of the following methods:

* Match the class of the input values with an asterisk (' *'). For example, to read single-
precision values into an array of class single, use the command:

mydata = fread(fid, '*single')

* Map the input values to a new class with the '=>" symbol. For example, to read
uint8 values into an uint16 array, use the command:

mydata = fread(fid, 'uint8=>uintl16"')

For a complete list of precision descriptions, see the fread function reference page.



Import Binary Data with Low-Level 1/0

Reading Portions of a File

MATLAB low-level functions include several options for reading portions of binary data in
a file:

* Read a specified number of values at a time, as described in “Changing the
Dimensions of the Array” on page 4-11. Consider combining this method with “Testing
for End of File” on page 4-13.

* Move to a specific location in a file to begin reading. For more information, see
“Moving within a File” on page 4-14.

« Skip a certain number of bytes or bits after each element read. For an example, see
“Write and Read Complex Numbers” on page 4-28.

Testing for End of File

When you open a file, MATLAB creates a pointer to indicate the current position within
the file.

Note Opening an empty file does not move the file position indicator to the end of the
file. Read operations, and the fseek and frewind functions, move the file position
indicator.

Use the feof function to check whether you have reached the end of a file. feof returns
a value of 1 when the file pointer is at the end of the file. Otherwise, it returns 0.

For example, read a large file in parts:

filename = 'largedata.dat’; % hypothetical file
segsize = 10000;

fid = fopen(filename);

while ~feof(fid)
currData = fread(fid, segsize);
if ~isempty(currData)
disp('Current Data:');
disp(currbData);
end
end

fclose(fid);

4-13



4 Low-Level File I/O

4-14

Moving within a File

To read or write selected portions of data, move the file position indicator to any location
in the file. For example, call fseek with the syntax

fseek(fid,offset,origin);
where:

* fid is the file identifier obtained from fopen.
* offset is a positive or negative offset value, specified in bytes.
* origin specifies the location from which to calculate the position:

"bof' Beginning of file
"cof' Current position in file
'eof’ End of file

Alternatively, to move easily to the beginning of a file:
frewind(fid);

Use ftell to find the current position within a given file. ftell returns the number of
bytes from the beginning of the file.

For example, create a file five.bin:
A= 1:5;

fid = fopen('five.bin','w');
fwrite(fid, A, 'short');
fclose(fid);

Because the call to fwrite specifies the short format, each element of A uses two
storage bytes in five.bin.

Reopen five.bin for reading:
fid = fopen('five.bin','r"');
Move the file position indicator forward 6 bytes from the beginning of the file:

status = fseek(fid, 6, 'bof');



Import Binary Data with Low-Level 1/0O

File Position boef 1 2 3 4 5 & 7 8
File Contents 0 1 0 2 0 3 40 4 0 5
File Position Indicator |

Read the next element:
four = fread(fid, 1, 'short');

The act of reading advances the file position indicator. To determine the current file
position indicator, call ftell:

position = ftell(fid)
position =
8
File Positiom bof 1 2 3 4 5 & 8 9 10 eof
File Contents a1 0 2 0 3 0 4 0 5
File Position Indicator T
To move the file position indicator back 4 bytes, call fseek again:
status = fseek(fid, -4, 'cof');
File Positiom bof 1 2 3 8 10 eof
File Contents o1 0 2 0o 3 0 4 5

File Position Indicateor

Read the next value:

three = fread(fid, 1, 'short');

Reading Files Created on Other Systems

Different operating systems store information differently at the byte or bit level:

* Big-endian systems store bytes starting with the largest address in memory (that is,
they start with the big end).

» Little-endian systems store bytes starting with the smallest address (the little end).

4-15



4 Low-Level File I/0

4-16

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte
ordering.

To read a file created on an opposite-endian system, specify the byte ordering used to
create the file. You can specify the ordering in the call to open the file, or in the call to
read the file.

For example, consider a file with double-precision values named little.bin, created on
a little-endian system. To read this file on a big-endian system, use one (or both) of the
following commands:

* Open the file with
fid = fopen('little.bin', 'r', 'l")
* Read the file with
mydata = fread(fid, 'double', 'l')
where '1"' indicates little-endian ordering.
If you are not sure which byte ordering your system uses, call the computer function:
[cinfo, maxsize, ordering] = computer

The returned orderingis 'L' for little-endian systems, or 'B"' for big-endian systems.

Opening Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

The encoding scheme determines the number of bytes required to read or write char
values. For example, US-ASCII characters always use 1 byte, but UTF-8 characters use up
to 4 bytes. MATLAB automatically processes the required number of bytes for each char
value based on the specified encoding scheme. However, if you specify a uchar precision,
MATLAB processes each byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);



Import Binary Data with Low-Level 1/0

If you specify an encoding scheme when you open a file, the following functions apply that
scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

4-17



4 Low-Level File I/0

Export to Text Data Files with Low-Level I/O

4-18

In this section...

“Write to Text Files Using fprintf” on page 4-18
“Append To or Overwrite Existing Text Files” on page 4-20
“Open Files with Different Character Encodings” on page 4-23

Write to Text Files Using fprintf

This example shows how to create text files, including combinations of numeric and
character data and nonrectangular files, using the low-level fprintf function.

fprintf is based on its namesake in the ANSI® Standard C Library. However,
MATLAB® uses a vectorized version of fprintf that writes data from an array with
minimal control loops.

Open the File
Create a sample matrix y with two rows.

X
y

0:0.1:1;
[x; exp(x)];

Open a file for writing with fopen and obtain a file identifier, fileID. By default, fopen
opens a file for read-only access, so you must specify the permission to write or append,
suchas 'w' or 'a'.

fileID = fopen('exptable.txt','w');
Write to the File

Write a title, followed by a blank line using the fprintf function. To move to a new line
in the file, use '\n".

fprintf(fileID, 'Exponential Function\n\n');

Note: Some Windows® text editors, including Microsoft® Notepad, require a newline
character sequence of '\r\n' instead of '\n'. However, '\n"' is sufficient for Microsoft
Word or WordPad.




Export to Text Data Files with Low-Level I/0

Write the values in y in column order so that two values appear in each row of the file.
fprintf converts the numbers or characters in the array inputs to text according to your
specifications. Specify '%f' to print floating-point numbers.

fprintf(filelD, 'sf %f\n',y);

Other common conversion specifiers include '%d' for integers or '%s' for characters.
fprintf reapplies the conversion information to cycle through all values of the input
arrays in column order.

Close the file using fclose when you finish writing.
fclose(filelID);
View the contents of the file using the type function.

type exptable.txt

Exponential Function

0.000000 1.000000
0.100000 1.105171
0.200000 1.221403
0.300000 1.349859
0.400000 1.491825
0.500000 1.648721
0.600000 1.822119
0.700000 2.013753
0.800000 2.225541
0.900000 2.459603
1.000000 2.718282

Additional Formatting Options

Optionally, include additional information in the call to fprintf to describe field width,
precision, or the order of the output values. For example, specify the field width and
number of digits to the right of the decimal point in the exponential table.

fileID = fopen('exptable new.txt', 'w');

fprintf(filelD, 'Exponential Function\n\n');
fprintf(filelD, '%6.2f %12.8f\n', y);

fclose(filelID);

4-19



4 Low-Level File I/O

4-20

View the contents of the file.
type exptable new.txt

Exponential Function

0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70  2.01375271
0.80  2.22554093
0.90  2.45960311
1.00 2.71828183

Append To or Overwrite Existing Text Files

This example shows how to append values to an existing text file, rewrite the entire file,
and overwrite only a portion of the file.

By default, fopen opens files with read access. To change the type of file access, use the
permission specifier in the call to fopen. Possible permission specifiers include:

* 'r' forreading

« 'w' for writing, discarding any existing contents of the file

* 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the
permission, such as 'w+' or 'a+'. If you open a file for both reading and writing, you
must call fseek or frewind between read and write operations.

Append to Existing Text File

Create a file named changing. txt.

fileID = fopen('changing.txt','w');
fmt = '%5d %5d %5d %5d\n';
fprintf(filelID, fmt, magic(4));
fclose(filelD);



Export to Text Data Files with Low-Level I/0

The current contents of changing. txt are:

16 5 9 4

2117 14

310 6 15

138121

Open the file with permission to append.

fileID = fopen('changing.txt','a');

Write the values [55 55 55 55] at the end of file:
fprintf(filelID, fmt, [55 55 55 55]);

Close the file.

fclose(filelD);

View the contents of the file using the type function.

type changing.txt

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

55 55 55 55

Overwrite Entire Text File

A text file consists of a contiguous set of characters, including newline characters. To
replace a line of the file with a different number of characters, you must rewrite the line
that you want to change and all subsequent lines in the file.

Replace the first line of changing. txt with longer, descriptive text. Because the change
applies to the first line, rewrite the entire file.

replacelLine = 1;

numLines = 5;
newText = 'This file originally contained a magic square';

4-21



4 Low-Level File I/O

4-22

filelD fopen('changing.txt','r");
mydata cell(1, numLines);
for k = l:numLines
mydata{k} = fgetl(filelID);
end
fclose(filelD);

mydata{replaceLine} = newText;

fileID = fopen('changing.txt','w');
fprintf(filelD, '%s\n',mydata{:});
fclose(filelD);

View the contents of the file.

type changing.txt

This file originally contained a magic square

2 11 7 14
3 10 6 15
13 8 12 1

55 55 55 55
Overwrite Portion of Text File

Replace the third line of changing.txt with [33 33 33 33]. If you want to replace a
portion of a text file with exactly the same number of characters, you do not need to
rewrite any other lines in the file.

replacelLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

Move the file position marker to the correct line.
fileID = fopen('changing.txt', 'r+');
for k=1:(replacelLine-1);

fgetl(filelD);
end

Call fseek between read and write operations.
fseek(fileID,0, 'cof');

fprintf(fileID, myformat, newData);
fclose(filelD);



See Also

View the contents of the file.
type changing.txt

This file originally contained a magic square

2 11 7 14
33 33 33 33
13 8 12 1

55 55 55 55

Open Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTEF-8.

If you do not specify an encoding scheme, fopen opens files for processing using the
default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that
scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

See Also
fopen | fprintf | fseek

More About
. “Formatting Text”
. “Write Data to Text Files” on page 2-27

4-23



4 ow-Level File 1/0

Export Binary Data with Low-Level I/0

4-24

In this section...

“Low-Level Functions for Exporting Data” on page 4-24
“Write Binary Data to a File” on page 4-24

“Overwrite or Append to an Existing Binary File” on page 4-25
“Create a File for Use on a Different System” on page 4-27
“Open Files with Different Character Encodings” on page 4-28

“Write and Read Complex Numbers” on page 4-28

Low-Level Functions for Exporting Data

Low-level file I/O functions allow the most direct control over reading or writing data to a
file. However, these functions require that you specify more detailed information about
your file than the easier-to-use high-level functions. For a complete list of high-level
functions and the file formats they support, see “Supported File Formats for Import and
Export” on page 1-2.

If the high-level functions cannot export your data, use one of the following:

« fprintf, which writes formatted data to a text or ASCII file; that is, a file you can
view in a text editor or import into a spreadsheet. For more information, see “Export
to Text Data Files with Low-Level [/O” on page 4-18.

+ fwrite, which writes a stream of binary data to a file. For more information, see
“Write Binary Data to a File” on page 4-24.

Note The low-level file I/O functions are based on functions in the ANSI Standard C
Library. However, MATLAB includes vectorized versions of the functions, to read and
write data in an array with minimal control loops.

Write Binary Data to a File

This example shows how to use the fwrite function to export a stream of binary data to
a file.



Export Binary Data with Low-Level I/O

Create a file named nine.bin with the integers from 1 to 9. As with any of the low-level
I/0 functions, before writing, open or create a file with fopen and obtain a file identifier.

fileID = fopen('nine.bin','w"');
fwrite(fileID, [1:9]);

By default, fwrite writes values from an array in column order as 8-bit unsigned
integers (uint8).

When you finish processing a file, close it with fclose.
fclose(filelID);

Create a file with double-precision values. You must specify the precision of the values if
the values in your matrix are not 8-bit unsigned integers.

mydata = [pi 42 1/3];
fileID = fopen('double.bin','w');

fwrite(fileID,mydata, 'double');
fclose(filelD);

Overwrite or Append to an Existing Binary File

This example shows how to overwrite a portion of an existing binary file and append
values to the file.

By default, fopen opens files with read access. To change the type of file access, use the
permission specifier in the call to fopen. Possible permission specifiers include:

* 'r' forreading
* 'w' for writing, discarding any existing contents of the file
* 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the
permission, such as 'w+' or 'a+'. If you open a file for both reading and writing, you
must call fseek or frewind between read and write operations.

Overwrite a Portion of an Existing File

Create a file named magic4.bin, specifying permission to write and read.

4-25



4 Low-Level File I/O

4-26

fileID = fopen('magic4.bin', 'w+');
fwrite(fileID,magic(4));

The original magic(4) matrix is:

16 2 3 13

511 10 8

976 12

414 151

The file contains 16 bytes, 1 for each value in the matrix.

Replace the values in the second column of the matrix with the vector, [44 44 44 44],
To do this, first seek to the fourth byte from the beginning of the file using fseek.

fseek(filelID, 4, 'bof');

Write the vector [44 44 44 44] using fwrite.
fwrite(fileID, [44 44 44 44]);

Read the results from the file into a 4-by-4 matrix.

frewind(filelD);
newdata = fread(filelD, [4,4])

newdata = 4x4

16 44 3 13
5 44 10 8
9 44 6 12
4 44 15 1
Close the file.
fclose(filelD);

Append Binary Data to Existing File

Append the values [55 55 55 55] tomagic4.bin. First. open the file with permission
to append and read.



Export Binary Data with Low-Level I/O

fileID = fopen('magic4.bin','a+");

Write values at end of file.

fwrite(fileID, [55 55 55 55]);

Read the results from the file into a 4-by-5 matrix.

frewind(fileID);
appended = fread(fileID, [4,5])

appended = 4x5

16 44 3 13 55
5 44 10 8 55
9 44 6 12 55
4 44 15 1 55
Close the file.
fclose(filelD);

Create a File for Use on a Different System

Different operating systems store information differently at the byte or bit level:

* Big-endian systems store bytes starting with the largest address in memory (that is,
they start with the big end).

» Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte
ordering.

To create a file for use on an opposite-endian system, specify the byte ordering for the
target system. You can specify the ordering in the call to open the file, or in the call to
write the file.

For example, to create a file named myfile.bin on a big-endian system for use on a
little-endian system, use one (or both) of the following commands:

+ Open the file with
fid = fopen('myfile.bin', 'w', 'l')

4-27



4 Low-Level File 1/0

4-28

* Write the file with
fwrite(fid, mydata, precision, 'l'")
where '1' indicates little-endian ordering.
If you are not sure which byte ordering your system uses, call the computer function:
[cinfo, maxsize, ordering] = computer

The returned orderingis 'L' for little-endian systems, or 'B"' for big-endian systems.

Open Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those
for Japanese or European languages. Common encoding schemes include US-ASCII or
UTF-8.

The encoding scheme determines the number of bytes required to read or write char
values. For example, US-ASCII characters always use 1 byte, but UTF-8 characters use up
to 4 bytes. MATLAB automatically processes the required number of bytes for each char
value based on the specified encoding scheme. However, if you specify a uchar precision,
MATLAB processes each byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing using the

default encoding for your system. To determine the default, open a file, and call fopen
again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that
scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the
encoding, see the fopen reference page.

Write and Read Complex Numbers

This example shows how to write and read complex numbers in binary files.



Export Binary Data with Low-Level I/O

The available precision values for fwrite do not explicitly support complex numbers. To
store complex numbers in a file, separate the real and imaginary components and write
them separately to the file. There are two ways to do this:

* Write all real components followed by all imaginary components
* Interleave the components

Use the approach that allows you to read the data in your target application.
Separate Real and Imaginary Components

Create an array that contains complex values.

nrows = 5;

ncols = 5;

z = complex(rand(nrows, ncols), rand(nrows, ncols))

z = 5x5 complex

0.8147 + 0.75771  0.0975 + 0.7060i 0.1576 + 0.82351 0.1419 + 0.43871
0.9058 + 0.7431i 0.2785 + 0.03181i 0.9706 + 0.69481 0.4218 + 0.38161
0.1270 + 0.3922i  0.5469 + 0.2769i 0.9572 + 0.31711i 0.9157 + 0.76551
0.9134 + 0.65551 0.9575 + 0.0462i  0.4854 + 0.95021 0.7922 + 0.79521
0.6324 + 0.1712i 0.9649 + 0.0971i 0.8003 + 0.03441i 0.9595 + 0.18691

Separate the complex values into real and imaginary components.

z_real
z_imag

real(z);
imag(z);

Write All Real Components Followed By Imaginary Components

Write all the real components, z_real, followed by all the imaginary components,
z_imag, to a file named complex adj.bin.

adjacent = [z _real z_imagl;

fileID = fopen('complex adj.bin', 'w');
fwrite(filelID,adjacent, 'double');
fclose(filelD);

Read the values from the file using fread.

fileID = fopen('complex adj.bin');
same_real = fread(fileID, [nrows, ncols], 'double');

4-29

0.6557 -
0.0357 -
0.8491 -
0.9340 -
0.6787 -



4 Low-Level File I/O

4-30

same_imag = fread(fileID, [nrows, ncols], 'double');
fclose(filelD);

same_z = complex(same real, same imag);
Interleave Real and Imaginary Components

An alternative approach is to interleave the real and imaginary components for each
value. fwrite writes values in column order, so build an array that combines the real and
imaginary parts by alternating rows.

First, preallocate the interleaved array.

interleaved = zeros(nrows*2, ncols);

Alternate real and imaginary data.

newrow = 1;

for row = l:nrows
interleaved(newrow,:) = z real(row,:);
interleaved(newrow + 1,:) = z imag(row,:);
Newrow = newrow + 2;

end

Write the interleaved values to a file named complex int.bin.

fileID = fopen('complex int.bin','w');
fwrite(fileID, interleaved, 'double');
fclose(filelID);

Open the file for reading and read the real values from the file. The fourth input to fread
tells the function to skip the specified number of bytes after reading each value.

fileID = fopen('complex int.bin');
same_real = fread(fileID, [nrows, ncols], 'double', 8);

Return to the first imaginary value in the file. Then, read all the imaginary data.
fseek(fileID, 8, 'bof');

same_imag = fread(fileID, [nrows, ncols], 'double', 8);
fclose(filelID);



See Also

same_z = complex(same real, same imag);

See Also

fopen | fread | fseek | fwrite

More About
. “Moving within a File” on page 4-14

4-31






Internet of Things (loT) Data

* “Aggregate Data in ThingSpeak Channel” on page 5-2
» “Regularize Irregularly Sampled Data” on page 5-4
* “Plot Data Read from ThingSpeak Channel” on page 5-6

* “Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit”
on page 5-8



5 Internet of Things (loT) Data

Aggregate Data in ThingSpeak Channel

This example shows how to aggregate data to a lower time resolution in a ThingSpeak™
channel to remove irregularity. Irregularity in a data can be caused due to several factors
such as event driven sensing, malfunctioning of sensors, or network latencies.

Read Data

ThingSpeak channel 22641 contains tide and weather data measured once a minute at
Ockway Bay, Cape Cod. Field 2 of the channel contains air temperature data. Read the air
temperature data for the past 3 hours from channel 22641 using the thingSpeakRead
function.

datetimeStop = dateshift(datetime('now'),'start', 'hour');
datetimeStart = dateshift(datetime('now'), 'start', "hour') - hours(3);

data = thingSpeakRead (22641, 'DateRange', [datetimeStart,datetimeStopl], ...
'Fields',2, 'outputFormat', 'timetable');

Aggregate the Data

Data is measured once every minute. However, due to network latency associated with
the measurement system, the actual timestamps can be greater than or less than a
minute apart. Further, for the application of interest, the frequency of data measured
every minute is high. Data at an hourly time resolution is sufficient. You can use the
retime function to aggregate the data for each hour to a single value. You can use the
maximum value for each hour to aggregate the data. Preview the first four values of the
data with head.

dataHourly = retime(data, 'hourly', 'max');
head (dataHourly,4)

ans =
3x1 timetable

Timestamps AirTemperatureC

03-Jan-2019 14:00:00
03-Jan-2019 15:00:00
03-Jan-2019 16:00:00

o O
H O U,

5-2



See Also

Send Data to ThingSpeak

Change the channellD and the writeAPIKey to send data to your channel

channellID=17504;
writeAPIKey="'23ZLGOBBU9TWHG2H";
thingSpeakWrite(channellD,data, 'writeKey',writeAPIKey) ;

See Also
retime | thingSpeakRead | thingSpeakWrite

5-3



5 Internet of Things (loT) Data

Regularize Irregularly Sampled Data

This example shows how to regularize irregularly sampled data to have a constant time
period between measurements. You update timestamps of data read from a ThingSpeak™
channel to remove irregularity, then write the data to a channel. Timestamp variations in
measured data introduced due to network latencies or hardware resets can affect data
preprocessing and data analytics algorithms. Many algorithms require regularly sampled
data to work correctly.

Read Data from the Weather Station Channel

ThingSpeak channel 12397 contains data from the MathWorks® weather station, located
in Natick, Massachusetts. The data is collected once every minute. Field 4 of the channel
contains air temperature data. To check for irregularly sampled data, read the air
temperature data from channel 12397 using the thingSpeakRead function.

data = thingSpeakRead (12397, 'NumMin',60, 'Fields',4, 'outputFormat', 'timetable");

Check for Irregularly Sampled Data

The data for the last 60 minutes read from channel 12397 is stored in as a timetable. Use
isregular function to check if the channel data is regularly sampled. If data is
irregularly sampled, generate a regularly spaced time vector for the time period of
interest. Generate a new time vector using linspace with the startTime, stopTime,
and the number of measurements.

regularFlag = isregular(data, 'Time');

if ~regularFlag
startTime = data.Timestamps(1l);
stopTime = data.Timestamps(end);
newTimeVector = linspace(startTime,stopTime,height(data));
data.Timestamps = newTimeVector;
end

Send Data to ThingSpeak
Send the processed data to a ThingSpeak channel using the thingSpeakWrite function.

% Change the channellD and the writeAPIKey to send data to your channel.
channellID=17504;



See Also

writeAPIKey="'23ZL.GOBBU9TWHG2H";
thingSpeakWrite(channellID,data, 'WriteKey',writeAPIKey);

See Also
linspace | thingSpeakRead | thingSpeakWrite

3-5



5

Internet of Things (loT) Data

Plot Data Read from ThingSpeak Channel

This example shows how to read data from a public ThingSpeak™ channel and create a
simple plot visualization from the results.

Read Data from ThingSpeak Channel

ThingSpeak channel 102698 contains air quality data from a parking garage in Natick
Massachusetts. Field 5 is a measure of dust concentration.

[dustData,Timestamps]=thingSpeakRead (102698, 'Fields',5, '"NumPoints',63000);
Plot the Dust Concentration Over Time

Use plot to visualize the data. Use ylabel and title to add labels to your plot.

plot(Timestamps,dustData);
ylabel('Dust Concentration (ppm)"');
title('MathWorks Air Quality Station, East Parking Garage');



See Also

Dust Concentration (ppm)

MathWorks Air Quality Station, East Parking Garage
12000 . .

10000

8000

6000 7

4000 1

2000 r

Jan 08 Jan 09 Jan 10 Jan 11
2019

During business days, you can see spikes in the dust concentration at times when cars
arrive or depart.

See Also
plot | thingSpeakRead | thingSpeakWrite | title | ylabel

5-7



5 Internet of Things (loT) Data

Read ThingSpeak Data and Predict Battery Discharge
Time with Linear Fit

This example shows how to read battery data from a ThingSpeak™ channel and analyze
the data to determine the remaining battery life. Use a linear fit to predict the date that
the battery will fail, and then write the remaining time in days to another ThingSpeak
Channel. You read data for a 12 V battery connected to a microprocessor reporting its
voltage to ThingSpeak every half hour. Then use regression to predict the day and time
when the battery will fail.

Read Data from ThingSpeak Channel

Start by storing channel and date information in variables, and then use
thingSpeakRead to read the data. Channel 592680 shows the scaled measurement of
voltage from a 12 V battery. Use the DateRange name-value pair to use a specific
selection of data.

batteryChannelID = 592680;

startDate = datetime('Oct 20, 2018');

endDate = datetime('Oct 23, 2018');

batteryData = thingSpeakRead(batteryChannellD, 'DateRange', [startDate endDate], 'Outputf

Convert the Data for Fitting and Plot

The channel stores raw data from the device. Convert the analog-to-digital converter
(ADC) measurement to voltage using the experimentally determined conversion factor
14.6324. Then use scatter to generate a plot.

myVoltage = 14.6324 * batteryData.Voltage;
scatter(batteryData.Timestamps,myVoltage, 'b');
ylabel('Voltage (V)');

hold on



Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit

181y

o o
13
D

12971 o oo

mr o O

12.87T o o0 co0

D ao o O

<127 r @ O

Woltage (

o (D CEDIEREEERD OCD JD GED 4D O
126 O I RO R
m O B

12.51

12471
D C

D ol

12371 O O

12271

12.1 ' ' !
Oct 20 Oct 21 Oct 22 Oct 23

2018

Fit the Data

The timetable datetime format is useful for reading and plotting. To fit the data, the
datetime needs to be in numeric format. Use datenum to convert the timestamps into a
number of days, and subtract the starting number to keep the values low. Use polyfit to
perform linear regression on the data, and polyval to evaluate the fit at the existing
time values. Add the fit line to the previous plot.

battTimes = datenum(batteryData.Timestamps);
battTimes= battTimes-battTimes(1);
myFit=polyfit(battTimes,myVoltage,1);
fitLine=polyval(myFit,battTimes);
plot(batteryData.Timestamps, fitLine, 'r--"');

5-9



5 Internet of Things (loT) Data

=

Woltage (

5-10

137
13
12971 o oo

12.87T o Oo._ QOO0

127

-

i

=]
T

=&
n
o
T
¥

124 -

12371

12271

12.1 ' ' !
Oct 20 Oct 21 Oct 22 Oct 23

2018

Predict Discharge Time

The battery should not be discharged below 10.4 V. Find the number of days until the fit
line will intersect with this voltage.

endDays = (10.4-myFit(2))/myFit(1)
endDays = 13.1573

There are just over 13 days until the battery dies.



See Also

Write Prediction to ThingSpeak

The thingSpeakWrite function writes the result to a ThingSpeak channel. Return the
output from thingSpeakWrite to ensure a successful write operation. Change the
writeChannellID and writeAPIKey to write to your own channel.

writeChannellID = 17504;
writeAPIKey="'23ZLGOBBU9TWHG2H" ;
result = thingSpeakWrite(writeChannellD, round(endDays,4), 'WriteKey',writeAPIKey)

result = struct with fields:
Fieldl: '13.1573'
Field2: []
Field3: []
Field4: []
Field5: []
Field6: []
Field7: []
Field8: []
Latitude: []
Longitude: []
ChannelID: 17504
Created: 03-Jun-2019 15:24:43
LastEntryID: 50018
Altitude: []

The result shows the successful write operation and reports the data that was written.

See Also

datetime | datnum | polyfit | polyval | scatter | thingSpeakRead |
thingSpeakWrite

5-11






Images

* “Importing Images” on page 6-2
* “Exporting to Images” on page 6-6



6

Images

Importing Images

6-2

To import data into the MATLAB workspace from a graphics file, use the imread function.
Using this function, you can import data from files in many standard file formats,
including the Tagged Image File Format (TIFF), Graphics Interchange Format (GIF), Joint
Photographic Experts Group (JPEG), and Portable Network Graphics (PNG) formats. For a
complete list of supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the MATLAB
workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of class
uint8. The dimensions of the array depend on the format of the data. For example,
imread uses three dimensions to represent RGB color images:

whos I
Name Size Bytes (lass
I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

For more control over reading TIFF files, use the Tiff object—see “Reading Image Data
and Metadata from TIFF Files” on page 6-3 for more information.

Getting Information About Image Files

If you have a file in a standard graphics format, use the imfinfo function to get
information about its contents. The imfinfo function returns a structure containing
information about the file. The fields in the structure vary with the file format, but
imfinfo always returns some basic information including the file name, last modification
date, file size, and format.

This example returns information about a file in Joint Photographic Experts Group (JPEG)
format:

info = imfinfo('ngc6543a.jpg"')

info =



Importing Images

Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg’
FileModDate: '01-0ct-1996 16:19:44'
FileSize: 27387

Format: 'jpg'
FormatVersion: "'

Width: 600

Height: 650

BitDepth: 24
ColorType: 'truecolor'
FormatSignature: '’
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'’
Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =...'}

Reading Image Data and Metadata from TIFF Files

While you can use imread to import image data and metadata from TIFF files, the
function does have some limitations. For example, a TIFF file can contain multiple images
and each images can have multiple subimages. While you can read all the images from a
multi-image TIFF file with imread, you cannot access the subimages. Using the Tiff
object, you can read image data, metadata, and subimages from a TIFF file. When you
construct a Tiff object, it represents your connection with a TIFF file and provides
access to many of the routines in the LibTIFF library.

A step-by-step example of using Tiff object methods and properties to read subimages
from a TIFF file follows. To get the most out of the Tiff object, familiarize yourself with
the TIFF specification and technical notes. See LibTIFF - TIFF Library and
Utilities.

Reading Subimages from a TIFF File

A TIFF file can contain one or more image file directories (IFD). Each IFD contains image
data and the metadata (tags) associated with the image. Each IFD can contain one or
more subIFDs, which also can contain image data and metadata. These subimages are
typically reduced-resolution (thumbnail) versions of the image data in the IFD containing
the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage from the

SubIFD tag. The SubIFD tag contains an array of byte offsets that point to the
subimages. You then can pass the address of the subIFD to the setSubDirectory

6-3


http://www.simplesystems.org/libtiff/
http://www.simplesystems.org/libtiff/

6 Images

method to make the subIFD the current IFD. Most Tiff object methods operate on the
current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff object
constructor. This example uses the TIFF file created in “Creating TIFF File
Subdirectories” on page 6-10, which contains one IFD directory with two subIFDs.
The Tiff constructor opens the TIFF file, and makes the first subIFD in the file the
current IFD:

t = Tiff('my_subimage file.tif','r');

2 Retrieve the locations of subIFDs associated with the current IFD. Use the getTag
method to get the value of the SubIFD tag. This method returns an array of byte
offsets that specify the location of subIFDs:

offsets = getTag(t, 'SubIFD"')
3 Navigate to the first subimage. First, set the currentIFD to the directory containing
the first subimage:

dirNum = 1;
setDirectory(t,dirNum);

4 Then, navigate to the first subIFD using the setSubDirectory method. Specify the
byte offset of the subIFD as an argument. This call makes the subIFD the current
IFD:

setSubDirectory(t,offsets(1));
5 Read the image data from the current IFD (the first subIFD) the same way you read
any other IFD in the file:

subimage one = read(t);
6 View the first subimage:

imagesc(subimage one)
7 Navigate to the second subimage. First, reset the currentIFD to the directory
containing the second subimage:

setDirectory(t,dirNum);
8 Then, navigate to the second subIFD using the setSubDirectory method. Specify
the byte offset of the second subIFD:

setSubDirectory(t,offsets(2));
9 Read the image data from the current IFD (the second subIFD) as you would with any
other IFD in the file:

subimage two = read(t);

6-4



See Also

10 View the second subimage:

imagesc(subimage two)
11 Close the Tiff object:

close(t);

See Also
Tiff

External Websites

. “Exporting to Images” on page 6-6



6

Images

Exporting to Images

6-6

To export data from the MATLAB workspace using one of the standard graphics file
formats, use the imwrite function. Using this function, you can export data in formats
such as the Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG),
and Portable Network Graphics (PNG). For a complete list of supported formats, see the
imwrite reference page.

The following example writes a multidimensional array of uint8 data I from the MATLAB
workspace into a file in TIFF format. The class of the output image written to the file
depends on the format specified. For most formats, if the input array is of class uints,
imwrite outputs the data as 8-bit values. See the imwrite reference page for details.

whos I
Name Size Bytes (lass
I 650x600x3 1170000 wuint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my graphics file.tif', 'tif');

Note imwrite supports different syntaxes for several of the standard formats. For
example, with TIFF file format, you can specify the type of compression MATLAB uses to
store the image. See the imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object—see “Exporting Image
Data and Metadata to TIFF Files” on page 6-6 for more information.

Exporting Image Data and Metadata to TIFF Files

While you can use imwrite to export image data and metadata (tags) to Tagged Image
File Format (TIFF) files, the function does have some limitations. For example, when you
want to modify image data or metadata in the file, you must write the all the data to the
file. You cannot write only the updated portion. Using the Tiff object, you can write
portions of the image data and modify or add individual tags to a TIFF file. When you
construct a Tiff object, it represents your connection with a TIFF file and provides
access to many of the routines in the LibTIFF library.

The following sections provide step-by-step examples of using Tiff object methods and
properties to perform some common tasks with TIFF files. To get the most out of the Tiff



Exporting to Images

object, you must be familiar with the TIFF specification and technical notes. View this
documentation at LibTIFF - TIFF Library and Utilities.

Creating a New TIFF File

1

Create some image data. This example reads image data from a JPEG file included
with MATLAB:

imgdata = imread('ngc6543a.jpg');

Create a new TIFF file by constructing a Tiff object, specifying the name of the new
file as an argument. To create a file you must specify either write mode ('w') or
append mode ('a'):

t = Tiff('myfile.tif"','w');

When you create a new TIFF file, the Tiff constructor creates a file containing an
image file directory (IFD). A TIFF file uses this IFD to organize all the data and
metadata associated with a particular image. A TIFF file can contain multiple IFDs.
The Tiff object makes the IFD it creates the current IFD. Tiff object methods
operate on the current IFD. You can navigate among IFDs in a TIFF file and specify
which IFD is the current IFD using Tiff object methods.

Set required TIFF tags using the setTag method of the Tiff object. These required
tags specify information about the image, such as its length and width. To break the
image data into strips, specify a value for the RowsPerStrip tag. To break the image
data into tiles, specify values for the TileWidth and TileLength tags. The example
creates a structure that contains tag names and values and passes that to setTag.
You also can set each tag individually.

tagstruct.ImageLength = size(imgdata,l);

tagstruct.ImageWidth = size(imgdata,2);

tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;

tagstruct.SamplesPerPixel = 3;

tagstruct.RowsPerStrip = 16;

tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';

tagstruct % display tagstruct

setTag(t,tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting

Tag Values” on page 6-12. For example, the Tiff object supports properties that
you can use to set the values of certain properties. This example uses the Tiff object

6-7


http://www.simplesystems.org/libtiff/

6 Images

PlanarConfiguration property to specify the correct value for the chunky
configuration: Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write method
of the Tiff object.

write(t,imgdata);

If you wanted to put multiple images into your file, call the writeDirectory method
right after performing this write operation. The writeDirectory method sets up a
new image file directory in the file and makes this new directory the current
directory.

5 Close your connection to the file by closing the Tiff object:

close(t);
6 Test that you created a valid TIFF file by using the imread function to read the file,
and then display the image:

imagesc(imread('myfile.tif'));

Writing a Strip or Tile of Image Data

Note You can only modify a strip or a tile of image data if the data is not compressed.

1 Open an existing TIFF file for modification by creating a Tiff object. This example
uses the file created in “Creating a New TIFF File” on page 6-7. The Tiff
constructor returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+");

2 Generate some data to write to a strip in the image. This example creates a three-
dimensional array of zeros that is the size of a strip. The code uses the number of
rows in a strip, the width of the image, and the number of samples per pixel as
dimensions. The array is an array of uint8 values.

width = getTag(t, 'ImageWidth"');

height = getTag(t, 'RowsPerStrip');

numSamples = getTag(t, 'SamplesPerPixel');

stripData = zeros(height,width,numSamples, 'uint8');

If the image data had a tiled layout, you would use the TileWidth and TileLength
tags to specify the dimensions.

6-8



Exporting to Images

Write the data to a strip in the file using the writeEncodedStrip method. Specify
the index number that identifies the strip you want to modify. The example picks strip
18 because it is easier to see the change in the image.

writeEncodedStrip(t,18,stripData);

If the image had a tiled layout, you would use the writeEncodedTile method to
modify the tile.
Close your connection to the file by closing the Tiff object.

close(t);
Test that you modified a strip of the image in the TIFF file by using the imread
function to read the file, and then display the image.

modified imgdata = imread('myfile.tif');
imagesc(modified imgdata)

Note the black strip across the middle of the image.

Modifying TIFF File Metadata (Tags)

1

Open an existing TIFF file for modification using the Tiff object. This example uses
the file created in “Creating a New TIFF File” on page 6-7. The Tiff constructor
returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+'");
Verify that the file does not contain the Artist tag, using the getTag method. This
code should issue an error message saying that it was unable to retrieve the tag.

artist value = getTag(t, 'Artist');
Add the Artist tag using the setTag method.

setTag(t, 'Artist', 'Pablo Picasso');

Write the new tag data to the TIFF file using the rewriteDirectory method. Use
the rewriteDirectory method when modifying existing metadata in a file or
adding new metadata to a file.

rewriteDirectory(t);
Close your connection to the file by closing the Tiff object.

close(t);
Test your work by reopening the TIFF file and getting the value of the Artist tag,
using the getTag method.

6-9



6 Images

6-10

t = Tiff('myfile.tif', 'r');
getTag(t, 'Artist")

ans =

Pablo Picasso

close(t);

Creating TIFF File Subdirectories

1

Create some image data. This example reads image data from a JPEG file included
with MATLAB. The example then creates two reduced-resolution (thumbnail) versions
of the image data.

imgdata = imread('ngc6543a.jpg');

img third = imgdata(l:3:end,1:3:end,:);

Create a new TIFF file by constructing a Tiff object and specifying the name of the
new file as an argument. To create a file you must specify either write mode ('w') or
append mode ('a'). The Tiff constructor returns a handle to a Tiff object.

t = Tiff('my subimage file.tif','w');

Set required TIFF tags using the setTag method of the Tiff object. These required
tags specify information about the image, such as its length and width. To break the
image data into strips, specify a value for the RowsPerStrip tag. To break the image
data into tiles, use the TileWidth and TileLength tags. The example creates a
structure that contains tag names and values and passes that to setTag. You can also
set each tag individually.

To create subdirectories, you must set the SubIFD tag, specifying the number of
subdirectories you want to create. Note that the number you specify isn't the value of
the SUbIFD tag. The number tells the Tiff software to create a SubIFD that points
to two subdirectories. The actual value of the SubIFD tag will be the byte offsets of
the two subdirectories.

tagstruct.ImageLength = size(imgdata,l);
tagstruct.ImageWidth = size(imgdata,2);



Exporting to Images

tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;

tagstruct.SamplesPerPixel = 3;

tagstruct.RowsPerStrip = 16;

tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';

tagstruct.SubIFD = 2 ; % required to create subdirectories
tagstruct % display tagstruct

setTag(t,tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting
Tag Values” on page 6-12. For example, the Tiff object supports properties that

you can use to set the values of certain properties. This example uses the Tiff object
PlanarConfiguration property to specify the correct value for the chunky
configuration: Tiff.PlanarConfiguration.Chunky.

Write the image data and metadata to the current directory using the write method
of the Tiff object.

write(t,imgdata);

Set up the first subdirectory by calling the writeDirectory method. The
writeDirectory method sets up the subdirectory and make the new directory the
current directory. Because you specified that you wanted to create two
subdirectories, writeDirectory sets up a subdirectory.

writeDirectory(t);
Set required tags, just as you did for the regular directory. According to the LibTIFF
API, a subdirectory cannot contain a SubIFD tag.

tagstruct2.ImageLength = size(img half,1);

tagstruct2.ImageWidth = size(img half,2);

tagstruct2.Photometric = Tiff.Photometric.RGB;
tagstruct2.BitsPerSample = 8;

tagstruct2.SamplesPerPixel = 3;

tagstruct2.RowsPerStrip = 16;

tagstruct2.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct2.Software = 'MATLAB';

tagstruct2 % display tagstruct2

setTag(t,tagstruct2)

Write the image data and metadata to the subdirectory using the write method of
the Tiff object.

write(t,img_half);

6-11



6 Images

8 Set up the second subdirectory by calling the writeDirectory method. The
writeDirectory method sets up the subdirectory and makes it the current
directory.

writeDirectory(t);
9 Set required tags, just as you would for any directory. According to the LibTIFF API, a
subdirectory cannot contain a SUbIFD tag.

tagstruct3.ImageLength = size(img third,1);
tagstruct3.ImageWidth = size(img third,2);
tagstruct3.Photometric = Tiff.Photometric.RGB;
tagstruct3.BitsPerSample = 8;
tagstruct3.SamplesPerPixel = 3;
tagstruct3.RowsPerStrip = 16;
tagstruct3.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct3.Software = 'MATLAB';
tagstruct3 % display tagstruct3
setTag(t,tagstruct3)
10 Write the image data and metadata to the subdirectory using the write method of
the Tiff object:

write(t,img third);
11 Close your connection to the file by closing the Tiff object:

close(t);
Setting Tag Values

The following table lists all the TIFF tags that the Tiff object supports and includes
information about their MATLAB class and size. For certain tags, the table also indicates
the set of values that the Tiff object supports, which is a subset of all the possible values
defined by the TIFF specification. You can use the Tiff properties structure to specify
the supported values for these tags. For example, use Tiff.Compression.JPEG to
specify JPEG compression. See the Tiff reference page for a full list of properties.

6-12



Exporting to Images

Table 1: Supported TIFF Tags

TIFF Tag Class |Size |Supported Values |Notes
Artist char 1xN
BitsPerSample double |1x1 1,8,16,32,64 See Table 2 on page
6-18
ColorMap double [256x3 |Values should be Photometric must
normalized be Palette
between 0-1.
Stored internally as
uintl16 values.
Compression double [1x1 None: 1 See Table 3 on page
CCITTRLE: 2 6-19.
CCITTFax3:3
CCITTFax4: 4
LZW: 5
JPEG: 7
CCITTRLEW: 32771
PackBits: 32773
Deflate: 32946
AdobeDeflate: 8
Copyright char 1xN
DateTime char 1x19 |Return value is
padded to 19 chars
if required.
DocumentName char 1xN
DotRange double [1x2 Photometric must
be Separated
ExtraSamples double |[1xN Unspecified: 0 See Table 4 on page
AssociatedAlpha |6-20.
01
UnassociatedAlp
ha: 2
FillOrder double [1x1
GeoAsciiParamsTag char 1xN

6-13




6 Images

TIFF Tag Class Size Supported Values |Notes
GeoDoubleParamsTag double |[1xN
GeoKeyDirectoryTag double [Nx4
Group30ptions double |1x1 Compression must
be CCITTFax3
Group40ptions double |1x1 Compression must
be CCITTFax4
HalfToneHints double |1x2
HostComputer char 1xn
ICCProfile uint8 |1xn
ImageDescription char 1xn
ImagelLength double |1x1
ImageWidth double |1x1
InkNames char 1x Photometric must
cell NumInk be Separated
array |s
InkSet double |1x1 CMYK: 1 Photometric must
MultilInk: 2 be Separated
JPEGQuality double |1x1 A value between 1
and 100
Make char 1xn
MaxSampleValue double |1x1 0-65,535
MinSampleValue double [1x1 0-65,535
Model char 1xN
ModelPixelScaleTag double |1x3
ModelTiepointTag double [Nx6
ModelTransformationMatrixTa |double |1x16
g
Number0QfInks double |1x1 Must be equal to

SamplesPerPixel

6-14




Exporting to Images

TIFF Tag Class Size Supported Values |Notes
Orientation double [1x1 TopLeft: 1
TopRight: 2
BottomRight: 3
BottomLeft: 4
LeftTop: 5
RightTop: 6
RightBottom: 7
LeftBottom: 8
PageName char 1xN
PageNumber double |1x2
Photometric double [1x1 MinIsWhite: 0 See Table 2 on page
MinIsBlack: 1 6-18.
RGB: 2
Palette: 3
Mask: 4
Separated: 5
YCbCr: 6
CIELab: 8
ICCLab: 9
ITULab: 10
Photoshop uint8 |1xN
PlanarConfiguration double [1x1 Chunky: 1
Separate: 2
PrimaryChromaticities double |1x6
ReferenceBlackWhite double [1x6
ResolutionUnit double |1x1
RICHTIFFIPTC uint8 |1xN
RowsPerStrip double |1x1
SampleFormat double [1x1 Uint: 1 See Table 2 on page
Int: 2 6-17
IEEEFP: 3
SamplesPerPixel double |1x1

6-15




6 Images

TIFF Tag Class Size Supported Values |Notes
SMaxSampleValue double [1x1 Range of MATLAB
data type specified
for Image data
SMinSampleValue double [1x1 Range of MATLAB
data type specified
for Image data
Software char 1xN
StripByteCounts double |[1xN Read-only
StripOffsets double [1xN Read-only
SubFileType double |1x1 Default: 0
ReducedImage: 1
Page: 2
Mask: 4
SubIFD double |1x1
TargetPrinter char 1xN
Thresholding double [1x1 BilLevel: 1 Photometric can be
HalfTone: 2 either: MinIsWhite
ErrorDiffuse: 3 |MinIsBlack
TileByteCounts double |[1xN Read-only
TilelLength double |1x1 Must be a multiple
of 16
TileOffsets double [1xN Read-only
TileWidth double |1x1 Must be a multiple
of 16
TransferFunction double |[See Each value should |[SamplePerPixel
note!  |be within 0-2°16-1 |can be either 1 or 3
WhitePoint double |1x2 Photometric can

be: RGB
Palette
YCbCr
CIELab
ICCLab
ITULab

6-16




Exporting to Images

TIFF Tag Class Size Supported Values |Notes
XMP char 1xn N>5
XPostion double |1x1
XResolution double |1x1
YCbCrCoefficents double |1x3 Photometric must
be YCbCr
YCbCrPositioning double [1x1 Centered: 1 Photometric must
Cosited: 2 be YCbCr
YCbCrSubSampling double [1x2 Photometric must
be YCbCr
YPosition double |1x1
YResolution double |1x1
ZipQuality double [1x1 Value between 1
and 9

1Size is 1x2"BitsPerSample or3x2”BitsPerSample.

Table 2: Valid SampleFormat Values for BitsPerSample Settings

BitsPerSample SampleFormat MATLAB Data Type

1 Uint logical

8 Uint, Int uint8, int8

16 Uint, Int uintl6, intl6

32 Uint, Int, IEEEFP uint32, int32, single
64 IEEEFP double

6-17




6 Images

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations

BitsPerSample Values
Photometric 1 8 16 32 64
Values
MinIsWhite Uint Uint/Int Uint Uint IEEEFP
Int Int
IEEEFP
MinIsBlack Uint Uint/Int Uint Uint IEEEFP
Int Int
IEEEFP
RGB Uint Uint Uint IEEEFP
IEEEFP
Pallette Uint Uint
Mask Uint
Separated Uint Uint Uint IEEEFP
IEEEFP
YCbCr Uint Uint Uint IEEEFP
IEEEFP
CIELab Uint Uint
ICCLab Uint Uint
ITULab Uint Uint

6-18



Exporting to Images

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations

BitsPerSample Values

Compression |1 8 16 32 64
Values
None Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
CCITTRLE Uint
CCITTFax3 Uint
CCITTFax4 Uint
LZW Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
JPEG Uint
Int
CCITTRLEW Uint
PackBits Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
Deflate Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
AdobeDeflate |Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP

6-19




6 Images

Table 5: Valid SamplesPerPixel Values for Photometric Settings

Photometric Values SamplesPerPixel!
MinIsWhite 1+
MinIsBlack 1+
RGB 3+
Pallette 1
Mask

Separated 1+
YCbCr 3
CIELab 3+
ICCLab 3+
ITULab 3+

1 When you specify more than the expected number of samples per pixel (n+), you must
set the ExtraSamples tag accordingly.

See Also
Tiff

External Websites
. “Importing Images” on page 6-2

6-20



Scientific Data

* “Import CDF Files Using Low-Level Functions” on page 7-2

* “Represent CDF Time Values” on page 7-5

* “Import CDF Files Using High-Level Functions” on page 7-6

+ “Export to CDF Files” on page 7-10

* “Map NetCDF API Syntax to MATLAB Syntax” on page 7-13

* “Import NetCDF Files and OPeNDAP Data” on page 7-15

* “Resolve Errors Reading OPeNDAP Data” on page 7-23

» “Export to NetCDF Files” on page 7-24

* “Importing Flexible Image Transport System (FITS) Files” on page 7-31
+ “Importing HDF5 Files” on page 7-33

+ “Exporting to HDFS5 Files” on page 7-41

* “Working with Non-ASCII Characters in HDF5 Files” on page 7-50
* “Import HDF4 Files Programatically” on page 7-54

* “Map HDF4 to MATLAB Syntax” on page 7-58

* “Import HDF4 Files Using Low-Level Functions” on page 7-60

* “Import HDF4 Files Interactively” on page 7-63

* “About HDF4 and HDF-EOS” on page 7-80

* “Export to HDF4 Files” on page 7-81



7 Scientific Data

Import CDF Files Using Low-Level Functions

7-2

This example shows how to use low-level functions to read data from a CDF file. The
MATLAB® low-level CDF functions correspond to routines in the CDF C API library. To
use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF C
interface.

Open CDF File

Open the sample CDF File, example.cdf.
cdfid = cdflib.open('example.cdf');

Get Information About File Contents

Use cdflib.inquire to get information about the number of variables in the file, the
number of global attributes, and the number of attributes with variable scope.

info = cdflib.inquire(cdfid)

info = struct with fields:
encoding: 'IBMPC ENCODING'
majority: 'ROW _MAJOR'
maxRec: 23
numVars: 6
numvAttrs: 1
numgAttrs: 3

Get Information About Variables

Use cdflib.inqurieVar to get information about the individual variables in the file.
Variable ID numbers start at zero.

info = cdflib.inquireVar(cdfid,0)

info = struct with fields:
name: 'Time'
datatype: 'cdf epoch'
numElements: 1
dims: [
recVariance: 1
dimVariance: [

]
]



Import CDF Files Using Low-Level Functions

info = cdflib.inquireVar(cdfid,1)

info = struct with fields:
name: 'Longitude’
datatype: 'cdf intl'

numElements: 1
dims: [2 2]

recVariance: 0

dimVariance: [1 0]

Read Variable Data Into Workspace

Read the data in a variable into the MATLAB workspace. The first variable contains CDF
Epoch time values. The low-level interface returns these as double values.

data_time = cdflib.getVarRecordData(cdfid,©,0)
data time = 6.3146e+13
Convert the time value to a date vector.

timeVec = cdflib.epochBreakdown(data time)

timeVec 7x1

2001

[cNoNoNON N

Read Global Attribute From File

Determine which attributes in the CDF file are global.
info = cdflib.inquireAttr(cdfid,0)

struct with fields:
name: 'SampleAttribute’
scope: 'GLOBAL_SCOPE'
maxgEntry: 4

info



7 Scientific Data

maxeEntry: -1

Read the value of the attribute. You must use the cdflib.getAttrgEntry function for
global attributes.

value = cdflib.getAttrgEntry(cdfid,0,0)

value =
'This is a sample entry.'

Close CDF File
Use cdflib.close to close the CDF file.
cdflib.close(cdfid);

See Also
cdflib | cdfread

External Websites
. CDF website


https://cdf.gsfc.nasa.gov/

Represent CDF Time Values

Represent CDF Time Values

This example shows how to extract date information from a CDF epoch object. CDF
represents time differently than MATLAB®. CDF represents date and time as the number
of milliseconds since 1-Jan-0000. This is called an epoch in CDF terminology. To represent
CDF dates, MATLAB uses an object called a CDF epoch object. MATLAB also can
represent a date and time as a datetime value or as a serial date number, which is the
number of days since 0-Jan-0000. To access the time information in a CDF object, convert
to one of these other representations.

Read the sample CDF file, example. cdf.

data = cdfread('example.cdf');

whos
Name Size Bytes (lass Attributes
data 24x6 25248 cell

cdfread returns a cell array.

Extract the date information from the first CDF epoch object returned in the cell array,
data, using the todatenum function.

m_datenum = todatenum(data{l})

m_datenum = 730852

Convert the MATLAB serial date number to a datetime value.

m datetime = datetime(m _datenum, 'ConvertFrom', 'datenum"')

m _datetime = datetime
01-Jan-2001 00:00:00

See Also

cdfread | datetime | todatenum

7-3



7 Scientific Data

Import CDF Files Using High-Level Functions

This example shows how to use high-level MATLAB® functions to import the sample CDF
file, example. cdf. High-level functions provide a simpler interface to accessing CDF
files.

Get Information About Contents of CDF File

Get information about the contents of a CDF file using the cdfinfo function. Because
cdfinfo creates temporary files, ensure that your current folder is writable before using
the function.

info = cdfinfo('example.cdf"')

info = struct with fields:
Filename: 'example.cdf'
FileModDate: '10-May-2010 21:35:01'
FileSize: 1310
Format: 'CDF'
FormatVersion: '2.7.0'
FileSettings: [1x1 struct]
Subfiles: {}
Variables: {6x6 cell}
GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

cdfinfo returns a structure containing general information about the file and detailed
information about the variables and attributes in the file. In this example, the Variables
field indicates the number of variables in the file.

View the contents of the Variables field.
vars = info.Variables

vars=6x6 cell
Columns 1 through 5

{'Time' } {1x2 double} {[24]} {'epoch"' } {'T/' }
{'Longitude’ } {1x2 double} {[ 11} {'int8' } {'F/FT' }
{'Latitude"’ } {1x2 double} {[ 11} {'int8' } {'F/TF' }
{'Data’ } {1x3 double} {[ 11} {'double'} {'T/TTT' }
{'multidimensional'} {1x4 double} {[ 11} {'uint8"' } {'T/TTTT'}
{'Temperature' } {1x2 double} {[10]} {'intl6' } {'T/TT" }



Import CDF Files Using High-Level Functions

Column 6

{'Full'}
{'Full'}
{'Full'}
{'Full'}
{'Full'}
{'Full'}

The first variable, Time, consists of 24 records containing CDF epoch data. The next two
variables, Longitude and Latitude, each have only one associated record containing
int8 data.

Read All Data from CDF File
Use the cdfread function to read all of the data in the CDF file.

data = cdfread('example.cdf');

whos data
Name Size Bytes C(lass Attributes
data 24x6 25248 cell

cdfread returns the data in a cell array. The columns of data correspond to the variables.
The rows correspond to the records associated with a variable.

Read Data from Specific Variables

Read only the Longitude and Latitude variables from the CDF file. To read the data
associated with particular variables, use the 'Variable' parameter. Specify the names
of the variables in a cell array of character vectors. Variable names are case sensitive.

var long lat = cdfread('example.cdf', 'Variable',{'Longitude', 'Latitude'});
whos var long lat

Name Size Bytes (lass Attributes
var_long lat 1x2 232 cell
Combine Records to Speed Up Read Operations

By default, cdfread creates a cell array with a separate element for every variable and
every record in each variable, padding the records dimension to create a rectangular cell

7-7



7 Scientific Data

array. When working with large data sets, you can speed up read operations by specifying
the 'CombineRecords' parameter to reduce the number of elements in the cell array
that cdfread returns. When you set the ' CombineRecords' parameter to true, the
cdfread function creates a separate element for each variable but saves time by putting
all the records associated with a variable in a single cell array element.

data combined = cdfread('example.cdf', 'CombineRecords', true);
Compare the sizes of the cell arrays returned by cdfread.

whos data*

Name Size Bytes C(lass Attributes
data 24x6 25248 cell
data combined 1x6 8320 cell

Reading all the data from the example file without the CombineRecords parameter
returns a 24-by-6 cell array, where the columns represent variables and the rows
represent the records for each variable. Reading the data from the same file with
"CombineRecords' set to true returns a 1-by-6 cell array.

When combining records, the dimensions of the data in the cell change. In this example,
the Time variable has 24 records, each of which is a scalar value. In the data combined
cell array, the combined element contains a 24-by-1 vector of values.

Read CDF Epoch Values as Serial Date Numbers

By default, cdfread creates a MATLAB cdfepoch object for each CDF epoch value in
the file. Speed up read operations by setting the 'ConvertEpochToDatenum' name-value
pair argument to true, to return CDF epoch values as MATLAB serial date numbers.

data_datenums = cdfread('example.cdf', 'ConvertEpochToDatenum',true);
whos data*

Name Size Bytes (lass Attributes
data 24x6 25248 cell
data_combined 1x6 8320 cell
data_datenums 24x6 21024 cell
See Also

cdfinfo | cdfread



See Also

External Websites
. CDF website


https://cdf.gsfc.nasa.gov/

7 Scientific Data

Export to CDF Files

7-10

This example shows how to export data to a CDF file using MATLAB® CDF low-level
functions. The MATLAB functions correspond to routines in the CDF C API library.

To use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF
C interface. Also, CDF files do not support non-ASCII encoded inputs. Therefore, variable
names, attributes names, variable values, and attribute values must have 7-bit ASCII
encoding.

Create New CDF File

Create a new CDF file named my file.cdf using cdflib.create. This function
corresponds to the CDF library C API routine, CDFcreateCDF.

cdfid = cdflib.create('my file.cdf');
cdflib.create returns a file identifier, cdfid.

Create Variables in CDF File

Create variables named Time and Latitude using cdflib.createVar. This function
corresponds to the CDF library C API routine, CDFcreatezVar.

time _id = cdflib.createVar(cdfid, 'Time','cdf int4',1,[],true,[1);
lat id = cdflib.createVar(cdfid, 'Latitude', 'cdf int2',1,181,true,true);

cdflib.createVar returns a numeric identifier for each variable.

Create a variable named Image.

dimSizes = [20 10];
image id = cdflib.createVar(cdfid, 'Image', 'cdf int4',1,...
dimSizes,true, [true truel);

Write to Variables

Write data to the first and second records of the Time variable. Record numbers are zero-
based. The cdflib.putVarRecordData function corresponds to the CDF library C API
routine, CDFputzVarRecordData.

cdflib.putVarRecordData(cdfid, time id,0,int32(23));
cdflib.putVarRecordData(cdfid, time id,1,int32(24));



Export to CDF Files

Write data to the Latitude variable.

data = int16([-90:90]);

recspec = [0 1 1];

dimspec = { 0 181 1 };
cdflib.hyperPutVarData(cdfid,lat id, recspec,dimspec,data);

Write data to the Image variable.

recspec [0 3 1];

dimspec { [0 0], [20 101, [1 11 };

data = reshape(int32([0:599]), [20 10 3]);
cdflib.hyperPutVarData(cdfid,image id, recspec,dimspec,data);

Write to Global Attribute

Create a global attribute named TITLE using cdflib.createAttr. This function
corresponds to the CDF library C API routine, CDFcreateAttr.

titleAttrNum = cdflib.createAttr(cdfid, 'TITLE', 'global scope');

cdflib.createAttr returns a numeric identifier for the attribute. Attribute numbers
are zero-based.

Write values to entries in the global attribute.

cdflib.putAttrEntry(cdfid,titleAttrNum,0Q, 'CDF CHAR', 'cdf Title');
cdflib.putAttrEntry(cdfid,titleAttrNum,1, 'CDF CHAR', 'Author');

Write to Attributes Associated with Variables

Create attributes associated with variables in the CDF file.

fieldAttrNum
unitsAttrNum

cdflib.createAttr(cdfid, 'FIELDNAM', 'variable scope');
cdflib.createAttr(cdfid, 'UNITS', 'variable scope');

Write to attributes of the Time variable.

cdflib.putAttrEntry(cdfid, fieldAttrNum, time id, ...
'"CDF_CHAR', 'Time of observation');

cdflib.putAttrEntry(cdfid,unitsAttrNum, time id, ...
'"CDF_CHAR', 'Hours');

7-11



7 Scientific Data

7-12

Get Information About CDF File

Get information about the file using cdflib.inquire. This function corresponds to the
CDF library C API routines, CDFinquireCDF and CDFgetNumgAttributes.

info = cdflib.inquire(cdfid)

info = struct with fields:

encoding:
majority:
maxRec:
numVars:
numvAttrs:
numgAttrs:

‘IBMPC_ENCODING'
‘ROW_MAJOR'
2

=N W

cdflib.inquire returns a structure array that includes information about the data
encoding and the number of variables and attributes in the file.

Close CDF File

Close the CDF File using cdflib. close. This function corresponds to the CDF library C
API routine, CDFcloseCDF. You must close a CDF to guarantee that all modifications you
made since opening the CDF are written to the file.

cdflib.close(cdfid);

See Also
cdflib

External Websites
. CDF website


https://cdf.gsfc.nasa.gov/

Map NetCDF API Syntax to MATLAB Syntax

Map NetCDF API Syntax to MATLAB Syntax

MATLAB netcdf package of low-level functions and its correspondence with the NetCDF
C library.

MATLAB provides access to the routines in the NetCDF C library through a set of low-
level functions that are grouped into a package called netcdf. Use the functions in this
package to read and write data to and from NetCDF files. To use the MATLAB NetCDF
functions effectively, you should be familiar with the NetCDF C interface.

Usually, the MATLAB functions in the netcdf package correspond directly to routines in
the NetCDF C library. For example, the MATLAB function netcdf. open corresponds to
the NetCDF library routine nc_open. In some cases, one MATLAB function corresponds
to a group of NetCDF library functions. For example, instead of creating MATLAB
versions of every NetCDF library nc_put_att type function, where type represents a
data type, MATLAB uses one function, netcdf.putAtt, to handle all supported data

types.

To call one of the functions in the netcdf package, you must prefix the function name
with the package name. The syntax of the MATLAB functions is similar to the NetCDF
library routines. However, the NetCDF C library routines use input parameters to return
data, while their MATLAB counterparts use one or more return values. For example, this
is the function signature of the nc_open routine in the NetCDF library:

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */
The NetCDF file identifier is returned in the ncidp argument.

This is the signature of the corresponding MATLAB function, netcdf.open:
ncid = netcdf.open(filename, mode)

Like its NetCDF C library counterpart, the MATLAB NetCDF function accepts a file name
and a constant that specifies the access mode. However, that the MATLAB netcdf.open
function returns the file identifier, ncid, as a return value.

The MATLAB NetCDF functions automatically choose the MATLAB class that best
matches the NetCDF data type. This table shows the default mapping.

NetCDF Data Type MATLAB Class
'NC_BYTE' int8 or uint8?

7-13



7 Scientific Data

7-14

NetCDF Data Type MATLAB Class
‘NC_CHAR' char
"NC_SHORT' int16
"NC_INT' int32
'NC_FLOAT' single
‘NC_DOUBLE" double

a. NetCDF interprets byte data as either signed or unsigned.

You can override the default and specify the class of the return data by using an optional
argument to the netcdf.getVar function.

See Also

More About

. “Import NetCDF Files and OPeNDAP Data” on page 7-15
. “Export to NetCDF Files” on page 7-24

External Websites
. NetCDF website


https://www.unidata.ucar.edu/software/netcdf/

Import NetCDF Files and OPeNDAP Data

Import NetCDF Files and OPeNDAP Data

Read data from a NetCDF file using the high-level functions, and then read the file by
using the netcdf package low-level functions.

In this section...

“MATLAB NetCDF Capabilities” on page 7-15

“Read from NetCDF File Using High-Level Functions” on page 7-15
“Find All Unlimited Dimensions in NetCDF File” on page 7-18
“Read from NetCDF File Using Low-Level Functions” on page 7-19

MATLAB NetCDF Capabilities

Network Common Data Form (NetCDF) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-oriented
scientific data. NetCDF is used by a wide range of engineering and scientific fields that
want a standard way to store data so that it can be shared.

MATLAB high-level functions simplify the process of importing data from a NetCDF file or
an OPeNDAP NetCDF data source. MATLAB low-level functions enable more control over
the importing process, by providing access to the routines in the NetCDF C library. To use
the low-level functions effectively, you should be familiar with the NetCDF C Interface.
The NetCDF documentation is available at the Unidata website.

Note For information about importing Common Data Format (CDF) files, which have a
separate, incompatible format, see “Import CDF Files Using Low-Level Functions” on
page 7-2.

Read from NetCDF File Using High-Level Functions

This example shows how to display and read the contents of a NetCDF file, using high-
level functions.

Display the contents of the sample NetCDF file, example.nc.

ncdisp('example.nc')

7-15


https://www.unidata.ucar.edu/software/netcdf/

7 Scientific Data

Source:

\\matlabroot\toolbox\matlab\demos\example.nc

Format:
netcdf4
Global Attributes:
creation dat

Dimensions:
X = 50
y = 50
z =25
Variables:
avagadros_number
Size:
Dimensions:
Datatype:
Attributes:
temperature
Size:
Dimensions:
Datatype:
Attributes:
peaks
Size:
Dimensions:
Datatype:
Attributes:
Groups:
/gridl/
Attributes:
desc
Dimensions:
X
y .
time
Variables:
temp
Size
Dime
Data

7-16

e = '29-Mar-2010"

1x1

double

description 'this variable has no dimensions'

50x1
X
intl6

1.8
32
'degrees fahrenheight'

scale factor
add offset
units

50x50

X,y
intl6

description 'z = peaks(50) ;"'

ription = 'This is a group attribute.'
360

180
0

(UNLIMITED)

: []

x,y,time
intl6

nsions:
type:



Import NetCDF Files and OPeNDAP Data

/grid2/

Attributes:
description = 'This is another group attribute.'

Dimensions:
X = 360
y = 180
time = 0 (UNLIMITED)

Variables:

temp

Size: []

Dimensions: x,y,time
Datatype: intl6

ncdisp displays all the groups, dimensions, and variable definitions in the file. Unlimited
dimensions are identified with the label, UNLIMITED.

Read data from the peaks variable.
peaksData = ncread('example.nc', 'peaks');
Display information about the peaksData output.
whos peaksData
Name Size Bytes C(lass Attributes
peaksData 50x50 5000 intl6
Read the description attribute associated with the variable.
peaksDesc = ncreadatt('example.nc', 'peaks', 'description')
peaksDesc =
z = peaks(50);

Create a three-dimensional surface plot of the variable data. Use the value of the
description attribute as the title of the figure.

surf(double(peaksData))
title(peaksDesc);

Read the description attribute associated with the /grid1l/ group. Specify the group
name as the second input to the ncreadatt function.

7-17



7 Scientific Data

g ncreadatt('example.nc','/gridl/"', 'description')
g:
This is a group attribute.

Read the global attribute, creation date. For global attributes, specify the second
input argument to ncreadattas '/".

creation date = ncreadatt('example.nc','/"', 'creation date"')

creation date

29-Mar-2010

Find All Unlimited Dimensions in NetCDF File

This example shows how to find all unlimited dimensions in a group in a NetCDF file,
using high-level functions.

Get information about the /grid2/ group in the sample file, example.nc, using the
ncinfo function.

ginfo

ncinfo('example.nc','/grid2/")

ginfo

Filename: '\\matlabroot\toolbox\matlab\demos\example.nc'
Name: 'grid2'
Dimensions: [1x3 struct]
Variables: [1x1 struct]
Attributes: [1x1 struct]
Groups: []
Format: 'netcdf4’

ncinfo returns a structure array containing information about the group.

Get a vector of the Boolean values that indicate the unlimited dimensions for this group.

unlimDims = [ginfo.Dimensions.Unlimited]
unlimDims =
0 0 1

7-18



Import NetCDF Files and OPeNDAP Data

Use the unlimDims vector to display the unlimited dimension.
disp(ginfo.Dimensions(unlimDims))
Name: 'time'

Length: 0
Unlimited: 1

Read from NetCDF File Using Low-Level Functions

This example shows how to get information about the dimensions, variables, and
attributes in a NetCDF file using MATLAB low-level functions in the netcdf package. To
use these functions effectively, you should be familiar with the NetCDF C Interface.

Open NetCDF File

Open the sample NetCDF file, example. nc, using the netcdf.open function, with read-
only access.

ncid netcdf.open('example.nc', 'NC NOWRITE")

ncid = 65536
netcdf.open returns a file identifier.

Get Information About NetCDF File

Get information about the contents of the file using the netcdf . inq function. This
function corresponds to the nc_inq function in the NetCDF library C API.

[ndims,nvars,natts,unlimdimID] = netcdf.inqg(ncid)

ndims = 3
nvars = 3
natts =1

unlimdimID = -1
netcdf.ing returns the number of dimensions, variables, and global attributes in the

file, and returns the identifier of the unlimited dimension in the file. An unlimited
dimension can grow.

7-19



7 Scientific Data

7-20

Get the name of the global attribute in the file using the netcdf.ingAttName function.
This function corresponds to the nc_inqg_attname function in the NetCDF library C API.
To get the name of an attribute, you must specify the ID of the variable the attribute is
associated with and the attribute number. To access a global attribute, which is not
associated with a particular variable, use the constant 'NC_GLOBAL' as the variable ID.

global att name = netcdf.ingAttName(ncid,...
netcdf.getConstant('NC GLOBAL'),0)

global att name =
‘creation_date’

Get information about the data type and length of the attribute using the
netcdf.ingAtt function. This function corresponds to the nc_inqg att function in the
NetCDF library C API. Again, specify the variable ID using

netcdf.getConstant('NC GLOBAL"').

[xtype,attlen] = netcdf.ingAtt(ncid, ...
netcdf.getConstant('NC GLOBAL'),global att name)

xtype = 2
attlen = 11
Get the value of the attribute, using the netcdf.getAtt function.

global att value = netcdf.getAtt(ncid,...
netcdf.getConstant('NC GLOBAL'),global att name)

global att value =
'29-Mar-2010'

Get information about the first dimension in the file, using the netcdf.ingDim function.
This function corresponds to the nc_ing_dim function in the NetCDF library C APIL. The
second input to netcdf.ingDim is the dimension ID, which is a zero-based index that
identifies the dimension. The first dimension has the index value 0.

[dimname,dimlen] = netcdf.ingDim(ncid,0)

dimname =
!

dimlen = 50

netcdf.ingDim returns the name and length of the dimension.



Import NetCDF Files and OPeNDAP Data

Get information about the first variable in the file using the netcdf.inqVar function.
This function corresponds to the nc_ing var function in the NetCDF library C API. The
second input to netcdf.inqVar is the variable ID, which is a zero-based index that
identifies the variable. The first variable has the index value 0.

[varname,vartype,dimids,natts] = netcdf.inqVar(ncid,0)

varname =
'avagadros number'

vartype = 6
dimids =
[]

natts =1

netcdf.ingVar returns the name, data type, dimension ID, and the number of attributes
associated with the variable. The data type information returned in vartype is the
numeric value of the NetCDF data type constants, such as, NC_INT and NC_BYTE. See the
NetCDF documentation for information about these constants.

Read Data from NetCDF File

Read the data associated with the variable, avagadros number, in the example file,
using the netcdf.getVar function. The second input to netcdf.getVar is the variable
ID, which is a zero-based index that identifies the variable. The avagadros number
variable has the index value 0.

A number = netcdf.getVar(ncid,0)
A number = 6.0221e+23
View the data type of A_number.
whos A number
Name Size Bytes C(lass Attributes

A number 1x1 8 double

The functions in the netcdf package automatically choose the MATLAB class that best
matches the NetCDF data type, but you can also specify the class of the return data by
using an optional argument to netcdf.getVar.

7-21



7 Scientific Data

Read the data associated with avagadros number and return the data as class single.

A number = netcdf.getVar(ncid,0, 'single');
whos A number

Name Size Bytes C(lass Attributes
A number 1x1 4 single
Close NetCDF File

Close the NetCDF file, example.nc.

netcdf.close(ncid)

See Also

ncdisp | ncinfo | ncread | ncreadatt

More About
. “Map NetCDF API Syntax to MATLAB Syntax” on page 7-13

External Websites
. NetCDF C Interface

7-22


https://www.unidata.ucar.edu/software/netcdf/

Resolve Errors Reading OPeNDAP Data

Resolve Errors Reading OPeNDAP Data

When you have trouble reading OPeNDAP data, consider these factors.

OPeNDAP data is being pulled over the network from a server on the Internet. Pulling
large data could be slow. Speed and reliability depends on their network connection

OPeNDAP capability does not support proxy servers or any authentication
Failure to open an OPeNDAP link could have multiple causes:

Invalid URL
Local machine firewall/network firewall does not allow any external connections.

Local machine firewall/network firewall does not allow external connections on the
OPeNDAP protocol.

Remote server is down.

Remote server will not serve the amount of data being requested. In this case, you
can read data in subsets or chunks.

Remote server is incorrectly configured.

7-23



7 Scientific Data

Export to NetCDF Files

7-24

Create, merge, and write NetCDF files using high-level functions and the netcdf
package low-level functions.

In this section...

“MATLAB NetCDF Capabilities” on page 7-24
“Create New NetCDF File From Existing File or Template” on page 7-24
“Merge Two NetCDF Files” on page 7-26

“Write Data to NetCDF File Using Low-Level Functions” on page 7-28

MATLAB NetCDF Capabilities

Network Common Data Form (NetCDF) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-oriented
scientific data. NetCDF is used by a wide range of engineering and scientific fields that
want a standard way to store data so that it can be shared.

MATLAB high-level functions make it easy to export data to a netCDF file. MATLAB low-
level functions provide access to the routines in the NetCDF C library. To use the low-level
functions effectively, you should be familiar with the NetCDF C Interface. The NetCDF
documentation is available at the Unidata website.

Note For information about exporting to Common Data Format (CDF) files, which have a
separate and incompatible format, see “Export to CDF Files” on page 7-10.

Create New NetCDF File From Existing File or Template

This example shows how to create a new NetCDF file that contains the variable,
dimension, and group definitions of an existing file, but uses a different format.

Create a file containing one variable, using the nccreate function.
nccreate('myfile.nc', "'myvar")

Write data to the file.


https://www.unidata.ucar.edu/software/netcdf/

Export to NetCDF Files

A = 99;
ncwrite('myfile.nc', 'myvar',A)

Read the variable, dimension, and group definitions from the file using ncinfo. This
information defines the file's schema.

S = ncinfo('myfile.nc');
Get the format of the file.

file fmt = S.Format

file fmt =
'netcdf4 classic'

Change the value of the Format field in the structure, S, to another supported NetCDF
format.

S.Format = 'netcdf4';

Create a new version of the file that uses the new format, using the ncwriteschema
function. A schema defines the structure of the file but does not contain any of the data
that was in the original file.

ncwriteschema('newfile.nc',S)
S = ncinfo('newfile.nc');

Note: When you convert a file's format using ncwriteschema, you might get a warning
message if the original file format includes fields that are not supported by the new
format. For example, the netcdf4 format supports fill values but the NetCDF classic
format does not. In these cases, ncwriteschema still creates the file, but omits the field
that is undefined in the new format.

View the format of the new file.

S.Format

new fmt

new fmt =
'netcdf4’

The new file, newfile.nc, contains the variable and dimension definitions of
myfile.nc, but does not contain the data.

Write data to the new file.

7-25



7 Scientific Data

7-26

ncwrite('newfile.nc', 'myvar',6A)

Merge Two NetCDF Files

This example shows how to merge two NetCDF files using high-level functions. The
combined file contains the variable and dimension definitions of the files that are
combined, but does not contain the data in these original files.

Create a NetCDF file named ex1.nc and define a variable named myvar. Then, write
data to the variable and display the file contents.

nccreate('exl.nc', 'myvar');
ncwrite('exl.nc', 'myvar',55)
ncdisp(‘'exl.nc")

Source:
pwd\exl.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:

Datatype: double

Create a second file and define a variable named myvar2. Then, write data to the variable
and display the file contents.

nccreate('ex2.nc', 'myvar2');
ncwrite('ex2.nc', 'myvar2',99)
ncdisp(‘'ex2.nc')

Source:
pwd\ex2.nc
Format:
netcdf4 classic
Variables:
myvar2
Size: 1x1
Dimensions:

Datatype: double

Get the schema of each of the files, using the ncinfo function.



Export to NetCDF Files

infol

ncinfo('exl.nc"')
infol =

Filename: 'pwd\exl.nc'
Name: '/'
Dimensions: []
Variables: [1x1 struct]
Attributes: []
Groups: []
Format: 'netcdf4 classic'

info2 = ncinfo('ex2.nc'")

info2

Filename: 'pwd\ex2.nc'
Name: '/'
Dimensions: []
Variables: [1x1 struct]
Attributes: []
Groups: []
Format: 'netcdf4 classic'

Create a new NetCDF file that uses the schema of the first example file, using the
ncwriteschema function. Then, display the file contents.

ncwriteschema('combined.nc',infol)
ncdisp('combined.nc')

Source:
pwd\combined.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillvValue = 9.969209968386869e+36

Add the schema from ex2.nc to combined.nc, using ncwriteschema.

ncwriteschema('combined.nc',info2)

7-27



7 Scientific Data

7-28

View the contents of the combined file.

ncdisp('combined.nc")

Source:
pwd\combined.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:
Datatype: double
Attributes:
_FillvValue = 9.969209968386869e+36
myvar2
Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.969209968386869e+36

The file contains the myvar variable defined in the first example file and the myvar2
variable defined in the second file.

Write Data to NetCDF File Using Low-Level Functions

This example shows how to use low-level functions to write data to a NetCDF file. The
MATLAB® low-level functions provide access to the routines in the NetCDF C library.
MATLAB groups the functions into a package, called netcdf. To call one of the functions
in the package, you must prefix the function name with the package name.

To use the MATLAB NetCDF functions effectively, you should be familiar with the
information about the NetCDF C Interface.

To run this example, you must have write permission in your current folder.

Create a 1-by-50 variable of numeric values named my data in the MATLAB workspace.
The vector is of class double.

my data = linspace(0,49,50);



Export to NetCDF Files

Create a NetCDF file named my file.nc, using the netcdf. create function. The
NOCLOBBER parameter is a NetCDF file access constant that indicates that you do not
want to overwrite an existing file with the same name.

ncid = netcdf.create('my file.nc', 'NOCLOBBER');

netcdf.create returns a file identifier, ncid. When you create a NetCDF file, the file
opens in define mode. You must be in define mode to define dimensions and variables.

Define a dimension in the file, using the netcdf.defDim function. This function
corresponds to the nc_def dim function in the NetCDF library C API. You must define
dimensions in the file before you can define variables and write data to the file. In this
case, define a dimension named my dim with length 50.

dimid = netcdf.defDim(ncid, ‘'my dim',50)
dimid = 0

netcdf.defDim returns a dimension identifier that corresponds to the new dimension.
Identifiers are zero-based indexes.

Define a variable named my var on the dimension, using the netcdf.defVar function.
This function corresponds to the nc_def var function in the NetCDF library C API.
Specify the NetCDF data type of the variable, in this case, NC_BYTE.

varid = netcdf.defVar(ncid, ‘'my var', 'NC BYTE',dimid)

varid = 0

netcdf.defVar returns a variable identifier that corresponds to my var.

Take the NetCDF file out of define mode. To write data to a file, you must be in data mode.
netcdf.endDef(ncid)

Write the data from the MATLAB workspace into the variable in the NetCDF file, using
the netcdf.putVar function. The data in the workspace is of class double but the
variable in the NetCDF file is of type NC_BYTE. The MATLAB NetCDF functions
automatically do the conversion.

netcdf.putVar(ncid,varid,my data)
Close the file, using the netcdf. close function.

netcdf.close(ncid)

7-29



7 Scientific Data

7-30

Verify that the data was written to the file by opening the file and reading the data from
the variable into a new variable in the MATLAB workspace.

ncid2 = netcdf.open('my file.nc','NC NOWRITE');
x = netcdf.getVar(ncid2,0);

View the data type of x.

whos x
Name Size Bytes C(lass Attributes
X 50x1 50 1int8

MATLAB stores data in column-major order while the NetCDF C API uses row-major
order. x represents the data stored in the NetCDF file and is therefore 50-by-1 even
though the original vector in the MATLAB workspace, my data, is 1-by-50. Because you
stored the data in the NetCDF file as NC_BYTE, MATLAB reads the data from the variable
into the workspace as class int8.

Close the file.

netcdf.close(ncid2)

See Also

More About
. “Map NetCDF API Syntax to MATLAB Syntax” on page 7-13

External Websites
. NetCDF C Interface


https://www.unidata.ucar.edu/software/netcdf/

Importing Flexible Image Transport System (FITS) Files

Importing Flexible Image Transport System (FITS) Files

The FITS file format is the standard data format used in astronomy, endorsed by both
NASA and the International Astronomical Union (IAU). For more information about the
FITS standard, go to the FITS Web site, https://fits.gsfc.nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of
multidimensional arrays (1-D spectra, 2-D images, or 3-D data cubes) and two-
dimensional tables containing rows and columns of data. A data file in FITS format can
contain multiple components, each marked by an ASCII text header followed by binary
data. The first component in a FITS file is known as the primary, which can be followed by
any number of other components, called extensions, in FITS terminology. For a complete
list of extensions, see fitsread.

To get information about the contents of a Flexible Image Transport System (FITS) file,
use the fitsinfo function. The fitsinfo function returns a structure containing the
information about the file and detailed information about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport System
(FITS) file, use the fitsread function. Using this function, you can import the primary
data in the file or you can import the data in any of the extensions in the file, such as the
Image extension, as shown in this example.

1 Determine which extensions the FITS file contains, using the fitsinfo function.
info = fitsinfo('tst0012.fits"')
info =

Filename: 'matlabroot\tst0012.fits'
FileModDate: '12-Mar-2001 19:37:46'

FileSize: 109440

Contents: {'Primary' 'Binary Table' ‘'Unknown' 'Image' 'ASCII Table'}
PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

Unknown: [1x1 struct]

Image: [1x1 struct]

AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including the
Binary Table, ASCII Table, and Image extensions.
2 Read data from the file.

To read the Primary data in the file, specify the filename as the only argument:

pdata = fitsread('tst0012.fits');

7-31


https://fits.gsfc.nasa.gov/

7 Scientific Data

To read any of the extensions in the file, you must specify the name of the extension
as an optional parameter. This example reads the Binary Tab'le extension from the
FITS file:

bindata = fitsread('tst0012.fits', 'binarytable');

7-32



Importing HDF5 Files

Importing HDF5 Files

In this section...

“Overview” on page 7-33
“Using the High-Level HDF5 Functions to Import Data” on page 7-33

“Using the Low-Level HDF5 Functions to Import Data” on page 7-40

Overview

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National Center for
Supercomputing Applications (NCSA). HDF5 is used by a wide range of engineering and
scientific fields that want a standard way to store data so that it can be shared. For more
information about the HDF?5 file format, read the HDF5 documentation available at the
HDF Web site (https://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:
» High-level functions that make it easy to import data, when working with numeric
datasets

» Low-level functions that enable more complete control over the importing process, by
providing access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a separate, incompatible
format, see “Import HDF4 Files Programatically” on page 7-54.

Using the High-Level HDF5 Functions to Import Data

MATLAB includes several functions that you can use to examine the contents of an HDF5
file and import data from the file into the MATLAB workspace.

Note You can only use the high-level functions to read numeric datasets or attributes. To
read non-numeric datasets or attributes, you must use the low-level interface on page 7-
40.

7-33


https://www.hdfgroup.org

7 Scientific Data

7-34

* h5disp — View the contents of an HDF?5 file
* h5info — Create a structure that contains all the metadata defining an HDF5 file
* h5read — Read data from a variable in an HDF5 file

* h5readatt — Read data from an attribute associated with a variable in an HDF5 file
or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which include
examples. The following sections illustrate some common usage scenarios.

Determining the Contents of an HDF5 File

HDF?5 files can contain data and metadata, called attributes. HDF5 files organize the data
and metadata in a hierarchical structure similar to the hierarchical structure of a UNIX
file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group can contain
other groups, data sets, attributes, links, and data types. A data set is a collection of data,
such as a multidimensional numeric array or string. An attribute is any data that is
associated with another entity, such as a data set. A link is similar to a UNIX file system
symbolic link. Links are a way to reference objects without having to make a copy of the
object.

Data types are a description of the data in the data set or attribute. Data types tell how to
interpret the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.
h5disp('example.h5")

HDF5 example.h5
Group '/'
Attributes:
'attrl': 97 98 99 100 101 102 103 104 105 0
'attr2': 2x2 H5T _INTEGER
Group '/gl'
Group '/gl/gl.l'
Dataset 'dsetl.l1l.1'
Size: 10x10
MaxSize: 10x10
Datatype: H5T STD I32BE (int32)
ChunkSize: []
Filters: none



Importing HDF5 Files

Attributes:
'attrl': 49 115 116 32 97 116 116 114 105 ...
'attr2': 50 110 100 32 97 116 116 114 105 ...
Dataset 'dsetl.1l.2'
Size: 20
MaxSize: 20
Datatype: H5T STD I32BE (int32)
ChunkSize: []
Filters: none
Group '/gl/gl.2'
Group '/9l/9l1.2/91.2.1'
Link 'slink'
Type: soft link

Group '/g2'
Dataset 'dset2.1l'
Size: 10

MaxSize: 10
Datatype: H5T IEEE F32BE (single)
ChunkSize: []
Filters: none
Dataset 'dset2.2'
Size: 5x3
MaxSize: 5x3
Datatype: H5T IEEE F32BE (single)
ChunkSize: []
Filters: none

To explore the hierarchical organization of an HDF5 file, use the h5info function.
h5info returns a structure that contains various information about the HDF5 file,
including the name of the file.

info
info

h5info('example.h5")

Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5"'
Name: '/
Groups: [4x1 struct]
Datasets: []
Datatypes: []
Links: T[]
Attributes: [2x1 struct]

7-35



7 Scientific Data

7-36

By looking at the Groups and Attributes fields, you can see that the file contains four
groups and two attributes. The Datasets, Datatypes, and Links fields are all empty,
indicating that the root group does not contain any data sets, data types, or links. To
explore the contents of the sample HDF5 file further, examine one of the structures in
Groups. The following example shows the contents of the second structure in this field.

level2 = info.Groups(2)

level2

Name: '/g2'
Groups: []
Datasets: [2x1 struct]
Datatypes: []
Links: []
Attributes: []

In the sample file, the group named /g2 contains two data sets. The following figure
illustrates this part of the sample HDF5 file organization.

/91 attr1 attr2 /g2 /93 /g4

dset2.1 dset2.2

To get information about a data set, such as its name, dimensions, and data type, look at
either of the structures returned in the Datasets field.

datasetl

level2.Datasets (1)

datasetl =
Filename: 'matlabroot\example.h5'
Name: '/g2/dset2.1'
Rank: 1



Importing HDF5 Files

Datatype:
Dims:
MaxDims:
Layout:
Attributes:
Links:
Chunksize:
Fillvalue:

[1x1 struct]
10
10
‘contiguous’

[]
[
[
[

—_—

Importing Data from an HDF5 File

To read data or metadata from an HDF5 file, use the h5read function. As arguments,
specify the name of the HDF?5 file and the name of the data set. (To read the value of an
attribute, you must use h5readatt.)

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5 sample file

example.h5.

data = h5read('example.h5','/g2/dset2.1")

data =

.0000
. 1000
. 2000
.3000
.4000
.5000
.6000
. 7000
. 8000
. 9000

=

Mapping HDF5 Datatypes to MATLAB Datatypes

When the h5read function reads data from an HDF5 file into the MATLAB workspace, it
maps HDF5 data types toMATLAB data types, as shown in the table below.

HDF5 Data Type

h5read Returns

Bit-field

Array of packed 8-bit integers

Float

MATLAB single and double types, provided that they
occupy 64 bits or fewer

7-37




7 Scientific Data

7-38

HDF5 Data Type

h5read Returns

Integer types, signed and
unsigned

Equivalent MATLAB integer types, signed and unsigned

Opaque

Array of uint8 values

Reference

Returns the actual data pointed to by the reference, not
the value of the reference.

Strings, fixed-length and variable
length

Cell array of character vectors

Enums Cell array of character vectors, where each
enumerated value is replaced by the corresponding
member name

Compound 1-by-1 struct array; the dimensions of the dataset are
expressed in the fields of the structure.

Arrays Array of values using the same datatype as the HDF5

array. For example, if the array is of signed 32-bit
integers, the MATLAB array will be of type int32.

The example HDF?5 file included with MATLAB includes examples of all these datatypes.

For example, the data set /g3/string is a string.

h5disp('example.h5','/g3/string")

HDF5 example.h5
Dataset 'string'’
Size: 2
MaxSize: 2
Datatype: H5T STRING
String Length: 3

Padding: H5T STR NULLTERM
Character Set: H5T CSET ASCII
Character Type: H5T C S1

ChunkSize: []
Filters: none
FillValue: ''

Now read the data from the file, MATLAB returns it as a cell array of character vectors.

S

S =

h5read('example.h5','/g3/string"')




Importing HDF5 Files

Iab 1
Ide 1
>> whos s
Name Size Bytes C(lass Attributes
s 2x1 236 cell

The compound data types are always returned as a 1-by-1 struct. The dimensions of the
data set are expressed in the fields of the struct. For example, the data set /g3/
compound2D is a compound datatype.

h5disp('example.h5','/g3/compound2D"')
HDF5 example.h5
Dataset 'compound2D'
Size: 2x3
MaxSize: 2x3
Datatype: H5T COMPOUND
Member 'a': H5T STD I8LE (int8)
Member 'b': H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: H5T COMPOUND

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.
data = h5read('example.h5','/g3/compound2D')

data

a: [2x3 int8]
b: [2x3 doublel]

Read an HDF5 Dataset with Dynamically Loaded Filters

In R2015a and later releases, MATLAB supports reading HDF5 datasets that are written
using a third-party filter. To read the datasets using the dynamically loaded filter feature,
you must:

* Install the HDF5 filter plugin on your system as a shared library or a DLL.
* Set the HDF5 PLUGIN PATH environment variable to point to the installation.

For more information see, HDF5 Dynamically Loaded Filters.

7-39


https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf

7 Scientific Data

7-40

Note Writing HDF5 datasets using dynamically loaded filters is not supported.

Using the Low-Level HDF5 Functions to Import Data

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level
functions that correspond to the functions in the HDF5 library. In this way, you can access
the features of the HDF5 library from MATLAB, such as reading and writing complex data
types and using the HDF5 subsetting capabilities. For more information, see “Using the
MATLAB Low-Level HDF5 Functions to Export Data” on page 7-42.



Exporting to HDF5 Files

Exporting to HDF5 Files

In this section...

“Overview” on page 7-41
“Using the MATLAB High-Level HDF5 Functions to Export Data” on page 7-41
“Using the MATLAB Low-Level HDF5 Functions to Export Data” on page 7-42

Overview

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National Center for
Supercomputing Applications (NCSA). HDF5 is used by a wide range of engineering and
scientific fields that want a standard way to store data so that it can be shared. For more
information about the HDF5 file format, read the HDF5 documentation available at the
HDF Web site (https://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:

* High-level functions that simplify the process of exporting data, when working with
numeric datasets

* Low-level functions that provide a MATLAB interface to routines in the HDF5 C library

Note For information about exporting to HDF4 files, which have a separate and
incompatible format, see “Export to HDF4 Files” on page 7-81.

Using the MATLAB High-Level HDF5 Functions to Export Data

The easiest way to write data or metadata from the MATLAB workspace to an HDF5 file is
to use these MATLAB high-level functions.

Note You can use the high-level functions only with numeric data. To write nonnumeric
data, you must use the low-level interface on page 7-42.

* h5create — Create an HDF5 dataset

7-41


https://www.hdfgroup.org

7 Scientific Data

7-42

* h5write — Write data to an HDF5 dataset
e h5writeatt — Write data to an HDF5 attribute

For details about how to use these functions, see their reference pages, which include
examples. The following sections illustrate some common usage scenarios.

Writing a Numeric Array to an HDF5 Dataset

This example creates an array and then writes the array to an HDF5 file.
1 Create a MATLAB variable in the workspace. This example creates a 5-by-5 array of
uint8 values.

testdata = uint8(magic(5))
2 Create the HDF5 file and the dataset, using h5create.

h5create('my _example file.h5', '/datasetl',6 size(testdata))
3  Write the data to the HDF5 file.

hSwrite('my example file.h5', '/datasetl',6 testdata)

Using the MATLAB Low-Level HDF5 Functions to Export Data

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level
functions that correspond to the functions in the HDF5 library. In this way, you can access
the features of the HDF5 library from MATLAB, such as reading and writing complex data
types and using the HDF5 subsetting capabilities.

The HDF5 library organizes the library functions into collections, called interfaces. For
example, all the routines related to working with files, such as opening and closing, are in
the H5F interface, where F stands for file. MATLAB organizes the low-level HDF5
functions into classes that correspond to each HDF5 interface. For example, the MATLAB
functions that correspond to the HDF?5 file interface (H5F) are in the @H5F class folder.

The following sections provide more detail about how to use the MATLAB HDF5 low-level
functions.

* “Map HDF5 Function Syntax to MATLAB Function Syntax” on page 7-43

* “Map Between HDF5 Data Types and MATLAB Data Types” on page 7-45

* “Report Data Set Dimensions” on page 7-46

* “Write Data to HDF5 Data Set Using MATLAB Low-Level Functions” on page 7-46



Exporting to HDF5 Files

* “Write a Large Data Set” on page 7-49
* “Preserve Correct Layout of Your Data” on page 7-49

Note This section does not describe all features of the HDF5 library or explain basic
HDF5 programming concepts. To use the MATLAB HDF5 low-level functions effectively,
refer to the official HDF5 documentation available at https://www.hdfgroup.org.

Map HDF5 Function Syntax to MATLAB Function Syntax

In most cases, the syntax of the MATLAB low-level HDF5 functions matches the syntax of
the corresponding HDF5 library functions. For example, the following is the function
signature of the H5Fopen function in the HDF5 library. In the HDF5 function signatures,
hid t and herr_t are HDF5 types that return numeric values that represent object
identifiers or error status values.

hid_t H5Fopen(const char *name, unsigned flags, hid t access id) /* C syntax */

In MATLAB, each function in an HDF5 interface is a method of a MATLAB class. The
following shows the signature of the corresponding MATLAB function. First note that,
because it's a method of a class, you must use the dot notation to call the MATLAB
function: H5F . open. This MATLAB function accepts the same three arguments as the
HDF5 function: a character vector containing the name, an HDF5-defined constant for the
flags argument, and an HDF5 property list ID. You use property lists to specify
characteristics of many different HDF5 objects. In this case, it's a file access property list.
Refer to the HDF5 documentation to see which constants can be used with a particular
function and note that, in MATLAB, constants are passed as character vectors.

file id = H5F.open(name, flags, plist _id)

There are, however, some functions where the MATLAB function signature is different
than the corresponding HDF5 library function. The following describes some general
differences that you should keep in mind when using the MATLAB low-level HDF5
functions.

+ HDF5 output parameters become MATLAB return values — Some HDF5 library
functions use function parameters to return data. Because MATLAB functions can
return multiple values, these output parameters become return values. To illustrate,
the HDF5 H5Dread function returns data in the buf parameter.

herr t H5Dread(hid t dataset id,
hid t mem type id,

7-43


https://www.hdfgroup.org

7 Scientific Data

7-44

hid t mem space id,
hid t file space id,
hid t xfer plist id,
void * buf ) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a return
value. Also, in the MATLAB function, the nonzero or negative value herr_t return
values become MATLAB errors. Use MATLAB try-catch statements to handle errors.
buf = H5D.read(dataset_id,
mem_type id,
mem_space_id,
file_space id,

plist_id)
String length parameters are unnecessary — The length parameter, used by some
HDF?5 library functions to specify the length of a string parameter, is not necessary in
the corresponding MATLAB function. For example, the H5Aget name function in the
HDF?5 library includes a buffer as an output parameter and the size of the buffer as an
input parameter.
ssize t H5Aget name(hid t attr id,

size t buf size,
char *buf ) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a return
value and drops the buf size parameter.

buf = H5A.get name(attr_id)

Use an empty array to specify NULL — Wherever HDF5 library functions accept
the value NULL, the corresponding MATLAB function uses empty arrays ([ ]). For
example, the H5DTill function in the HDF5 library accepts the value NULL in place of
a specified fill value.
herr_t H5Dfill(const void *fill,

hid_t fill type id, void *buf,

hid t buf type id,
hid t space id ) /* C syntax */

When using the corresponding MATLAB function, you can specify an empty array ([ 1)
instead of NULL.

Use cell arrays to specify multiple constants — Some functions in the HDF5
library require you to specify an array of constants. For example, in the
H5Screate simple function, to specify that a dimension in the data space can be
unlimited, you use the constant H5S UNLIMITED for the dimension in maxdims. In
MATLAB, because you pass constants as character vectors, you must use a cell array
of character vectors to achieve the same result. The following code fragment provides



Exporting to HDF5 Files

an example of using a cell array of character vectors to specify this constant for each
dimension of this data space.

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});
Map Between HDF5 Data Types and MATLAB Data Types

When the HDF5 low-level functions read data from an HDF5 file or write data to an HDF5
file, the functions map HDF5 data types to MATLAB data types automatically.

For atomic data types, such as commonly used binary formats for numbers (integers and
floating point) and characters (ASCII), the mapping is typically straightforward because
MATLAB supports similar types. See the table Mapping Between HDF5 Atomic Data
Types and MATLAB Data Types for a list of these mappings.

Mapping Between HDF5 Atomic Data Types and MATLAB Data Types
HDF5 Atomic Data MATLAB Data Type

Type
Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they occupy 64

bits or fewer

Integer types, signed Equivalent MATLAB integer types, signed and unsigned
and unsigned

Opaque Array of uint8 values
Reference Array of uint8 values
String MATLAB character arrays

For composite data types, such as aggregations of one or more atomic data types into
structures, multidimensional arrays, and variable-length data types (one-dimensional
arrays), the mapping is sometimes ambiguous with reference to the HDF5 data type. In
HDF5, a 5-by-5 data set containing a single uint8 value in each element is distinct from a
1-by-1 data set containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value. In the second case, the data set contains a
single observation with 25 values. In MATLAB both of these data sets are represented by
a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data types directly to
make sure that you have the mapping you intend. See the table Mapping Between HDF5
Composite Data Types and MATLAB Data Types for a list of the default mappings. You can

7-45



7 Scientific Data

7-46

specify the data type when you write data to the file using the H5Dwrite function. See
the HDF5 data type interface documentation for more information.

Mapping Between HDF5 Composite Data Types and MATLAB Data Types
HDF5 Composite Data MATLAB Data Type

Type

Array Extends the dimensionality of the data type which it contains.
For example, an array of integers in HDF5 would map onto a
two dimensional array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing HDF5
data in MATLAB are scalar.

Enumeration Array of integers which each have an associated name

Variable Length MATLAB 1-D cell arrays

Report Data Set Dimensions

The MATLAB low-level HDF5 functions report data set dimensions and the shape of data
sets differently than the MATLAB high-level functions. For ease of use, the MATLAB high-
level functions report data set dimensions consistent with MATLAB column-major
indexing. To be consistent with the HDF5 library, and to support the possibility of nested
data sets and complicated data types, the MATLAB low-level functions report array
dimensions using the C row-major orientation.

Write Data to HDF5 Data Set Using MATLAB Low-Level Functions

This example shows how to use the MATLAB® HDF5 low-level functions to write a data
set to an HDF5 file and then read the data set from the file.

Create a 2-by-3 array of data to write to an HDF5 file.
testdata = [1 3 5; 2 4 6];

Create a new HDFS5 file named my file.h5 in the system temp folder. Use the MATLAB
H5F . create function to create a file. This MATLAB function corresponds to the HDF5
function, H5Fcreate. As arguments, specify the name you want to assign to the file, the
type of access you want to the file ("H5F _ACC_TRUNC' in this case), and optional
additional characteristics specified by a file creation property list and a file access
property list. In this case, use default values for these property lists (' H5P_DEFAULT').
Pass C constants to the MATLAB function as character vectors.



Exporting to HDF5 Files

filename = fullfile(tempdir, 'my file.h5');
fileID = H5F.create(filename, 'H5F ACC TRUNC', 'H5P DEFAULT', '"H5P DEFAULT");

H5F . create returns a file identifier corresponding to the HDF5 file.

Create the data set in the file to hold the MATLAB variable. In the HDF5 programming
model, you must define the data type and dimensionality (data space) of the data set as
separate entities. First, use the H5T. copy function to specify the data type used by the
data set, in this case, double. This MATLAB function corresponds to the HDF5 function,
H5Tcopy.

datatypeID = H5T.copy('H5T NATIVE DOUBLE');
H5T. copy returns a data type identifier.

Create a data space using H5S.create simple, which corresponds to the HDF5
function, H5Screate simple. The first input, 2, is the rank of the data space. The
second input is an array specifying the size of each dimension of the dataset. Because
HDF5 stores data in row-major order and the MATLAB array is organized in column-major
order, you should reverse the ordering of the dimension extents before using

H5Screate simple to preserve the layout of the data. You can use fliplr for this
purpose.

dims = size(testdata);
dataspaceID = H5S.create simple(2,fliplr(dims),[]);

H5S.create simple returns a data space identifier, dataspaceID. Note that other
software programs that use row-major ordering (such as HSDUMP from the HDF Group)
might report the size of the dataset to be 3-by-2 instead of 2-by-3.

Create the data set using H5D . create, which corresponds to the HDF5 function,
H5Dcreate. Specify the file identifier, the name you want to assign to the data set, the
data type identifier, the data space identifier, and a data set creation property list
identifier as arguments. 'H5P _DEFAULT' specifies the default property list settings.

dsetname = 'my dataset’';
datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID, 'H5P DEFAULT'");

H5D. create returns a data set identifier, datasetID.

Write the data to the data set using H5D.write, which corresponds to the HDF5 function,
H5Dwrite. The input arguments are the data set identifier, the memory data type
identifier, the memory space identifier, the data space identifier, the transfer property list

7-47



7 Scientific Data

7-48

identifier and the name of the MATLAB variable to write to the data set. The constant,
"H5ML_DEFAULT', specifies automatic mapping to HDF5 data types. The constant,
"H5S_ALL', tells H5D.write to write all the data to the file.

H5D.write(datasetID, '"H5ML DEFAULT', 'H5S ALL','H5S ALL"',...
"H5P DEFAULT',testdata);

Close the data set, data space, data type, and file objects. If used inside a MATLAB
function, these identifiers are closed automatically when they go out of scope.

H5D.close
H5S.close
H5T.close
H5F.close

datasetID);
dataspacelD);
datatypelD);
filelID);

—_—~ o~ o~ —~

Open the HDF5 file in order to read the data set you wrote. Use H5F. open to open the
file for read-only access. This MATLAB function corresponds to the HDF5 function,
H5Fopen.

fileID = H5F.open(filename, 'H5F ACC RDONLY', 'H5P DEFAULT');

Open the data set to read using H5D . open, which corresponds to the HDF5 function,
H5Dopen. Specify as arguments the file identifier and the name of the data set, defined
earlier in the example.

datasetID = H5D.open(filelID,dsetname);

Read the data into the MATLAB workspace using H5D. read, which corresponds to the
HDF5 function, H5Dread. The input arguments are the data set identifier, the memory
data type identifier, the memory space identifier, the data space identifier, and the
transfer property list identifier.

returned data = H5D.read(datasetID, 'H5ML DEFAULT', ...
"H5S ALL','H5S ALL','H5P DEFAULT');

Compare the original MATLAB variable, testdata, with the variable just created,
returned data.

isequal(testdata, returned_data)
ans = logical

1

The two variables are the same.



Exporting to HDF5 Files

Write a Large Data Set

To write a large data set, you must use the chunking capability of the HDF5 library. To do
this, create a property list and use the H5P.set chunk function to set the chunk size in
the property list. Suppose the dimensions of your data set are [2"16 2716] and the
chunk size is 1024-by-1024. You then pass the property list as the last argument to the
data set creation function, H5D. create, instead of using the H5P_DEFAULT value.

dims = [2"16 2"16];
plistID = H5P.create('H5P_DATASET CREATE'); % create property list

chunk size = min([1024 1024], dims); % define chunk size
H5P.set_chunk(plistID, fliplr(chunk_size)); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);
Preserve Correct Layout of Your Data

When you use any of the following functions that deal with dataspaces, you should flip
dimension extents to preserve the correct layout of the data.

* H5D.set extent

* H5P.get chunk

* H5P.set chunk

* H5S.create simple

* H5S.get simple extent dims

*+ H5S.select hyperslab

* H5T.array create

* H5T.get array dims

7-49



7 Scientific Data

Working with Non-ASCIl Characters in HDF5 Files

7-50

To enable sharing of HDF5 files across multiple locales, MATLAB supports the use of non-
ASCII characters in HDF5 files. This example shows you how to:

* Create HDF5 files containing dataset and attribute names that have non-ASCII
characters using the high-level functions.

» Create variable-length string datasets containing non-ASCII characters using the low-
level functions.

Create Dataset and Attribute Names Containing Non-ASCII
Characters

Create an HDF5 file containing a dataset name and an attribute name that contains non-
ASCII characters. To check if the dataset and attribute names appear as expected, write
data to the dataset, and display the file information.

Create a dataset with a name (/£4#E£) that includes non-ASCII characters.

dsetName ['/" char([25968 25454 38598]1)1;

dsetDims [5 21;

h5create('outfile.h5',['/grpl' dsetName],dsetDims, ...
'TextEncoding', 'UTF-8"');

Write data to the file.

dataToWrite = rand(dsetDims);
h5write('outfile.h5',['/grpl' dsetName],dataToWrite);

Create an attribute name (B4 4 8) that includes non-ASCII characters and assign a
value to the attribute.

attrName = char([25967 25453 38597]);
h5writeatt('outfile.h5','/"',attrName,'I am an attribute', ...
'TextEncoding', 'UTF-8");

Display information about the file and check if the attribute name and dataset name
appear correctly.

h5disp('outfile.h5")

HDF5 outfile.h5
Group '/



Working with Non-ASCII Characters in HDF5 Files

Attributes:
'/EBELZF': 'I am an attribute’
Group '/grpl’
Dataset '#iEE"
Size: 5x2
MaxSize: 5x2
Datatype: H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000

Create Variable-Length String Data Containing Non-ASCiIl
Characters

Create a variable-length string dataset to store data containing non-ASCII characters
using the low-level functions. Write the data to the dataset. Check if the data is written
correctly.

Create data containing non-ASCII characters.

dataToWrite = {char([12487 12540 12479]) 'hello' ...
char([1605 1585 1581 1576 1575]);

'world' char([1052 1080 1088]) e

char([954 972 963 956 959 962])};

disp(dataToWrite)
'F—A" "hello' 'Lo e
'world' "Mup' 'kbopog'

To write this data into a file, create an HDF5 file, define a group name, and a dataset
name within the group.

Create the HDF?5 file.

fileName = 'outfile.h5';
fileID = H5F.create(fileName, 'H5F ACC TRUNC',...
'"H5P_DEFAULT', 'H5P_DEFAULT');

To create the group containing non-ASCII characters in its name, first, configure the link
creation property.

lcplID = H5P.create('H5P LINK CREATE');
H5P.set char_encoding(lcplID,H5ML.get constant value('H5T CSET UTF8'));
plist = 'H5P DEFAULT';

7-51



7 Scientific Data

Then, create the group (¥ )L— 7).

grpName = char([12464 12523 12540 12503]);
grpID = H5G.create(fileID,grpName, lcplID,plist,plist);

Create a dataset that contains variable-length string data with non-ASCII characters.
First, configure its data type.

typeID = H5T.copy('H5T C S1");

H5T.set size(typelD, 'H5T VARIABLE');
H5T.set cset(typeID,H5ML.get constant value('H5T CSET UTF8'));

Now create the dataset by specifying its name, data type, and dimensions.

dsetName = 'datasetUtf8';
dataDims = [2 3];
h5DataDims = fliplr(dataDims);

h5MaxDims = h5DataDims;

spaceID = H5S.create simple(2,h5DataDims,h5MaxDims);

dsetID = H5D.create(grpID,dsetName,typelD,spacelD,...
'"H5P_DEFAULT', 'H5P _DEFAULT', '"H5P_DEFAULT');

Write the data to the dataset.

H5D.write(dsetID, '"H5ML DEFAULT', 'H5S ALL',...
'"H5S ALL', 'H5P DEFAULT',dataToWrite);

Read the data back.
dataRead = h5read('outfile.h5',['/"' grpName '/' dsetName])

dataRead

2x3 cell array

{'"7—%2"'} {'hello'} {'Lo ' }
{'world'} {'Mup' } {'kbéouocg"'}

Check if data in the file matches the written data.
isequal(dataRead,dataToWrite)
ans =

logical

7-52



See Also

1

Close ids.

H5D.close
H5S.close
H5T.close
H5G.close
H5P.close
H5F.close

dsetID);
spacelD);
typelD);
grpID);
lcplID);
fileID);

—~ o~~~ o~ o~

See Also
H5A.get name |H5I.get name |H5L.get name by idx |H5L.get val |
H5R.get name | h5create | h5disp | h5info | hSwriteatt

7-53



7 Scientific Data

Import HDF4 Files Programatically

7-54

In this section...

“Overview” on page 7-54

“Using the MATLAB HDF4 High-Level Functions” on page 7-54

Overview

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard
for storing scientific data in files, developed by the National Center for Supercomputing
Applications (NCSA). For more information about these file formats, read the HDF
documentation at the HDF Web site (www. hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and
Space Administration (NASA) for storage of data returned from the Earth Observing
System (EOS). For more information about this extension to HDF4, see the HDF-EOS
documentation at the NASA Web site (www. hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in the following
sections.

Note For information about importing HDF5 data, which is a separate, incompatible
format, see “Importing HDF5 Files” on page 7-33.

Using the MATLAB HDF4 High-Level Functions

To import data from an HDF or HDF-EOS file, you can use the MATLAB HDF4 high-level
function hdfread. The hdfread function provides a programmatic way to import data
from an HDF4 or HDF-EOS file that still hides many of the details that you need to know if
you use the low-level HDF functions, described in “Import HDF4 Files Using Low-Level
Functions” on page 7-60.

This section describes these high-level MATLAB HDF functions, including

* “Using hdfinfo to Get Information About an HDF4 File” on page 7-55
* “Using hdfread to Import Data from an HDF4 File” on page 7-55

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level functions.


https://www.hdfgroup.org
https://www.hdfeos.org

Import HDF4 Files Programatically

Using hdfinfo to Get Information About an HDF4 File

To get information about the contents of an HDF4 file, use the hdfinfo function. The
hdfinfo function returns a structure that contains information about the file and the
data in the file.

This example returns information about a sample HDF4 file included with MATLAB:
info = hdfinfo('example.hdf")
info =

Filename: 'matlabroot\example.hdf'
Attributes: [1x2 struct]
Vgroup: [1x1 struct]
SDS: [1x1 struct]
Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.
Using hdfread to Import Data from an HDF4 File

To use the hdfread function, you must specify the data set that you want to read. You can
specify the filename and the data set name as arguments, or you can specify a structure
returned by the hdfinfo function that contains this information. The following example
shows both methods. For information about how to import a subset of the data in a data
set, see “Reading a Subset of the Data in a Data Set” on page 7-57.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo function.
info = hdfinfo('example.hdf")

info =

Filename: 'matlabroot\example.hdf’
Attributes: [1x2 struct]
Vgroup: [1x1 struct]
SDS: [1x1 struct]
Vdata: [1x1 struct]

To determine the names and other information about the data sets in the file, look at
the contents of the SDS field. The Name field in the SDS structure gives the name of
the data set.

dsets = info.SDS

7-35



7 Scientific Data

dsets =

Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2
DataType: 'intl6'
Attributes: []
Dims: [2x1 struct]
Label: {}
Description: {}
Index: 0
2 Read the data set from the HDF4 file, using the hdf read function. Specify the name
of the data set as a parameter to the function. Note that the data set name is case
sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS')

dset =
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12
9 10 11 12 13
10 11 12 13 14
11 12 13 14 15
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by hdfinfo
that contains this information. For example, to read a scientific data set, use the SDS
field.

dset = hdfread(info.SDS);

7-56



Import HDF4 Files Programatically

Reading a Subset of the Data in a Data Set

To read a subset of a data set, you can use the optional 'index' parameter. The value of
the index parameter is a cell array of three vectors that specify the location in the data
set to start reading, the skip interval (e.g., read every other data item), and the amount of
data to read (e.g., the length along each dimension). In HDF4 terminology, these
parameters are called the start, stride, and edge values.

For example, this code

» Starts reading data at the third row, third column ([3 3]).
* Reads every element in the array ([ 1).
* Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf"', 'Example SDS',...
"Index',{[3 31,[1,[10 2 ]1})
subset =
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
16 17

7-357



7 Scientific Data

Map HDF4 to MATLAB Syntax

7-58

Each HDF4 API includes many individual routines that you use to read data from files,
write data to files, and perform other related functions. For example, the HDF4 Scientific
Data (SD) API includes separate C routines to open (SDopen), close (SDend), and read
data (SDreaddata). For the SD API and the HDF-EOS GD and SW APIs, MATLAB
provides functions that map to individual C routines in the HDF4 library. These functions
are implemented in the matlab.io.hdf4.sd, matlab.io.hdfeos.qgd, and
matlab.io.hdfeos.sw packages. For example, the SD API includes the C routine
SDendaccess to close an HDF4 data set:

status = SDendaccess(sds id); /* C code */

To call this routine from MATLAB, use the MATLAB function,
matlab.io.hdf4.sd.endAccess. The syntax is similar:

sd.endAccess(sdsID)

For the remaining supported HDF4 APIs, MATLAB provides a single function that serves
as a gateway to all the routines in the particular HDF4 API. For example, the HDF
Annotations (AN) API includes the C routine ANend to terminate access to an AN
interface:

status = ANend(an_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with the AN API,
hdfan. You must specify the name of the routine, minus the API acronym, as the first
argument and pass any other required arguments to the routine in the order they are
expected. For example,

status = hdfan('end',an_id);

Some HDF4 API routines use output arguments to return data. Because MATLAB does not
support output arguments, you must specify these arguments as return values.

For example, the ANget tagref routine returns the tag and reference number of an
annotation in two output arguments, ann_tag and ann_ref. Here is the C code:

status = ANget tagref(an_id,index,annot type,ann_tag,ann_ref);
To call this routine from MATLAB, change the output arguments into return values:

[tag, ref,status] = hdfan('get tagref',AN id,index,annot type);



Map HDF4 to MATLAB Syntax

Specify the return values in the same order as they appear as output arguments. The
function status return value is always specified as the last return value.

7-59



7 Scientific Data

Import HDF4 Files Using Low-Level Functions

7-60

This example shows how to read data from a Scientific Data Set in an HDF4 file, using the
functions in the matlat.io.hdf4.sd package. In HDF4 terminology, the numeric arrays
stored in HDF4 files are called data sets.

Add Package to Import List
Add the matlab.io.hdf4.* path to the import list.
import matlab.io.hdf4.*

Subsequent calls to functions in the matlat.io.hdf4.sd package need only be prefixed
with sd, rather than the entire package path.

Open HDF4 File

Open the example HDF4 file, sd. hdf, and specify read access, using the
matlab.io.hdf4.sd.start function. This function corresponds to the SD API routine,
SDstart.

sdID = sd.start('sd.hdf', 'read');
sd.start returns an HDF4 SD file identifier, sdID.
Get Information About HDF4 File

Get the number of data sets and global attributes in the file, using the
matlab.io.hdf4.sd.fileInfo function. This function corresponds to the SD API
routine, SDfileinfo.

[ndatasets,ngatts] = sd.fileInfo(sdID)

ndatasets = 4

ngatts =1

The file, sd.hdf, contains four data sets and one global attribute,

Get Attributes from HDF4 File

Get the contents of the first global attribute. HDF4 uses zero-based indexing, so an index
value of 0 specifies the first index.



Import HDF4 Files Using Low-Level Functions

HDF4 files can optionally include information, called attributes, that describes the data
that the file contains. Attributes associated with an entire HDF4 file are global attributes.
Attributes associated with a data set are local attributes.

attr = sd.readAttr(sdID,0)

attr =
'02-Sep-2010 11:13:16'

Select Data Sets to Import

Determine the index number of the data set named temperature. Then, get the
identifier of that data set.

idx = sd.nameToIndex(sdID, 'temperature');
sdsID = sd.select(sdID,idx);

sd.select returns an HDF4 SD data set identifier, sdsID.
Get Information About Data Set

Get information about the data set identified by sdsID using the
matlab.io.hdf4.sd.getInfo function. This function corresponds to the SD API
routine, SDgetinfo.

[name,dims,datatype,nattrs] = sd.getInfo(sdsID)

name =
"temperature’

dims = 1Ix2

20 10

datatype =
"double’

nattrs = 11

sd.getInfo returns information about the name, size, data type, and number of
attributes of the data set.

Read Entire Data Set

Read the entire contents of the data set specified by the data set identifier, sdsID.

7-61



7 Scientific Data

7-62

data = sd.readData(sdsID);

Read Portion of Data Set

Read a 2-by-4 portion of the data set, starting from the first column in the second row.
Use the matlab.io.hdf4.sd. readData function, which corresponds to the SD API
routine, SDreaddata. The start input is a vector of index values specifying the location
in the data set where you want to start reading data. The count input is a vector
specifying the number of elements to read along each data set dimension.

start = [0 1];

count = [2 4];

data2 = sd.readData(sdsID,start, count)
data2 = 2x4

21 41 61 81
22 42 62 82

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This
function corresponds to the SD API routine, SDendaccess. You must close access to all
the data sets in and HDF4 file before closing the file.

sd.endAccess(sdsID)

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function
corresponds to the SD API routine, SDend.

sd.close(sdID)

See Also

sd.close | sd.endAccess | sd.fileInfo | sd.getInfo | sd.readData|sd.start

More About
. “Map HDF4 to MATLAB Syntax” on page 7-58



Import HDF4 Files Interactively

Import HDF4 Files Interactively

The HDF Import Tool is a graphical user interface that you can use to navigate through
HDF4 or HDF-EOS files and import data from them. Importing data using the HDF Import
Tool involves these steps:

In this section...

“Step 1: Opening an HDF4 File in the HDF Import Tool” on page 7-63
“Step 2: Selecting a Data Set in an HDF File” on page 7-65

“Step 3: Specifying a Subset of the Data (Optional)” on page 7-66
“Step 4: Importing Data and Metadata” on page 7-66

“Step 5: Closing HDF Files and the HDF Import Tool” on page 7-67
“Using the HDF Import Tool Subsetting Options” on page 7-67

The following sections provide more detail about each of these steps.

Step 1: Opening an HDF4 File in the HDF Import Tool

Open an HDF4 or HDF-EOS file in MATLAB using one of the following methods:

On the Home tab, in the Variable section, click Import Data. If you select an HDF4
or HDF-EOS file, the MATLAB Import Wizard automatically starts the HDF Import
Tool.

Start the HDF Import Tool by entering the hdftool command at the MATLAB
command line:

hdftool

This opens an empty HDF Import Tool. To open a file, click the Open option on the
HDFTool File menu and select the file you want to open. You can open multiple files in
the HDF Import Tool.

Open an HDF or HDF-EOS file by specifying the file name with the hdftool command
on the MATLAB command line:

hdftool('example.hdf')

7-63



7 Scientific Data

Viewing a File in the HDF Import Tool

When you open an HDF4 or HDF-EOS file in the HDF Import Tool, the tool displays the
contents of the file in the Contents pane. You can use this pane to navigate within the file
to see what data sets it contains. You can view the contents of HDF-EOS files as HDF data
sets or as HDF-EOS files. The icon in the contents pane indicates the view, as illustrated
in the following figure. Note that these are just two views of the same data.

Contents pane

) HDF Import Tool
File Help

Metadata panel

=1ol]

File name —

View file as
HDF or
HDF-EOS

Importing and
Subsetting

&= J example hdf I
H __,] Example SDS
: Example Veata
=) hafread_grid_1.hdf
=1 View as HDF ...
// =80 UTMGrid
=-30 Data Fields
H é%]Pollution
- §§]Vege!ation

Metadata panel

=30 Grid Attributes
: _Fv_Pollution
~ (28] float32

89 PolarGrid

22 GEOGrid

= View as EOS..

= utMGrid
) Pollution
B Vegetation
8] Extern

i Polarcrid

' GEOGrid

pane

= _1\ T Ead_Svwatn_T T
View as HDF ...
Wl View as EOS...
= hdfread_poirt_1 hdf
View as HDF ...
Wl View as EOS...
=] _] rosedan hdf

- Q 8-bit Raster Image #1
= _] rose24ap hdf
- Q 24-hit Raster Image #1

K (1]

Select objects from tree to begin.

7-64




Import HDF4 Files Interactively

Step 2: Selecting a

Data Set in an HDF File

To import a data set, you must first select the data set in the contents pane of the HDF
Import Tool. Use the Contents pane to view the contents of the file and navigate to the
data set you want to import.

For example, the following figure shows the data set Example SDS in the HDF file
selected. Once you select a data set, the Metadata panel displays information about the
data set and the importing and subsetting pane displays subsetting options available for

this type of HDF object.

Data set
metadata
) HDF Import Tool =10/ x|
File Help
Selected = j example hdf |
data set —— (] Example SDS Name: Fxample SDS
- Examplle Ydata Dimensions:
=-L) hdfread_grid_1 hdf Name: falceDoim0)
=@ View as HOF .. ame: 1
=32 UTMGrid Size: 16
=-30 Data Fields Name: fakeDim]
) Pollution Size: 5
= Z22] Vegetation
=30 Grid Attributes e
] _FV_Polution Precision: int16
o . float32 Import: Scientific Data Set
® .‘_;_1 PolarGrid — Subset selection parameters
Subsetti 30 GEOGrid
ubsetling =1l View as EOS...
options for this =2 UThoria Start | Increment Length
HDF object =Potor—- 11 I i}
) Vegetation 21 i s
) Extern
- PolarGrid
' GEOGrid
=-L) hafread_swath_1 hdf
View as HDF ...
View as EOS..
=L ) hdfread_point_1 hef
View as HDF ...
View as EOS... Reset Selection Parameters |

=] j rosedan hdf

/) B-bit Raster Image #1
= j rose24ap hdf
) 24-bit Raster Image #1

d (1]

Workspace variable: anmple_SDS

Dataset import command:

I~ Import metadata

Example_SDS = hdfread('example hdf', "Example SDS', 'Index', {[1 1],[1 1],[16 S5]});

=
=

Import |

7-65




7 Scientific Data

7-66

Step 3: Specifying a Subset of the Data (Optional)

When you select a data set in the contents pane, the importing and subsetting pane
displays the subsetting options available for that type of HDF object. The subsetting
options displayed vary depending on the type of HDF object. For more information, see
“Using the HDF Import Tool Subsetting Options” on page 7-67.

Step 4: Importing Data and Metadata

To import the data set you have selected, click the Import button, bottom right corner of
the Importing and Subsetting pane. Using the Importing and Subsetting pane, you can

Specify the name of the workspace variable — By default, the HDF Import Tool uses
the name of the HDF4 data set as the name of the MATLAB workspace variable. In the
following figure, the variable name is Example_ SDS. To specify another name, enter
text in the Workspace Variable text box.

Specify whether to import metadata associated with the data set — To import any
metadata that might be associated with the data set, select the Import Metadata
check box. To store the metadata, the HDF Import Tool creates a second variable in
the workspace with the same name with “ info” appended to it. For example, if you
select this check box, the name of the metadata variable for the data set in the figure
would be Example SDS info.

Save the data set import command syntax — The Dataset import command text
window displays the MATLAB command used to import the data set. This text is not
editable, but you can copy and paste it into the MATLAB Command Window or a text
editor for reuse.

The following figure shows how to specify these options in the HDF Import Tool.



Import HDF4 Files Interactively

Import metadata
with data set

Specify name of

variable to store Workspace variable: }Example_sos [~ Import metadata
data set

Dataset import command:
MATLAB command — |Example_SDS = hdfread('example.hdf', "Example SDS', ‘Index’, {[1 1],[1 1],[16 5]}); ;l
used to import data ~|

Click here to import |
data set

Step 5: Closing HDF Files and the HDF Import Tool

To close a file, select the file in the contents pane and click Close File on the HDF Import
Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on the HDF
Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or click the
Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,
h = hdftool('example.hdf"')

you can use the close(h) command to close the tool from the MATLAB command line.

Using the HDF Import Tool Subsetting Options

Note The HDF Import Tool will be removed in a future release.

When you select a data set, the importing and subsetting pane displays the subsetting
options available for that type of data set. The following sections provide information
about these subsetting options for all supported data set types. For general information
about the HDF Import tool, see “Import HDF4 Files Interactively” on page 7-63.

7-67



7 Scientific Data

* “HDF Scientific Data Sets (SD)” on page 7-68
+ “HDF Vdata” on page 7-69

+ “HDF-EOS Grid Data” on page 7-70

* “HDF-EOS Point Data” on page 7-75

+ “HDF-EOS Swath Data” on page 7-75

* “HDF Raster Image Data” on page 7-79

Note To use these data subsetting options effectively, you must understand the HDF and
HDF-EOS data formats. Therefore, use this documentation in conjunction with the HDF
documentation (www.hdfgroup.org) and the HDF-EOS documentation

(www. hdfeos.org).

HDF Scientific Data Sets (SD)

The HDF scientific data set (SD) is a group of data structures used to store and describe
multidimensional arrays of scientific data. Using the HDF Import Tool subsetting
parameters, you can import a subset of an HDF scientific data set by specifying the
location, range, and number of values to be read along each dimension.

— Subset selection parameters

Subsetting
parameters I I |
Start | Increment Length
Dimension r _:1 16
21 1 5

Reset Selection Parameters

The subsetting parameters are:

7-68


https://www.hdfgroup.org
https://www.hdfeos.org

Import HDF4 Files Interactively

» Start — Specifies the position on the dimension to begin reading. The default value is
1, which starts reading at the first element of each dimension. The values specified
must not exceed the size of the relevant dimension of the data set.

* Increment — Specifies the interval between the values to read. The default value is 1,
which reads every element of the data set.

* Length — Specifies how much data to read along each dimension. The default value is
the length of the dimension, which causes all the data to be read.

HDF Vdata

HDF Vdata data sets provide a framework for storing customized tables. A Vdata table
consists of a collection of records whose values are stored in fixed-length fields. All
records have the same structure and all values in each field have the same data type.
Each field is identified by a name. The following figure illustrates a Vdata table.

Fieldnames — idx Temp Dewpt
1 0 5
Records 2 12 5
3 3 7
I
Fields

You can import a subset of an HDF Vdata data set in the following ways:

* Specifying the name of the field that you want to import
* Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for Vdata.

7-69



7 Scientific Data

7-70

Specify field to subset —

Specify where to
begin reading —

— Subset selection parameters

Data fields: -
Temp
Dewwpt

First Record: |1

Specify how many —— Mumber of records: I10

records to read

HDF-EOS Grid Data

In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a known map
projection. The HDF Import Tool supports the following mutually exclusive subsetting
options for Grid data:

“Direct Index” on page 7-71
“Geographic Box” on page 7-72
“Interpolation” on page 7-72
“Pixels” on page 7-73

“Tile” on page 7-73

“Time” on page 7-74
“User-Defined” on page 7-74

To access these options, click the Subsetting method menu in the importing and
subsetting pane.



Import HDF4 Files Interactively

Click here to
see options

— Subset selection paramet

Subsetting method:  [No Subsetting |

Direct Index

Geographic Box
Interpolate
Pixels

Tile

Time
User-defined

Direct Index

You can import a subset of an HDF-EOS Grid data set by specifying the location, range,
and number of values to be read along each dimension.

— Subset selection parameters

Subsetting method: IDired Index ;]
Start Increment Length
1 1 10
21 1 200
31 1 120

Each row represents a dimension in the data set and each column represents these
subsetting parameters:

* Start — Specifies the position on the dimension to begin reading. The default value is
1, which starts reading at the first element of each dimension. The values specified
must not exceed the size of the relevant dimension of the data set.

* Increment — Specifies the interval between the values to read. The default value is 1,
which reads every element of the data set.

* Length — Specifies how much data to read along each dimension. The default value is
the length of the dimension, which causes all the data to be read.

7-71



7 Scientific Data

Geographic Box

You can import a subset of an HDF-EOS Grid data set by specifying the rectangular area
of the grid that you are interested in. To define this rectangular area, you must specify
two points, using longitude and latitude in decimal degrees. These points are two corners
of the rectangular area. Typically, Corner 1 is the upper-left corner of the box, and
Corner 2 is the lower-right corner of the box.

Subeet selection parameters

Subsgetting method Iaengaphic Box .

— Comer 1 - Time (optional) - Uiser-defined (optional)
Longiude:  Lafitude: Start Stop: Dimenssion or
F F J | Fiell Name M M
ST L Dl Tirme: 'I I
Longtude:  Latitude: [oeTime -] | |
: : perwe =1 [ |

Optionally, you can further define the subset of data you are interested in by using Time
on page 7-74 parameters (see “Time” on page 7-74) or by specifying other User-
Defined on page 7-74 subsetting parameters (see “User-Defined” on page 7-74).

Interpolation
Interpolation is the process of estimating a pixel value at a location in between other

pixels. In interpolation, the value of a particular pixel is determined by computing the
weighted average of some set of pixels in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points that are
corners of the interpolation area:

* Corner 1 - Specify longitude and latitude values in decimal degrees. Typically,
Corner 1 is the upper-left corner of the box.

* Corner 2 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 2 is the lower-right corner of the box

7-72



Import HDF4 Files Interactively

Subset selection parameters:

Subetting method: 'merpoleie -I

— Cowreer 1
Longbuede:  Latituce:
— Comner 2 -
Longtude:  Latifude:
Pixels

You can import a subset of the pixels in a Grid data set by defining a rectangular area
over the grid. You define the region used for bilinear interpolation by specifying two
points that are corners of the interpolation area:

Corner 1 - Specify longitude and latitude values in decimal degrees. Typically,
Corner 1 is the upper-left corner of the box.

Corner 2 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 2 is the lower-right corner of the box

— Subzat selection parameters

Subsetling method:  |Poiels 'I

Corner 1
Longlude:  Latibude:

— —

— Cornes 2

Longtude:  Latitude:
— —

Tile

In HDF-EOS Grid data, a rectilinear grid overlays a map. Each rectangle defined by the
horizontal and vertical lines of the grid is referred to as a tile. If the HDF-EOS Grid data is
stored as tiles, you can import a subset of the data by specifying the coordinates of the
tile you are interested in. Tile coordinates are 1-based, with the upper-left corner of a

two-dimensional data set identified as 1, 1. In a three-dimensional data set, this tile would
be referencedas 1,1, 1.

7-73



7 Scientific Data

7-74

— Subset seleclion paramelers-

Subszefting method:  [Tie x
Tie Coordinates: |11

Time

You can import a subset of the Grid data set by specifying a time period. You must specify
both the start time and the stop time (the endpoint of the time span). The units (hours,
minutes, seconds) used to specify the time are defined by the data set.

— Subset selection pararmeters

Subsetting rmethod: ITime

Timg———————————
Start: Stop:
P P

— User-defined (optional)

Dimension ar
Figld Marme:

=l

hdir:

Mz

IDIM:Time

|

IDIM:Time

=l

IDIM:Time

=

Along with these time parameters, you can optionally further define the subset of data to
import by supplying user-defined on page 7-74 parameters.

User-Defined

You can import a subset of the Grid data set by specifying user-defined subsetting

parameters.

— Subset zelection parameters

Subsetting method:

— U=er-defined

=er-defined

Dimension ar
Figld Marme: hdir:

Mz

IDIM:Time | |

IDIM:Time

=l

IDIM:Time

=




Import HDF4 Files Interactively

When specifying user-defined parameters, you must first specify whether you are
subsetting along a dimension or by field. Select the dimension or field by name using the
Dimension or Field Name menu. Dimension names are prefixed with the characters
DIM:.

Once you specify the dimension or field, you use Min and Max to specify the range of
values that you want to import. For dimensions, Min and Max represent a range of
elements. For fields, Min and Max represent a range of values.

HDF-EOS Point Data

HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS Point data
set by specifying field names and level. Optionally, you can refine the subsetting by
specifying the range of records you want to import, by defining a rectangular area, or by
specifying a time period. For information about specifying a rectangular area, see
“Geographic Box” on page 7-72. For information about subsetting by time, see “Time” on
page 7-74.

— Subset zelection parameters

— Corner 1 (optional)
Langitude: Latitude:

— Corner 2 (optional)
Langitude: Latitude:

Lewvel: |1 — Tirme: (optioral)
Start: Stop:

Record (optional): I I I

Drata fields:

HDF-EOS Swath Data

HDF-EOS Swath data is data that is produced by a satellite as it traces a path over the
earth. This path is called its ground track. The sensor aboard the satellite takes a series of
scans perpendicular to the ground track. Swath data can also include a vertical measure
as a third dimension. For example, this vertical dimension can represent the height above
the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting options for
Swath data:

7-75



7 Scientific Data

* “Direct Index” on page 7-76

* “Geographic Box” on page 7-77
* “Time” on page 7-78

* “User-Defined” on page 7-78

To access these options, click the Subsetting method menu in the Importing and

Subsetting pane.
Click here to
select a subsetting
option — Subset selection parameters
Subsetting method:  [No Subsetting j
No Subsetting
Direct Index
Geographic Box
Time

User-defined

Direct Index

You can import a subset of an HDF-EOS Swath data set by specifying the location, range,
and number of values to be read along each dimension.

— Subset selection pararmeters

Subsetting rmethod: IDirect Index d
Start Incremett Lenigth
1 1 15
21 1 40
31 1 20

Each row represents a dimension in the data set and each column represents these
subsetting parameters:

» Start — Specifies the position on the dimension to begin reading. The default value is
1, which starts reading at the first element of each dimension. The values specified
must not exceed the size of the relevant dimension of the data set.

7-76



Import HDF4 Files Interactively

* Increment — Specifies the interval between the values to read. The default value is 1,
which reads every element of the data set.

* Length — Specifies how much data to read along each dimension. The default value is
the length of the dimension, which causes all the data to be read.

Geographic Box

You can import a subset of an HDF-EOS Swath data set by specifying the rectangular area
of the grid that you are interested in and by specifying the selection Mode.

— Subset selection pararmeters

Subsetting rmethod: IGengraphic Biox d
— Corper 1 ———— —Selectionmode———————————— — ser-defined (optional)
Longitude:  Latitude: Crozs Track Inclusion: IAnyPoirrt - I Ditnension or
lj lj Field Matne: Idire: VS
Genlocation hoce: Ilr'rternal - I CiM:Batids -
— Carner 2 - I J I I
Longitucie: Latituce: — Time (optional]———— IDIM:EIandS d I I
lj lj Start: Stop:
[ [oirBands ~| | |

You define the rectangular area by specifying two points that specify two corners of the
box:

* Corner 1 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 1 is the upper-left corner of the box.

* Corner 2 — Specify longitude and latitude values in decimal degrees. Typically,
Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track Inclusion and the
Geolocation mode. The Cross Track Inclusion value determines how much of the area
of the geographic box that you define must fall within the boundaries of the swath.

Cross Track Inclusion Mode |AnyPoint 'l

AnyPoint

Midpoint

Endpaint

Select from these values:

7-77



7 Scientific Data

* AnyPoint — Any part of the box overlaps with the swath.
* Midpoint — At least half of the box overlaps with the swath.
* Endpoint — All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data must be in
the same swath.

Geolocation Mode IInternaI 'l

Internal

Select from these values:

* Internal — Geolocation fields and data fields must be in the same swath.
* External — Geolocation fields and data fields can be in different swaths.

Time

You can optionally also subset swath data by specifying a time period. The units used
(hours, minutes, seconds) to specify the time are defined by the data set

Tirne (optional)———
|7Star1: Stop:

User-Defined
You can optionally also subset a swath data set by specifying user-defined parameters.

— User-defined (optional)

Dimension ar
Field Mame: hdire: Il

[oirBands ~| |
[orBands = |
[orBands = |

When specifying user-defined parameters, you must first specify whether you are
subsetting along a dimension or by field. Select the dimension or field by name using the

7-78



Import HDF4 Files Interactively

Dimension or Field Name menu. Dimension names are prefixed with the characters
DIM:.

Once you specify the dimension or field, you use Min and Max to specify the range of
values that you want to import. For dimensions, Min and Max represent a range of
elements. For fields, Min and Max represent a range of values.

HDF Raster Image Data

For 8-bit HDF raster image data, you can specify the colormap.

7-79



7 Scientific Data

About HDF4 and HDF-EOS

7-80

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard
for storing scientific data in files, developed by the National Center for Supercomputing
Applications (NCSA). For more information about these file formats, read the HDF
documentation at the HDF Web site (www. hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and
Space Administration (NASA) for storage of data returned from the Earth Observing
System (EOS). For more information about this extension to HDF4, see the HDF-EOS
documentation at the NASA Web site (www. hdfeos.org).

HDF4 Application Programming Interfaces (APIs) are libraries of C routines. To import or
export data, you must use the functions in the HDF4 API associated with the particular
HDF4 data type you are working with. Each API has a particular programming model,
that is, a prescribed way to use the routines to write data sets to the file. MATLAB
functions allow you to access specific HDF4 APIs.

To use the MATLAB HDF4 functions effectively, you must be familiar with the HDF library.
For detailed information about HDF4 features and routines, refer to the documentation at
the HDF Web site.


https://www.hdfgroup.org
https://www.hdfeos.org

Export to HDF4 Files

Export to HDF4 Files

In this section...
“Write MATLAB Data to HDF4 File” on page 7-81
“Manage HDF4 Identifiers” on page 7-83

Write MATLAB Data to HDF4 File

This example shows how to write MATLAB® arrays to a Scientific Data Set in an HDF4
file.

Add Package to Import List
Add the matlab.io.hdf4.* path to the import list.
import matlab.io.hdf4.*

Prefix subsequent calls to functions in the matlat.io.hdf4. sd package with sd, rather
than the entire package path.

Create HDF4 File

Create a new HDF4 file using the matlab.io.hdf4.sd.start function. This function
corresponds to the SD API routine, SDstart.

sdID = sd.start('mydata.hdf', 'create');
sd.start creates the file and returns a file identifier named sdID.

To open an existing file instead of creating a new one, call sd.start with 'write'
access instead of 'create’.

Create HDF4 Data Set

Create a data set in the file for each MATLAB array you want to export. If you are writing
to an existing data set, you can skip ahead to the next step. In this example, create one
data set for the array of sample data, A, using the matlab.io.hdf4.sd.create
function. This function corresponds to the SD API routine, SDcreate. The ds_type
argument is a character vector specifying the MATLAB data type of the data set.

A=[12345;678910 ; 11 12 13 14 15];
ds name = 'A’';

7-81



7 Scientific Data

ds type '"double’;
ds dims size(A);
sdsID = sd.create(sdID,ds name,ds type,ds dims);

sd.create returns an HDF4 SD data set identifier, sdsID.
Write MATLAB Data to HDF4 File

Write data in A to the data set in the file using the matlab.io.hdf4.sd.writedata
function. This function corresponds to the SD API routine, SDwritedata. The start
argument specifies the zero-based starting index.

start = [0 0];
sd.writeData(sdsID,start,A);

sd.writeData queues the write operation. Queued operations execute when you close
the HDF4 file.

Write MATLAB Data to Portion of Data Set

Replace the second row of the data set with the vector B. Use a start input value of [1
0] to begin writing at the second row, first column. start uses zero-based indexing.

B=1[9990909];
start = [1 0];
sd.writeData(sdsID,start,B);

Write Metadata to HDF4 File

Create a global attribute named creation date, with a value that is the current date
and time. Use the matlab.io.hdf4.sd.setAttr function, which corresponds to the SD
API routine, SDsetattr.

sd.setAttr(sdID, 'creation date',datestr(now));

sd.Attr creates a file attribute, also called a global attribute, associated with the HDF4
file identified by sdID.

Associate a predefined attribute, cordsys, to the data set identified by sdsID. Possible
values of this attribute include the text strings 'cartesian', 'polar’, and

"spherical’.
attr name = 'cordsys';
attr value = 'polar’';

sd.setAttr(sdsID,attr name,attr value);

7-82



Export to HDF4 Files

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This
function corresponds to the SD API routine, SDendaccess. You must close access to all
the data sets in and HDF4 file before closing the file.

sd.endAccess(sdsID);

Close HDFA4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function
corresponds to the SD API routine, SDend.

sd.close(sdID);

Closing an HDF4 file executes all the write operations that have been queued using
SDwritedata.

Manage HDF4 Identifiers

MATLAB supports utility functions that make it easier to use HDF4 in the MATLAB
environment.

* “View All Open HDF4 Identifiers” on page 7-83
* “Close All Open HDF4 Identifiers” on page 7-84

View All Open HDF4 Identifiers

Use the gateway function to the MATLAB HDF4 utility API, hdfml, and specify the name
of the listinfo routine as an argument to view all the currently open HDF4 identifiers.
MATLAB updates this list whenever HDF identifiers are created or closed. In this example
only two identifiers are open.

hdfml('listinfo")

No open RI identifiers

No open GR identifiers

No open grid identifiers

No open grid file identifiers

No open annotation identifiers

No open AN identifiers

Open scientific dataset identifiers:
262144

7-83



7 Scientific Data

Open scientific data file identifiers:
393216

No open Vdata identifiers

No open Vgroup identifiers

No open Vfile identifiers

No open point identifiers

No open point file identifiers

No open swath identifiers

No open swath file identifiers

No open access identifiers

No open file identifiers

Close All Open HDF4 Identifiers

Close all the currently open HDF4 identifiers in a single call using the gateway function to
the MATLAB HDF4 utility API, hdfml. Specify the name of the closeall routine as an
argument:

hdfml('closeall"')

See Also

hdfml | sd.close | sd.create | sd.endAccess | sd.setAttr|sd.start |
sd.writeData

More About
. “Map HDF4 to MATLAB Syntax” on page 7-58

7-84



Audio and Video

* “Read and Write Audio Files” on page 8-2

* “Record and Play Audio” on page 8-5

* “Read Video Files” on page 8-10

* “Supported Video and Audio File Formats” on page 8-15

* “Convert Between Image Sequences and Video” on page 8-20



8 Audio and Video

Read and Write Audio Files

Write data to an audio file, get information about the file, and then read the data back
into the MATLAB workspace.

Write to Audio File

Load sample data from the file, handel.mat

load handel.mat
The workspace now contains a matrix of audio data, y, and a sample rate, Fs.

Use the audiowrite function to write the data to a WAVE file named handel.wav in the
current folder.

audiowrite('handel.wav',y,Fs)
clear y Fs

The audiowrite function also can write to other audio file formats such as OGG, FLAC,
and MPEG-4 AAC.

Get Information About Audio File

Use the audioinfo function to get information about the WAVE file, handel.wav.
info = audioinfo('handel.wav')

info =
Filename: 'pwd\handel.wav'
CompressionMethod: 'Uncompressed’
NumChannels: 1
SampleRate: 8192
TotalSamples: 73113
Duration: 8.9249
Title:
Comment:
Artist:

]
]
]
BitsPerSample: 16

= r—r——

audioinfo returns a 1-by-1 structure array. The SampleRate field indicates the sample
rate of the audio data, in hertz. The Duration field indicates the duration of the file, in
seconds.

8-2



Read and Write Audio Files

Read Audio File

Use the audioread function to read the file, handel.wav. The audioread function can
support WAVE, OGG, FLAC, AU, MP3, and MPEG-4 AAC files.

[y,Fs] = audioread('handel.wav');
Play the audio.
sound(y,Fs)
. . AL
You also can read WAV, AU, or SND files interactively. Select 1 Import Data or double-
click the file name in the Current Folder browser.
Plot Audio Data
Create a vector t the same length as y, that represents elapsed time.

t = 0:seconds(1/Fs):seconds(info.Duration);
t = t(1l:end-1);

Plot the audio data as a function of time.
plot(t,y)

xlabel('Time")
ylabel('Audio Signal')

8-3



8 Audio and Video

Audio Signal

See Also

audioinfo | audioread | audiowrite

Related Examples
. “Import Images, Audio, and Video Interactively” on page 1-9

8-4



Record and Play Audio

Record and Play Audio

Record and play audio data for processing in MATLAB from audio input and output
devices on your system.

In this section...

“Record Audio” on page 8-5

“Play Audio” on page 8-7

“Record or Play Audio within a Function” on page 8-8

Record Audio

Record data from an audio input device such as a microphone connected to your system:

1 Create an audiorecorder object.
2 Call the record or recordblocking method, where:
* record returns immediate control to the calling function or the command prompt
even as recording proceeds. Specify the length of the recording in seconds, or end

the recording with the stop method. Optionally, call the pause and resume
methods. The recording is performed asynchronously.

* recordblocking retains control until the recording is complete. Specify the
length of the recording in seconds. The recording is performed synchronously.

3 Create a numeric array corresponding to the signal data using the getaudiodata
method.

The following examples show how to use the recordblocking and record methods.

Record Microphone Input

This example shows how to record microphone input, play back the recording, and store
the recorded audio signal in a numeric array. You must first connect a microphone to your
system.

Create an audiorecorder object named recObj for recording audio input.
recObj = audiorecorder

recObj =



8 Audio and Video

8-6

audiorecorder with properties:

SampleRate: 8000
BitsPerSample: 8
NumChannels:

DevicelD:
CurrentSample:
TotalSamples:
Running:

1
-1
1
0
StartFcn: [
[
[
0
[

ff'

StopFcn:
TimerFcn:
TimerPeriod:
Tag:
UserData:
Type:

o
]
]
]
.0500

]

audiorecorder'

audiorecorder creates an 8000 Hz, 8-bit, 1-channel audiorecorder object.
Record your voice for 5 seconds.

disp('Start speaking.')

recordblocking(recObj, 5);

disp('End of Recording.');

Play back the recording.

play(rec0Obj);

Store data in double-precision array, y.

y = getaudiodata(recObj);

Plot the audio samples.

plot(y);

Record Two Channels from Different Sound Cards

To record audio independently from two different sound cards, with a microphone
connected to each:

1 Call audiodevinfo to list the available sounds cards. For example, this code returns
a structure array containing all input and output audio devices on your system:

info = audiodevinfo;



Record and Play Audio

Identify the sound cards you want to use by name, and note their ID values.

2 Create two audiorecorder objects. For example, this code creates the
audiorecorder object, recorderl, for recording a single channel from device 3 at
44.1 kHz and 16 bits per sample. The audiorecorder object, recorder?, is for
recording a single channel from device 4 at 48 kHz:

audiorecorder(44100,16,1,3);
audiorecorder(48000,16,1,4);

3 Record each audio channel separately.

recorderl
recorder2

record(recorderl);
record(recorder?);
pause(5);

The recordings occur simultaneously as the first call to record does not block.
4  Stop the recordings.

stop(recorderl);
stop(recorder2);

Specify the Quality of the Recording

By default, an audiorecorder object uses a sample rate of 8000 hertz, a depth of 8 bits
(8 bits per sample), and a single audio channel. These settings minimize the required
amount of data storage. For higher quality recordings, increase the sample rate or bit
depth.

For example, typical compact disks use a sample rate of 44,100 hertz and a 16-bit depth.
Create an audiorecorder object to record in stereo (two channels) with those settings:

myRecObj = audiorecorder (44100, 16, 2);

For more information on the available properties and values, see the audiorecorder
reference page.

Play Audio

After you import or record audio, MATLAB supports several ways to listen to the data:

» For simple playback using a single function call, use sound or soundsc. For example,
load a sample MAT-file that contains signal and sample rate data, and listen to the
audio:



8 Audio and Video

8-8

load chirp.mat;
sound(y, Fs);

» For more flexibility during playback, including the ability to pause, resume, or define

callbacks, use the audioplayer function. Create an audioplayer object, then call
methods to play the audio. For example, listen to the gong sample file:

load gong.mat;
gong = audioplayer(y, Fs);
play(gong);

For an additional example, see “Record or Play Audio within a Function” on page 8-
8.

If you do not specify the sample rate, sound plays back at 8192 hertz. For any playback,
specify smaller sample rates to play back more slowly, and larger sample rates to play
back more quickly.

Note Most sound cards support sample rates between approximately 5,000 and 48,000
hertz. Specifying sample rates outside this range can produce unexpected results.

Record or Play Audio within a Function

If you create an audioplayer or audiorecorder object inside a function, the object
exists only for the duration of the function. For example, create a player function called
playFile and a simple callback function showSeconds:

function playFile(myfile)
load(myfile);

obj = audioplayer(y, Fs);
obj.TimerFcn = 'showSeconds';
obj.TimerPeriod = 1;

play(obj);
end

function showSeconds
disp('tick")
end

Call playFile from the command prompt to play the file handel.mat:



See Also

playFile('handel.mat')

At the recorded sample rate of 8192 samples per second, playing the 73113 samples in
the file takes approximately 8.9 seconds. However, the playFile function typically ends
before playback completes, and clears the audioplayer object obj.

To ensure complete playback or recording, consider the following options:

Use playblocking or recordblocking instead of play or record. The blocking
methods retain control until playing or recording completes. If you block control, you
cannot issue any other commands or methods (such as pause or resume) during the
playback or recording.

Create an output argument for your function that generates an object in the base
workspace. For example, modify the playFile function to include an output
argument:

function obj = playFile(myfile)
Call the function:
h = playFile('handel.mat');

Because h exists in the base workspace, you can pause playback from the command
prompt:

pause(h)

See Also

audioplayer | audiorecorder | sound | soundsc

More About

“Read and Write Audio Files” on page 8-2

8-9



8 Audio and Video

Read Video Files

8-10

Read frames from a video starting at a specific time or frame index, read frames within a
specified interval, or read all the frames in the video.

Read Frames Beginning at Specified Time or Frame Index

Read part of a video file starting 0.5 second from the beginning of the file. Then, read the
video starting from frame index 100 to the end of the video file.

Construct a VideoReader object associated with the sample file ' xylophone.mp4'.
vidObj = VideoReader('xylophone.mp4');

Specify that reading should begin 0.5 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.5;

Read video frames until the end of the file is reached by using the readF rame method.

while hasFrame(vidObj)
vidFrame = readFrame(vidObj);
imshow(vidFrame)
pause(1l/vid0Obj.FrameRate);
end



Read Video Files

Alternatively, you can read frames from a video starting at a specified frame index to the
end of the video by using the read method. Specify the indices to read as [100 Inf].
The read method returns all the frames starting at 100 to the end of the video file.

vidframes = read(vidObj,[100 Inf]);
Read Frames Within Specified Interval
Read a part of a video file by specifying the time or frame interval.

Read the video frames between 0.6 and 0.9 seconds. First, create a video reader object
and a structure array to hold the frames.

vidObj = VideoReader('xylophone.mp4');
s = struct('cdata',zeros(vidObj.Height,vidObj.Width,3, 'uint8"'), 'colormap',[1);

Then, specify that reading should begin 0.6 second from the beginning of the file by
setting the CurrentTime property.

vidObj.CurrentTime = 0.6;

8-11



8 Audio and Video

8-12

Read one frame at a time until CurrentTime reaches 0.9 second. Append data from each
video frame to the structure array. View the number of frames in the structure array. s is
a 1-by-10 structure indicating that 10 frames were read. For information on displaying the
frames in the structure s as a movie, see the movie function reference page.

k =1;
while vidObj.CurrentTime <= 0.9
s(k).cdata = readFrame(vidObj);

k = k+1;
end
whos s
Name Size Bytes C(lass Attributes
S 1x10 2305432 struct

Alternatively, you can read all the frames in a specified interval by using frame indices.
For example, specify the second argument of read as [18 27]. The read method returns
a FrameSize-by-10 array indicating that 10 frames were read.

frames = read(vidObj,[18 27]);
whos frames

Name Size Bytes C(lass Attributes
frames 240x320x3x10 2304000 uint8

Read All Frames
Read all the frames from video, one frame at a time or all the frames at once.

Create a video reader object and display the total number of frames in the video.

vidObj = VideoReader('xylophone.mp4');
vidObj.NumFrames

ans = 141

Read all the frames, one frame at a time, by using the readFrame method, and display
the frames.

while hasFrame(vidObj)
frame = readFrame(vidObj);
imshow(frame)



Read Video Files

pause(1l/vidObj.FrameRate);
end

Alternatively, you can read all the video frames at once. The read method returns a
FrameSize-by-141 array of video frames.

allFrames = read(vidObj);
whos allFrames

Name Size Bytes C(lass Attributes
allFrames 240x320x3x141 32486400 uint8
Troubleshooting and Tips For Video Reading

* The hasFrame method might return logical 1 (true) when the value of the
CurrentTime property is equal to the value of the Duration property. This is due to
a limitation in the underlying APIs used.

» Seeking to the last frame in a video file by setting the CurrentTime property to a
value close to the Duration value is not recommended. For some files, this operation

8-13



8 Audio and Video

8-14

returns an error indicating that the end-of-file has been reached, even though the
CurrentTime value is less than the Duration value. This typically occurs if the file
duration is larger than the duration of the video stream, and there is no video
available to read near the end of the file.

Use of the Duration property to limit the reading of data from a video file is not
recommended. Use the hasFrame method to check whether there is a frame available
to read. It is best to read data until the file reports that there are no more frames
available to read.

Video Reading Performance on Windows® Systems: To achieve better video reader
performance on Windows for MP4 and MOV files, MATLAB® uses the system’s graphics
hardware for decoding. However, in some cases using the graphics card for decoding
can result in poorer performance depending on the specific graphics hardware on the
system. If you notice slower video reader performance on your system, turn off the
hardware acceleration by typing:
matlab.video.read.UseHardwareAcceleration('off'). You can reenable
hardware acceleration by typing:
matlab.video.read.UseHardwareAcceleration('on').

See Also

VideoReader | mmfileinfo | movie | read | readFrame

More About

“Supported Video and Audio File Formats” on page 8-15



Supported Video and Audio File Formats

Supported Video and Audio File Formats

Video and audio files in MATLAB and their supported file formats and codecs.

Video Data in MATLAB

What Are Video Files?

For video data, the term “file format” often refers to either the container format or the
codec. A container format describes the layout of the file, while a codec describes how to
encode/decode the video data. Many container formats can hold data encoded with

different codecs.

To read a video file, any application must:

* Recognize the container format (such as AVI).

* Have access to the codec that can decode the video data stored in the file. Some
codecs are part of standard Windows and Macintosh system installations, and allow
you to play video in Windows Media Player or QuickTime. In MATLAB, VideoReader
can access most, but not all, of these codecs.

* Properly use the codec to decode the video data in the file. VideoReader cannot
always read files associated with codecs that were not part of your original system

installation.

Formats That VideoReader Supports

Use VideoReader to read video files in MATLAB. The file formats that VideoReader
supports vary by platform, and have no restrictions on file extensions.

Platforms

File Formats

All Platforms

AV], including uncompressed, indexed,
grayscale, and Motion JPEG-encoded video
(.avi)

Motion JPEG 2000 (.mj?2)

All Windows

MPEG-1 (.mpg)

Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft
DirectShow

8-15



8 Audio and Video

8-16

Platforms

File Formats

Windows 7 or later

MPEG-4, including H.264 encoded video
(.mp4, .m4v)

Apple QuickTime Movie (.mov)

Any format supported by Microsoft Media
Foundation

Macintosh

Most formats supported by QuickTime
Player, including:

MPEG-1 (.mpg)

MPEG-4, including H.264 encoded video
(.mp4, .m4v)

Apple QuickTime Movie (.mov)

3GPP

3GPP2

AVCHD

DV

Note: For OS X Yosemite (Version 10.10)
and later, MPEG-4/H.264 files written using
VideoWriter, play correctly, but display
an inexact frame rate.

Linux

Any format supported by your installed
plug-ins for GStreamer 1.0 or higher, as
listed on https://gstreamer.freedesktop.org/
documentation/plugins doc.html, including
Ogg Theora (.0gg9).

View Codec Associated with Video File

This example shows how to view the codec associated with a video file, using the

mmfileinfo function.

Store information about the sample video file, shuttle.avi, in a structure array named
info. The info structure contains the following fields: Filename, Path, Duration,

Audio and Video.

info = mmfileinfo('shuttle.avi');

Show the properties in the command window by displaying the fields of the info
structure. For example, to view information under the Video field, type info.Video



https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html

Supported Video and Audio File Formats

info.Video

ans = struct with fields:
Format: 'MJPG'
Height: 288
Width: 512

The file, shuttle.avi, uses the Motion JPEG codec.

Troubleshooting: Errors Reading Video File

You might be unable to read a video file if MATLAB cannot access the appropriate codec.
64-bit applications use 64-bit codec libraries, while 32-bit applications use 32-bit codec
libraries. For example, when working with 64-bit MATLAB, you cannot read video files
that require access to a 32-bit codec installed on your system. To read these files, try one
of the following:

* Install a 64-bit codec that supports this file format. Then, try reading the file using 64-
bit MATLAB.

* Re-encode the file into a different format with a 64-bit codec that is installed on your
computer.

Sometimes, VideoReader cannot open a video file for reading on Windows platforms.
This might occur if you have installed a third-party codec that overrides your system
settings. Uninstall the codec and try opening the video file in MATLAB again.

Audio Data in MATLAB
What Are Audio Files?

The audio signal in a file represents a series of samples that capture the amplitude of the
sound over time. The sample rate is the number of discrete samples taken per second and
given in hertz. The precision of the samples, measured by the bit depth (number of bits
per sample), depends on the available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in an m-by-1
column vector, and stereo data in an m-by-2 matrix. In either case, m is the number of
samples. For stereo data, the first column contains the left channel, and the second
column contains the right channel.

8-17



8 Audio and Video

8-18

Typically, each sample is a double-precision value between -1 and 1. In some cases,
particularly when the audio hardware does not support high bit depths, audio files store
the values as 8-bit or 16-bit integers. The range of the sample values depends on the
available number of bits. For example, samples stored as uint8 values can range from 0
to 255 (28 - 1). The MATLAB sound and soundsc functions support only single- or
double-precision values between -1 and 1. Other audio functions support multiple data
types, as indicated on the function reference pages.

Formats That audioReader Supports

Use audioread to read audio files in MATLAB. The audioread function supports these
file formats.

Platform Support File Format

All platforms WAVE (.wav)
OGG (.0g9)
FLAC (. flac)
AU (.au)

AIFF (.aiff, .aif)

AIFC (.aifc)

Windows 7 (or later), Macintosh, and Linux [MP3 (.mp3)

MPEG-4 AAC (.m4a, .mp4)

On Windows platforms prior to Windows 7, audioread does not read WAVE files with
MP3 encoded data.

On Windows 7 (or later) platforms, audioread might also read any files supported by
Windows Media Foundation.

On Linux platforms, audioread might also read any files supported by GStreamer.

audioread can extract audio from MPEG-4 (.mp4, .m4v) video files on Windows 7 or
later, Macintosh, and Linux, and from Windows Media Video (.wmv) and AVI (.av1i) files
on Windows 7 (or later) and Linux platforms.

See Also

VideoReader | audioinfo | audioread | mmfileinfo



See Also

More About

. “Read Video Files” on page 8-10
. “Read and Write Audio Files” on page 8-2

8-19



8 Audio and Video

Convert Between Image Sequences and Video

Convert between video files and sequences of image files using VideoReader and
VideoWriter.

The sample file named shuttle.avi contains 121 frames. Convert the frames to image
files using VideoReader and the imwrite function. Then, convert the image files to an
AVI file using VideoWriter.

Setup

Create a temporary working folder to store the image sequence.
workingDir = tempname;

mkdir(workingDir)

mkdir(workingDir, 'images"')

Create VideoReader

Create a VideoReader to use for reading frames from the file.
shuttleVideo = VideoReader('shuttle.avi');

Create the Image Sequence

Loop through the video, reading each frame into a width-by-height-by-3 array named img.
Write out each image to a JPEG file with a name in the form imgN. jpg, where N is the
frame number.

| img001.jpg|

| img002.jpg]|

| ...|

| img121.jpg]

ii = 1;

while hasFrame(shuttleVideo)
img = readFrame(shuttleVideo);
filename = [sprintf('%03d',ii) '.jpg'l;

fullname = fullfile(workingDir, 'images', filename);
imwrite(img, fullname) % Write out to a JPEG file (imgl.jpg, img2.jpg, etc.)

8-20



Convert Between Image Sequences and Video

il = ii+1;
end

Find Image File Names

Find all the JPEG file names in the images folder. Convert the set of image names to a
cell array.

imageNames
imageNames

dir(fullfile(workingDir, 'images','*.jpg'));
{imageNames.name}"';

Create New Video with the Image Sequence

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by default.

outputVideo = VideoWriter(fullfile(workingDir, 'shuttle out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo)

Loop through the image sequence, load each image, and then write it to the video.

for ii 1:1length(imageNames)
img imread(fullfile(workingDir, 'images',imageNames{ii}));
writeVideo(outputVideo,img)

end

Finalize the video file.
close(outputVideo)

View the Final Video

Construct a reader object.
shuttleAvi = VideoReader(fullfile(workingDir, 'shuttle out.avi'));
Create a MATLAB movie struct from the video frames.
ii = 1;
while hasFrame(shuttleAvi)
mov(ii) = im2frame(readFrame(shuttleAvi));
il = ii+1;
end

Resize the current figure and axes based on the video's width and height, and view the
first frame of the movie.

8-21



8 Audio and Video

figure
imshow(mov(1l).cdata, 'Border', 'tight')

Play back the movie once at the video's frame rate.

movie(mov,1,shuttleAvi.FrameRate)

Credits

Video of the Space Shuttle courtesy of NASA.

8-22



XML Documents

* “Importing XML Documents” on page 9-2
« “Exporting to XML Documents” on page 9-5



9 XML Documents

Importing XML Documents

To read an XML file from your local disk or from a URL, use the xmlread function.
xmlread returns the contents of the file in a Document Object Model (DOM) node. For
more information, see:

* “What Is an XML Document Object Model (DOM)?” on page 9-2

+ “Example — Finding Text in an XML File” on page 9-3

What Is an XML Document Object Model (DOM)?

In a Document Object Model, every item in an XML file corresponds to a node. The
properties and methods for DOM nodes (that is, the way you create and access nodes)
follow standards set by the World Wide Web consortium.

For example, consider this sample XML file:

<productinfo>

<!-- This is a sample info.xml file. -->

<list>

<listitem>

<label color="blue">Import Wizard</label>

<callback>uiimport</callback>

<icon>ApplicationIcon.GENERIC GUI</icon>

</listitem>

<listitem>

<label color="red">Profiler</label>

<callback>profile viewer</callback>

<icon>ApplicationIcon.PROFILER</icon>

</listitem>

</list>
</productinfo>

The information in the file maps to the following types of nodes in a DOM:

* Element nodes — Corresponds to tag names. In the sample info.xml file, these tags
correspond to element nodes:

* productinfo
o list

9-2



Importing XML Documents

e Tlistitem

¢« Tlabel
e callback
e icon

In this case, the 1ist element is the parent of 1istitem element child nodes. The
productinfo element is the root element node.

* Text nodes — Contains values associated with element nodes. Every text node is the
child of an element node. For example, the Import Wizard text node is the child of
the first Label element node.

» Attribute nodes — Contains name and value pairs associated with an element node.
For example, in the first Label element node, color is the name of an attribute and
blue is its value. Attribute nodes are not parents or children of any nodes.

* Comment nodes — Includes additional text in the file, in the form <! - -Sample
comment-->,

* Document nodes — Corresponds to the entire file. Use methods on the document node
to create new element, text, attribute, or comment nodes.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom
package description at https://docs.oracle.com/javase/7/docs/api

Example — Finding Text in an XML File

The full matlabroot/toolbox/matlab/general/info.xml file contains several
listitem elements, such as:

<listitem>

<label>Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC GUI</icon>
</listitem>

One of the label elements has the child text Plot Tools. Suppose that you want to find
the text for the callback element in the same 1istitem. Follow these steps:

1 [Initialize your variables, and call xmlread to obtain the document node:

findLabel = 'Plot Tools';
findCbk = '';

9-3


https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

9 XML Documents

9-4

xDoc = xmlread(fullfile(matlabroot,

‘toolbox', 'matlab', 'general', 'info.xml"));
Find all the listitem elements. The getElementsByTagName method returns a
deep list that contains information about the child nodes:

allListitems = xDoc.getElementsByTagName('listitem');

Note Lists returned by DOM methods use zero-based indexing.

For each listitem, compare the text for the label element to the text you want to
find. When you locate the correct lLabel, get the callback text:

for k = 0:allListitems.getlLength-1
thisListitem = allListitems.item(k);

% Get the label element. In this file, each

% listitem contains only one label.

thislList = thisListitem.getElementsByTagName('label');
thisElement = thisList.item(0);

% Check whether this is the label you want.

% The text is in the first child node.

if strcmp(thisElement.getFirstChild.getData, findLabel)
thisList = thisListitem.getElementsByTagName('callback');
thisElement = thisList.item(0);
findCbk = char(thisElement.getFirstChild.getData);
break;

end

end
Display the final results:

if ~isempty(findCbk)
msg = sprintf('Item "%s" has a callback of "%s."', ...
findLabel, findCbk);
else
msg = sprintf('Did not find the "%s" item.', findLabel);
end
disp(msg);

For an additional example that creates a structure array to store data from an XML file,
see the xmlread function reference page.



Exporting to XML Documents

Exporting to XML Documents

To write data to an XML file, use the xmlwrite function. xmlwrite requires that you
describe the file in a Document Object Model (DOM) node. For an introduction to DOM
nodes, see “What Is an XML Document Object Model (DOM)?” on page 9-2

For more information, see:

“Creating an XML File” on page 9-5
“Updating an Existing XML File” on page 9-7

Creating an XML File

Although each file is different, these are common steps for creating an XML document:

1

Create a document node and define the root element by calling this method:

docNode = com.mathworks.xml.XMLUtils.createDocument('root element');

Get the node corresponding to the root element by calling getDocumentElement.
The root element node is required for adding child nodes.

Add element, text, comment, and attribute nodes by calling methods on the document
node. Useful methods include:

e createElement
* createTextNode

e createComment
» setAttribute

For a complete list of the methods and properties of DOM nodes, see the
org.w3c.dom package description at https://docs.oracle.com/javase/7/
docs/api.

As needed, define parent/child relationships by calling appendChild on the parent
node.

Tip Text nodes are always children of element nodes. To add a text node, call
createTextNode on the document node, and then call appendChild on the parent
element node.



https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

9 XML Documents

Example — Creating an XML File with xmlwrite

Suppose that you want to create an info.xml file for the Upslope Area Toolbox
(described in “Display Custom Documentation”), as follows:

<?xml version="1.0" encoding="utf-8"7?>
<toc version="2.0">
<tocitem target="upslope product page.html">Upslope Area Toolbox<!-- Functions -->
<tocitem target="demFlow help.html">demFlow</tocitem>
<tocitem target="facetFlow help.html">facetFlow</tocitem>
<tocitem target="flowMatrix help.html">flowMatrix</tocitem>
<tocitem target="pixelFlow help.html">pixelFlow</tocitem>
</tocitem>
</toc>

To create this file using xmlwrite, follow these steps:
1 Create the document node and root element, toc:

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');
2 Identify the root element, and set the version attribute:

toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

3 Add the tocitem element node for the product page. Each tocitem element in this
file has a target attribute and a child text node:

product = docNode.createElement('tocitem');
product.setAttribute('target', 'upslope product page.html');
product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));
toc.appendChild(product)

4 Add the comment:

product.appendChild(docNode.createComment(' Functions '));
5 Add a tocitem element node for each function, where the target is of the form
function help.html:

functions = {'demFlow', 'facetFlow', 'flowMatrix', 'pixelFlow'};
for idx = l:numel(functions)
curr_node = docNode.createElement('tocitem');

curr_file = [functions{idx} ' help.html'];
curr_node.setAttribute('target',curr_file);

% Child text is the function name.
curr_node.appendChild(docNode.createTextNode (functions{idx}));

9-6



Exporting to XML Documents

product.appendChild(curr_node);
end
Export the DOM node to info.xml, and view the file with the type function:

xmlwrite('info.xml',docNode);
type('info.xml');

Updating an Existing XML File

To change data in an existing file, call xmlread to import the file into a DOM node.
Traverse the node and add or change data using methods defined by the World Wide Web
consortium, such as:

getElementsByTagName
getFirstChild
getNextSibling
getNodeName
getNodeType

When the DOM node contains all your changes, call xmlwrite to overwrite the file.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom
package description at https://docs.oracle.com/javase/7/docs/api.

For examples that use these methods, see:

“Example — Finding Text in an XML File” on page 9-3
“Example — Creating an XML File with xmlwrite” on page 9-6
xmlread and xmlwrite


https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html




Memory-Mapping Data Files

* “Overview of Memory-Mapping” on page 10-2

* “Map File to Memory” on page 10-6

* “Read from Mapped File” on page 10-12

* “Write to Mapped File” on page 10-18

* “Delete Memory Map” on page 10-25

* “Share Memory Between Applications” on page 10-26




10 Memory-Mapping Data Files

Overview of Memory-Mapping

10-2

In this section...

“What Is Memory-Mapping?” on page 10-2
“Benefits of Memory-Mapping” on page 10-2
“When to Use Memory-Mapping” on page 10-4
“Maximum Size of a Memory Map” on page 10-5
“Byte Ordering” on page 10-5

What Is Memory-Mapping?

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk to
a range of addresses within an application's address space. The application can then
access files on disk in the same way it accesses dynamic memory. This makes file reads
and writes faster in comparison with using functions such as fread and fwrite.

Benefits of Memory-Mapping

The principal benefits of memory-mapping are efficiency, faster file access, the ability to
share memory between applications, and more efficient coding.

Faster File Access

Accessing files via memory map is faster than using I/O functions such as fread and
fwrite. Data are read and written using the virtual memory capabilities that are built in
to the operating system rather than having to allocate, copy into, and then deallocate data
buffers owned by the process.

MATLAB does not access data from the disk when the map is first constructed. It only
reads or writes the file on disk when a specified part of the memory map is accessed, and
then it only reads that specific part. This provides faster random access to the mapped
data.

Efficiency

Mapping a file into memory allows access to data in the file as if that data had been read
into an array in the application's address space. Initially, MATLAB only allocates address
space for the array; it does not actually read data from the file until you access the



Overview of Memory-Mapping

mapped region. As a result, memory-mapped files provide a mechanism by which
applications can access data segments in an extremely large file without having to read
the entire file into memory first.

Efficient Coding Style

Memory-mapping in your MATLAB application enables you to access file data using
standard MATLAB indexing operations. Once you have mapped a file to memory, you can
read the contents of that file using the same type of MATLAB statements used to read
variables from the MATLAB workspace. The contents of the mapped file appear as if they
were an array in the currently active workspace. You simply index into this array to read
or write the desired data from the file. Therefore, you do not need explicit calls to the
fread and fwrite functions.

In MATLAB, if x is a memory-mapped variable, and y is the data to be written to a file,
then writing to the file is as simple as

x.Data = vy;
Sharing Memory Between Applications

Memory-mapped files also provide a mechanism for sharing data between applications, as
shown in the figure below. This is achieved by having each application map sections of the
same file. You can use this feature to transfer large data sets between MATLAB and other
applications.

10-3



10 Memory-Mapping Data Files

10-4

Process 1

S
5%

2 GB

Memory -Mapped
File

Process 2

b5

ST

420

Also, within a single application, you can map the same segment of a file more than once.

2 GB

[T

0

When to Use Memory-Mapping

Just how much advantage you get from mapping a file to memory depends mostly on the
size and format of the file, the way in which data in the file is used, and the computer
platform you are using.

When Memory-Mapping Is Most Useful

Memory-mapping works best with binary files, and in the following scenarios:

» For large files that you want to access randomly one or more times
» For small files that you want to read into memory once and access frequently
» For data that you want to share between applications



Overview of Memory-Mapping

*  When you want to work with data in a file as if it were a MATLAB array
When the Advantage Is Less Significant
The following types of files do not fully use the benefits of memory-mapping:

» Formatted binary files like HDF or TIFF that require customized readers are not good
for memory-mapping. Describing the data contained in these files can be a very
complex task. Also, you cannot access data directly from the mapped segment, but
must instead create arrays to hold the data.

» Text or ASCII files require that you convert the text in the mapped region to an
appropriate type for the data to be meaningful. This takes up additional address space.

» Files that are larger than several hundred megabytes in size consume a significant
amount of the virtual address space needed by MATLAB to process your program.
Mapping files of this size may result in MATLAB reporting out-of-memory errors more
often. This is more likely if MATLAB has been running for some time, or if the memory
used by MATLAB becomes fragmented.

Maximum Size of a Memory Map

Due to limits set by the operating system and MATLAB, the maximum amount of data you
can map with a single instance of a memory map is 2 gigabytes on 32-bit systems, and
256 terabytes on 64-bit systems. If you need to map more than this limit, you can either
create separate maps for different regions of the file, or you can move the window of one
map to different locations in the file.

Byte Ordering

Memory-mapping works only with data that have the same byte ordering scheme as the
native byte ordering of your operating system. For example, because both Linus Torvalds'
Linux and Microsoft Windows systems use little-endian byte ordering, data created on a
Linux system can be read on Windows systems. You can use the computer function to
determine the native byte ordering of your current system.

10-5



10 Memory-Mapping Data Files

Map File to Memory

10-6

In this section...

“Create a Simple Memory Map” on page 10-6
“Specify Format of Your Mapped Data” on page 10-7
“Map Multiple Data Types and Arrays” on page 10-8
“Select File to Map” on page 10-10

Create a Simple Memory Map

Suppose you want to create a memory map for a file named records.dat, using the
memmapfile function.

Create a sample file named records.dat, containing 5000 values.
myData = gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');

fwrite(fileID, myData, 'double');

fclose(filelD);

Next, create the memory map. Use the Format name-value pair argument to specify that
the values are of type double. Use the Writable name-value pair argument to allow
write access to the mapped region.

m = memmapfile('records.dat',
'"Format', 'double',
'Writable', true)

m:

Filename: 'd:\matlab\records.dat'
Writable: true

Offset: O
Format: 'double'
Repeat: Inf

Data: 5000x1 double array

MATLAB creates a memmapfile object, m. The Format property indicates that read and
write operations to the mapped region treat the data in the file as a sequence of double-




Map File to Memory

precision numbers. The Data property contains the 5000 values from the file,
records.dat. You can change the value of any of the properties, except for Data, after
you create the memory map, m.

For example, change the starting position of the memory map, m. Begin the mapped
region 1024 bytes from the start of the file by changing the value of the 0f fset property.

m.0ffset = 1024
m =

Filename: 'd:\matlab\records.dat'
Writable: true
Offset: 1024
Format: 'double'
Repeat: Inf
Data: 4872x1 double array

Whenever you change the value of a memory map property, MATLAB remaps the file to
memory. The Data property now contains only 4872 values.

Specify Format of Your Mapped Data

By default, MATLAB considers all the data in a mapped file to be a sequence of unsigned
8-bit integers. However, your data might be of a different data type. When you call the
memmapfile function, use the Format name-value pair argument to indicate another
data type. The value of Format can either be a character vector that identifies a single
class used throughout the mapped region, or a cell array that specifies more than one
class.

Suppose you map a file that is 12 kilobytes in length. Data read from this file can be
treated as a sequence of 6,000 16-bit (2-byte) integers, or as 1,500 8-byte double-
precision floating-point numbers, to name just a few possibilities. You also could read this
data as a combination of different types: for example, as 4,000 8-bit (1-byte) integers
followed by 1,000 64-bit (8-byte) integers. You can determine how MATLAB will interpret
the mapped data by setting the Format property of the memory map when you call the
memmapfile function.

MATLAB arrays are stored on disk in column-major order. The sequence of array elements
is column 1, row 1; column 1, row 2; column 1, last row; column 2, row 1, and so on. You
might need to transpose or rearrange the order of array elements when reading or
writing via a memory map.

10-7



10 Memory-Mapping Data Files

10-8

Map Multiple Data Types and Arrays

If the region you are mapping comprises segments of varying data types or array shapes,
you can specify an individual format for each segment. Specify the value of the Format
name-value pair argument as an n-by-3 cell array, where n is the number of segments.
Each row in the cell array corresponds to a segment. The first cell in the row identifies
the data type to apply to the mapped segment. The second cell contains the array
dimensions to apply to the segment. The third cell contains the field name for referencing
that segment. For a memory map, m, use the following syntax:

m = memmapfile(filename,
"Format', {

datatypel, dimensionsl, fieldnamel;

datatype2, dimensions2, fieldname2;

datatypeN, dimensionsN, fieldnameN})

Suppose you have a file that is 40,000 bytes in length. The following code maps the data
beginning at the 2048th byte. The Format value is a 3-by-3 cell array that maps the file
data to three different classes: int16, uint32, and single.

m = memmapfile('records.dat',
'Offset', 2048,
'"Format', {
"intle' [2 2] 'model’';
'uint32' [1 1] 'serialno';
'single' [1 3] 'expenses'});

In this case, nemmapfile maps the int16 data as a 2-by-2 matrix that you can access
using the field name, model. The uint32 data is a scalar value accessed using the field
name, serialno. The single data is a 1-by-3 matrix named expenses. Each of these
fields belongs to the 800-by-1 structure array, m.Data.

This figure shows the mapping of the example file.



Map File to Memory

records.dat

LYY

2048

il
-

LYY

LI

intig

intig

int1g

int1g

uint32

24 bytes

single

single

single

int1e

int1g

intlg

int1g

l
!

uint32

24 hytes

sinple

single

l

single

LYY

=
=

-
-

L)

int1e

int1g

intlg

int1g

uint32

24 hytes

sinple

single

i

single

.data(1}).

.data(1).

.data(1}).

.data(2).

.data(2).

.data(2).

model{1:2,1:2)
serialno
expenses(1:3)

model(1:2,1:2)

serialno

expenses(1:3)

.data(B00).model(1:2,1:2)

.data(B00).serialno

.data(B0D).expenses(1:3)

The next figure shows the ordering of the array elements more closely. In particular, it
illustrates that MATLAB arrays are stored on the disk in column-major order. The
sequence of array elements in the mapped file is row 1, column 1; row 2, column 1; row 1,
column 2; and row 2, column 2.

10-9



10 Memory-Mapping Data Files

records.dat

-~ . -~
..-""lll .-""ll-
L
m.data{1).model{1,1)%—F int16 | int16 ——mm.data{1).model{2,1)
m.data{1).model{1,2) — int16 int {6 =—t—mm.data (1) .model {2, 2)
intaz2
single
single

If the data in your file is not stored in this order, you might need to transpose or
rearrange the order of array elements when reading or writing via a memory map.

Select File to Map

You can change the value of the Filename property at any time after constructing the
memmapfile object. You might want to do this if:

* You want to use the same memmapfile object on more than one file.

* You save your memmapfile object to a MAT-file, and then later load it back into
MATLAB in an environment where the mapped file has been moved to a different
location. This requires that you modify the path segment of the Filename to represent
the new location.

Update the path in the Filename property for a memory map using dot notation. For
example, to specify a new path, f:\testfiles\records.dat for a memory map, m,

type:

m.Filename = 'f:\testfiles\records.dat'

See Also

memmapfile

More About
. “Read from Mapped File” on page 10-12

10-10



See Also

“Write to Mapped File” on page 10-18

10-11



10 Memory-Mapping Data Files

Read from Mapped File

10-12

This example shows how to create two different memory maps, and then read from each
of the maps using the appropriate syntax. Then, it shows how to modify map properties
and analyze your data.

You can read the contents of a file that you mapped to memory using the same MATLAB®
commands you use to read variables from the MATLAB workspace. By accessing the Data
property of the memory map, the contents of the mapped file appear as an array in the
currently active workspace. To read the data you want from the file, simply index into the
array. For better performance, copy the Data field to a variable, and then read the
mapped file using this variable:

dataRef = m.Data;

for k =1 : N

y(k) = dataRef(k);

end

By contrast, reading directly from the memmapfile object is slower:
for k =1 : N

y(k) = m.Data(k);

end

Read from Memory Map as Numeric Array

First, create a sample data file named records.dat that contains a 5000-by-1 matrix of
double-precision floating-point numbers.

randData = gallery('uniformdata', [5000,1],0);
fileID = fopen('records.dat','w');

fwrite(filelD, randData, 'double');
fclose(filelD);

Map 100 double-precision floating-point numbers from the file to memory, and then read a
portion of the mapped data. Create the memory map, m. Specify an 0ffset value of 1024



Read from Mapped File

to begin the map 1024 bytes from the start of the file. Specify a Repeat value of 100 to
map 100 values.

m = memmapfile('records.dat', 'Format', 'double’,
'Offset',1024, 'Repeat',100);

Copy the Data property to a variable, d. Then, show the format of d.

d = m.Data;

whos d
Name Size Bytes C(lass Attributes
d 100x1 800 double

The mapped data is an 800-byte array because there are 100 double values, each
requiring 8 bytes.

Read a selected set of numbers from the file by indexing into the vector, d.
d(15:20)
ans = 6x1

.8392
.6288
.1338
.2071
.6072
.6299

[cNoNoNoNoNG)

Read from Memory Map as Nonscalar Structure
Map portions of data in the file, records.dat, as a sequence of multiple data types.
Call the memmapfile function to create a memory map, m.
m = memmapfile('records.dat’,
'"Format', {

'uintle' [5 8] 'x'; Ce
"double' [4 5] 'y' });

10-13



10 Memory-Mapping Data Files

The Format parameter tells memmapfile to treat the first 80 bytes of the file as a 5-by-8
matrix of uint16 values, and the 160 bytes after that as a 4-by-5 matrix of double
values. This pattern repeats until the end of the file is reached.

Copy the Data property to a variable, d.
d = m.Data

d=166x2 struct
X

y

d is a 166-element structure array with two fields. d is a nonscalar structure array
because the file is mapped as a repeating sequence of multiple data types.

Examine one structure in the array to show the format of each field.

d(3)

ans = struct with fields:
X: [5x8 uintl6]
y: [4x5 double]

Read the x field of that structure from the file.

d(3).x

ans = 5x8 uintl6 matrix
19972 47529 19145 16356 46507 47978 35550 16341
60686 51944 16362 58647 35418 58072 16338 62509
51075 16364 54226 34395 8341 16341 33787 57669

16351 35598 6686 11480 16357 28709 36239 5932
44292 15577 41755 16362 30311 31712 54813 16353

MATLAB formats the block of data as a 5-by-8 matrix of uint16 values, as specified by
the Format property.
Read the y field of that structure from the file.

d(3).y

10-14



Read from Mapped File

ans = 4x5

0.7271 0.3704 0.6946 0.5226 0.2714
0.3093 0.7027 0.6213 0.8801 0.2523
0.8385 0.5466 0.7948 0.1730 0.8757
0.5681 0.4449 0.9568 0.9797 0.7373

MATLAB formats the block of data as a 4-by-5 matrix of double values.
Modify Map Properties and Analyze Data

This part of the example shows how to plot the Fourier transform of data read from a file
via a memory map. It then modifies several properties of the existing map, reads from a
different part of the data file, and plots a histogram from that data.

Create a sample file named double.dat.

randData = gallery('uniformdata', [5000,1],0);
fileID = fopen('double.dat', 'w');
fwrite(filelID, randData, 'double');
fclose(filelD);

Create a memmapfile object of 1,000 elements of type double, starting at the 1025th
byte.

m = memmapfile('double.dat"', 'Offset', 1024,
'Format', 'double', 'Repeat',1000);

Copy the Data property to a variable, k. Then, get data associated with the map and plot
the FFT of the first 100 values of the map.

k = m.Data;
plot(abs(fft(k(1:100))))

10-15



10 Memory-Mapping Data Files

10-16

50 T T T T T T T T T

15 -

10 -

This is the first time that data is referenced and is when the actual mapping of the file to
the MATLAB address space takes place.

Change the map properties, but continue using the same file. Whenever you change the
value of a memory map property, MATLAB remaps the file to memory.

m.0ffset = 4096;
m.Format = 'single’;
m.Repeat = 800;

m is now a memmapfile object of 800 elements of type single. The map now begins at
the 4096th byte in the file, records.dat.



See Also

Read from the portion of the file that begins at the 4096th byte, and calculate the
maximum value of the data. This command maps a new region and unmaps the previous
region.

X = max(m.Data)

X = single

7.5449e+37

See Also

memmapfile

More About
. “Map File to Memory” on page 10-6
. “Write to Mapped File” on page 10-18

10-17



10 Memory-Mapping Data Files

Write to Mapped File

10-18

This example shows how to create three different memory maps, and then write to each of
the maps using the appropriate syntax. Then, it shows how to work with copies of your
mapped data.

You can write to a file using the same MATLAB commands you use to access variables in
the MATLAB workspace. By accessing the Data property of the memory map, the
contents of the mapped file appear as an array in the currently active workspace. Simply
index into this array to write data to the file. The syntax to use when writing to mapped
memory depends on the format of the Data property of the memory map.

In this section...

“Write to Memory Mapped as Numeric Array” on page 10-18
“Write to Memory Mapped as Scalar Structure” on page 10-19
“Write to Memory Mapped as Nonscalar Structure” on page 10-20
“Syntaxes for Writing to Mapped File” on page 10-21

“Work with Copies of Your Mapped Data” on page 10-22

Write to Memory Mapped as Numeric Array
First, create a sample file named records.dat, in your current folder.

myData gallery('uniformdata', [5000,1], 0);

fileID = fopen('records.dat','w');
fwrite(fileID, myData, 'double');
fclose(filelID);

Map the file as a sequence of 16-bit-unsigned integers. Use the Format name-value pair
argument to specify that the values are of type uint16.

m = memmapfile('records.dat’,

'Offset', 20,
'"Format', 'uintl6',
'Repeat',15);

Because the file is mapped as a sequence of a single class (uint16), Data is a numeric
array.



Write to Mapped File

Ensure that you have write permission to the mapped file. Set the Writable property of
the memory map, m, to true.

m.Writable = true;

Create a matrix X that is the same size as the Data property, and write it to the mapped
part of the file. All of the usual MATLAB indexing and class rules apply when assigning
values to data via a memory map. The class that you assign to must be big enough to hold
the value being assigned.

X = uintl6(1:1:15);
m.Data = X;

Xis a 1-by-15 vector of integer values ranging from 1 to 15.

Verify that new values were written to the file. Specify an 0f fset value of 0 to begin
reading from the beginning of the file. Specify a Repeat value of 35 to view a total of 35
values. Use the reshape function to display the values as a 7-by-5 matrix.

m.0ffset 0;
m.Repeat 35;
reshape(m.Data,5,7)"'

ans = 7x5 uintl6é matrix

47662 34773 26485 16366 58664
25170 38386 16333 14934 9028

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

10085 14020 16349 37120 31342
62110 16274 9357 44395 18679

The values in X have been written to the file, records.dat .

Write to Memory Mapped as Scalar Structure

Map a region of the file, records.dat, as a 300-by-8 matrix of type uint16 that can be
referenced by the field name, x, followed by a 200-by-5 matrix of type double that can be
reference by the field name, y. Specify write permission to the mapped file using the
Writable name-value pair argument.

10-19



10 Memory-Mapping Data Files

m = memmapfile('records.dat’,
'"Format', {
'uintle' [300 8] 'x';
"double' [200 5] 'y' }, ...
'Repeat', 1, 'Writable', true);

View the Data property

m.Data

= struct with fields:
x: [300x8 uintl6]
y: [200x5 double]

ans

Data is a scalar structure array. This is because the file, records.dat, is mapped as
containing multiple data types that do not repeat.

Replace the matrix in the field, x, with a matrix of all ones.

m.Data.x = ones(300,8, 'uintl6e');

Write to Memory Mapped as Nonscalar Structure

Map the file, records.dat, as a 25-by-8 matrix of type uint16 followed by a 15-by-5
matrix of type double. Repeat the pattern 20 times.

m = memmapfile('records.dat',
'"Format', {
'uintle' [5 4] 'x';
"double' [15 5] 'y' }, ...
'Repeat', 20, 'Writable', true);

View the Data property
m.Data

ans=20x2 struct
X

y

Data is a nonscalar structure array, because the file is mapped as a repeating sequence of
multiple data types.

10-20



Write to Mapped File

Write an array of all ones to the field named x in the 12th element of Data.
m.Data(12).x = ones(5,4, 'uintl6');

For the 12th element of Data, write the value, 50, to all elements in rows 3 to 5 of the
field, x.

m.Data(12).x(3:5,1:end) = 50;
View the field, x, of the 12th element of Data.
m.Data(12).x
ans = 5x4 uintl6 matrix
1 1 1 1
1 1 1 1
50 50 50 50

50 50 50 50
50 50 50 50

Syntaxes for Writing to Mapped File

The syntax to use when writing to mapped memory depends on the format of the Data
property of the memory map. View the properties of the memory map by typing the name
of the memmapfile object.

This table shows the syntaxes for writing a matrix, X, to a memory map, m.

Format of the Data Property |Syntax for Writing to Mapped File

Numeric array m.Data = X;

Example: 15x1 uintl6
array

Scalar (1-by-1) structure array |m.Data.fieldname = X;

Example: fieldname is the name of a field.

1x1 struct array with fieldfs:
X

y

10-21



10 Memory-Mapping Data Files

10-22

Format of the Data Property|Syntax for Writing to Mapped File

Nonscalar (n-by-1) structure m.Data(k).fieldname = X;
array

k is a scalar index and fieldname is the name of a
Example: field.

20x1 struct array with fielgds:
X

y

The class of X and the number of elements in X must match those of the Data property or
the field of the Data property being accessed. You cannot change the dimensions of the
Data property after you have created the memory map using the memmapfile function.
For example, you cannot diminish or expand the size of an array by removing or adding a
row from the mapped array, m.Data.

If you map an entire file and then append to that file after constructing the map, the
appended data is not included in the mapped region. If you need to modify the dimensions
of data that you have mapped to a memory map, m, you must either modify the Format or
Repeat properties for m, or recreate m using the memmapfile function.

Note To successfully modify a mapped file, you must have write permission for that file.
If you do not have write permission, attempting to write to the file generates an error,
even if the Writable property is true.

Work with Copies of Your Mapped Data

This part of the example shows how to work with copies of your mapped data. The data in
variable d is a copy of the file data mapped by m.Data(2). Because it is a copy, modifying
array data in d does not modify the data contained in the file.

Create a sample file named double.dat.

myData gallery('uniformdata', [5000,1],0) * 100;
filelD fopen('double.dat', 'w');
fwrite(fileID,myData, 'double');

fclose(filelD);

Map the file as a series of double matrices.




Write to Mapped File

m = memmapfile('double.dat',
'"Format', {
‘double' [5 5] 'x';
‘double' [4 5] 'y' });

View the values in m.Data(2) .x.
m.Data(2).x

ans = 5x5

50.2813 19.3431 69.7898
70.9471  68.2223 37.8373
42.8892 30.2764 86.0012
30.4617 54.1674  85.3655
18.9654 15.0873 59.3563

49.6552
89.9769
82.1629
64.4910
81.7974

Copy the contents of m.Data to the variable, d.

d = m.Data;

Write all zeros to the field named x in the copy.

d(2).x(1:5,1:5) = 0;

Verify that zeros are written to d(2) .

d(2).x

ans = 5x5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

X

66.0228
34.1971
28.9726
34.1194
53.4079

Verify that the data in the mapped file is not changed.

m.Data(2).x

ans = 5x5

50.2813 19.3431 69.7898

49.6552

66.0228

10-23



10 Memory-Mapping Data Files

10-24

70.9471  68.2223
42.8892  30.2764
30.4617 54.1674
18.9654  15.0873

See Also

memmapfile

More About

.

37.8373
86.0012
85.3655
59.3563

89.9769
82.1629
64.4910
81.7974

“Map File to Memory” on page 10-6

“Read from Mapped File” on page 10-12

34.1971
28.9726
34.1194
53.4079



Delete Memory Map

Delete Memory Map

In this section...

“Ways to Delete a Memory Map” on page 10-25
“The Effect of Shared Data Copies On Performance” on page 10-25

Ways to Delete a Memory Map

To clear a memmapfile object from memory, do any of the following:

* Reassign another value to the memmapfile object's variable
* Clear the memmapfile object's variable from memory
» Exit the function scope in which the memmapfile object was created

The Effect of Shared Data Copies On Performance

When you assign the Data field of the memmapfile object to a variable, MATLAB makes a
shared data copy of the mapped data. This is very efficient because no memory actually
gets copied. In the following statement, d is a shared data copy of the data mapped from
the file:

d = m.Data;

When you finish using the mapped data, make sure to clear any variables that share data
with the mapped file before clearing the memmapfile object itself. If you clear the object
first, then the sharing of data between the file and dependent variables is broken, and the
data assigned to such variables must be copied into memory before the object is cleared.
If access to the mapped file was over a network, then copying this data to local memory
can take considerable time. Therefore, if you assign m.Data to the variable, d, you should
be sure to clear d before clearing m when you are finished with the memory map.

10-25



10 Memory-Mapping Data Files

Share Memory Between Applications

10-26

This example shows how to implement two separate MATLAB processes that
communicate with each other by writing and reading from a shared file. They share the
file by mapping part of their memory space to a common location in the file. A write
operation to the memory map belonging to the first process can be read from the map
belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its memory map.
It also writes the length of the message to byte 1 in the file, which serves as a means of
notifying the other process that a message is available. The second process (running
answer.m) monitors byte 1 and, upon seeing it set, displays the received message, puts it
into uppercase, and echoes the message back to the sender.

Prior to running the example, copy the send and answer functions to files send.m and
answer.m in your current working directory.

The send Function

This function prompts you to enter text and then, using memory-mapping, passes the text
to another instance of MATLAB that is running the answer function.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');

fclose(f);
else

error('MATLAB:demo:send:cannotOpenFile',

"Cannot open file "%s": %s.', filename, msg);

end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true



Share Memory Between Applications

Set first byte to zero, indicating a message is not
yet ready.
m.Data(l) = 0;

o® o°

str = input('Enter text (or RETURN to end): ', 's');

len = length(str);

if (len == 0)
disp('Terminating SEND function.')
break;

end

% Warn if the message is longer than 255 characters.

if len > 255

warning('ml:ml"', 'SEND input will be truncated to 255 characters.');
end
str str(l:min(len,255)); % Limit message to 255 characters.

len = length(str); % Update len if str has been truncated.

% Update the file via the memory map.
m.Data(2:1len+l) = str;
m.Data(1l)=1len;

% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1l) ~= 0)
pause(.25);
end

% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:1len+l1))"')

end

The answer Function

The answer function starts a server that, using memory-mapping, watches for a message
from send. When the message is received, answer replaces the message with an
uppercase version of it, and sends this new message back to send. To use answer, call it
with no inputs.

10-27



10 Memory-Mapping Data Files

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');
filename = fullfile(tempdir, 'talk answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
[f, msg] = fopen(filename, 'wb');
if f ~= -1
fwrite(f, zeros(1,256), 'uint8');
fclose(f);
else
error('MATLAB:demo:answer:cannotOpenFile',
"Cannot open file "%s": %s.', filename, msg);
end
end

% Memory map the file.

m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');
while true
% Wait until the first byte is not zero.
while m.Data(l) ==
pause(.25);
end
% The first byte now contains the length of the message.
% Get it from m.
msg = char(m.Data(2:1+double(m.Data(1l))))";
% Display the message.
disp('Received message from SEND:')
disp(msg)
% Transform the message to all uppercase.
m.Data(2:1+double(m.Data(1l))) = upper(msg);
% Signal to SEND that the response is ready.
m.Data(l) = 0;
end

10-28



Share Memory Between Applications

Running the Example

To see what the example looks like when it is run, first, start two separate MATLAB
sessions on the same computer system. Call the send function with no inputs in one
MATLAB session. Call the answer function in the other session, to create a map in each
of the processes' memory to the common file.

Run send in the first MATLAB session.
send

Enter text (or RETURN to end):

Run answer in the second MATLAB session.
answer

ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB writes the
message to the shared file. The second MATLAB session, running the answer function,
loops on byte 1 of the shared file and, when the byte is written by send, answer reads
the message from the file via its memory map. The answer function then puts the
message into uppercase and writes it back to the file, and send (waiting for a reply) reads
the message and displays it.

send writes a message and reads the uppercase reply.
Hello. Is there anybody out there?
response from ANSWER is:

HELLO. IS THERE ANYBODY OUT THERE?
Enter text (or RETURN to end):

answer reads the message from send.

Received message from SEND:
Hello. 1Is there anybody out there?

Enter a second message at the prompt display by the send function. send writes the
second message to the file.

I received your reply.

10-29



10 Memory-Mapping Data Files

response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter text (or RETURN to end):

answer reads the second message, put it into uppercase, and then writes the message to
the file.

Received message from SEND:
I received your reply.

In the first instance of MATLAB, press Enter to exit the example.

Terminating SEND function.

10-30



Internet File Access

MATLAB software provides functions for exchanging files over the Internet. You can

exchange files using common protocols, such as File Transfer Protocol (FTP), Simple Mail
Transport Protocol (SMTP), and HyperText Transfer Protocol (HTTP). In addition, you can
create zip archives to minimize the transmitted file size, and also save and work with Web

pages.



11 Internet File Access

Server Authentication

MATLAB provides programmatic interfaces to these Web service interfaces.

» RESTful (Representational state transfer)—Use the webread, webwrite, and
websave functions in “Web Access” to read content from RESTful Web services.

* HTTP (Hypertext Transfer Protocol)—Use the “HTTP Interface” API to implement
advanced HTTP messaging semantics.

To use a proxy server, see “Proxy Server Authentication” on page 11-4.

Server Authentication For RESTful Web Services
Digest authentication is not supported.

NTLM and Kerberos are not supported on Linux and macOS platforms.

Authentication |Platform weboptions weboptions System Setup
Arguments
Basic Windows Required Username and |N/A
Linux Password
macOS
NTLM Windows Optional Do not specify  |Logged into
Username or Windows domain
Password
Kerberos Windows Optional Do not specify  |Logged into
Username or Kerberos domain
Password
Digest Not supported |[N/A N/A N/A

Server Authentication For HTTP Web Services

Kerberos is not supported on Linux and macOS platforms.

11-2




See Also

Server Platform matlab.net.htt |matlab.net.htt |System Setup
Authentication p HTTPOptions |p Credentials
Object Properties
Basic Windows Credentials Username and |N/A
Digest Linux property Password
macOS
NTLM Windows Credentials Username and |Logged into
property Password Windows domain
ignored
NTLM Linux Credentials Username and |N/A
macOS property Password
Kerberos Windows Credentials Username and |Logged into
property Password Kerberos domain
ignored
See Also

matlab.net.http.AuthenticationScheme | matlab.net.http.Credentials |

matlab.net.http.HTTPOptions

More About

. “Proxy Server Authentication” on page 11-4
. “Web Access”
. “HTTP Interface”

11-3



11

Internet File Access

Proxy Server Authentication

11-4

MATLAB provides programmatic interfaces to these Web service interfaces.

« RESTful (Representational state transfer)—Use the webread, webwrite, and
websave functions in “Web Access” to read content from RESTful Web services.

* HTTP (Hypertext Transfer Protocol)—Use the “HTTP Interface” API to implement
advanced HTTP messaging semantics.

To authenticate to a server, see “Server Authentication” on page 11-2.

RESTful Web Services

MATLAB supports Basic, Digest, and NTLM proxy authentication types. To specify proxy
server settings, choose one of these:

1 “Use MATLAB Web Preferences For Proxy Server Settings” on page 11-4
2 “Use System Settings For Proxy Server Settings” on page 11-5

If you specify the values using Web preferences, then MATLAB ignores system settings.

HTTP Web Services

MATLAB supports Basic, Digest, and NTLM proxy authentication types. To specify proxy
server settings, choose one of these:

1 Ifyou specify a ProxyURI in a matlab.net.http.HTTPOptions object, then set the
Username and Password properties in matlab.net.http.Credentials.

“Use MATLAB Web Preferences For Proxy Server Settings” on page 11-4
“Use System Settings For Proxy Server Settings” on page 11-5

MATLAB chooses the first setting in this list.

Use MATLAB Web Preferences For Proxy Server Settings

You can specify proxy server settings using MATLAB “Web Preferences”.

Note Settings in Web Preferences override system settings.




See Also

To specify the proxy server settings:

1

5
6

On the Home tab, in the Environment section, click & Preferences. Select
MATLAB > Web.

Select the Use a proxy server to connect to the Internet check box.
Specify values for Proxy host and Proxy port.

Examples of acceptable formats for the host are: 172.16.10.8 and ourproxy. For
the port, enter an integer only, such as 22. If you do not know the values for your
proxy server, ask your system or network administrator for the information.

If your proxy server requires a user name and password, select the Use a proxy with
authentication check box. Then enter your proxy user name and password.

Note MATLAB stores the password without encryption in your matlab. prf file.
Ensure that your settings work by clicking the Test connection button.

MATLAB attempts to connect to https://www.mathworks. com:

* If MATLAB can access the Internet, Success! appears next to the button.

» If MATLAB cannot access the Internet, Failed! appears next to the button.
Correct the values you entered and try again. If you still cannot connect, try using
the values you used when you authenticated your MATLAB license.

Click OK to accept the changes.

Restart MATLAB to enable the changes.

Use System Settings For Proxy Server Settings

If no proxy is specified in MATLAB Web preferences, then MATLAB uses the proxy set in
the operating system preferences.

To specify proxy server settings in system preferences, refer to your Windows, Linux, or
macOS operating system documentation.

MATLAB does not take into account proxy exceptions which you configure in Windows.

See Also
matlab.net.http.Credentials | matlab.net.http.HTTPOptions

11-5



11 Internet File Access

More About

. “Server Authentication” on page 11-2
. “Web Access”
. “HTTP Interface”

11-6



MATLAB and Web Services Security

MATLAB and Web Services Security

This topic describes how MATLAB handles security for web services. For a complete
description of computer security, you need to consult external resources.

MATLAB Does Not Verify Certificate Chains

For HTTPS connections, the webread, webwrite, and websave functions verify that the
certificate domain matches the host name of the web service. These functions do not
verify the certificate chain. For a complete description of computer security, you need to
consult external resources.

See Also

webread | websave | webwrite

11-7



11

Internet File Access

Download Data from Web Service

11-8

This example shows how to download data from a web service with the webread function.
The World Bank provides various climate data via the World Bank Climate Data API. A call
to this API returns data in JSON format. webread converts JSON objects to structures
that are convenient for analysis in MATLAB.

Use webread to read USA average annual temperatures into a structure array.

api "http://climatedataapi.worldbank.org/climateweb/rest/vl/";
url [api 'country/cru/tas/year/USA'];
S = webread(url)

112x1 struct array with fields:

year
data

webread converted the data to a structure array with 112 elements. Each structure
contains the temperature for a given year, from 1901 to 2012.

S(1)
ans =
year: 1901
data: 6.6187
S(112)
ans =
year: 2012
data: 7.9395

Plot the average temperature per year. Convert the temperatures and years to numeric
arrays. Convert the years to a datetime object for ease of plotting, and convert the
temperatures to degrees Fahrenheit.

temps = [S.datal;
temps = 9/5 * temps + 32;
years = [S.year];



Download Data from Web Service

yearstoplot = datetime(years,1,1);
figure
plot(yearstoplot, temps);

title('USA Average Temperature 1901-2012"')
xLlabel('Year")

ylabel('Temperature (~{\circ}F)")

xmin = datetime(1899,1,1);

xmax = datetime(2014,1,1);

xlim([xmin xmax])

46.5

Temperature ( F)

B
L
n

B
X
T

4257

ﬁ

USA Average Temperature 1901-2012

—_—
—
I

1900

Overplot a least-squares fit of a line to the temperatures.

1920 1940 1960 1980
Year

p = polyfit(years,temps,1);

ptemps

polyval(p,years);

2000

11-9



11 Internet File Access

deltat = p(1);

hold on

fl = plot(yearstoplot, ptemps);

xlim([xmin xmax])

title('USA Average Temperature Trend 1901-2012"')
xlabel('Year")

ylabel('Temperature (~{\circ}F)")

deltat = num2str(10.0*deltat);

legend(fl,['Least Squares Fit, ', deltat, '~{\circ}F/decade'l])
hold off

USA Average Temperature Trend 1901-2012
I I I I | I

i Least Squares Fit, 0.15119 F/decade
B I

N
A ‘f ‘||_

46.5

\

|II
——_—
1

E

Temperature { F)

B

[

n

I ™
-

|
43 Ul |‘ |

425 |i -

42' I I I I I
1900 1920 1940 1960 1980 2000

Year

API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate
Data API for more information about the API, and World Bank: Terms of Use.)

11-10


https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/developers/climate-data-api
https://data.worldbank.org/summary-terms-of-use

Convert Data from Web Service

Convert Data from Web Service

This example shows how to download data from a web service and use a function as a
content reader with webread.

The National Geophysical Data Center (NGDC) provides various geophysical and space
weather data via a web service. Among other data sets, the NGDC aggregates sunspot
numbers published by the American Association of Variable Star Observers (AAVSO). Use
webread to download sunspot numbers for every year since 1945.

api
url

"http://www.ngdc.noaa.gov/stp/space-weather/';
[api 'solar-data/solar-indices/sunspot-numbers/"
'american/lists/list aavso-arssn_yearly.txt'];
spots = webread(url);

whos ('spots"')

Name Size Bytes (lass Attributes
spots 1x1269 2538 char

The NGDC web service returns the sunspot data as text. By default, webread returns the
data as a character array.

spots(1:100)

ans =
American

Year SSN
1945 32.3
1946 99.9
1947 170.9
1948 166.6

webread can use a function to return the data as a different type. You can use
readtable with webread to return the sunspot data as a table.

Create a weboptions object that specifies a function for readtable.
myreadtable = @(filename)readtable(filename, 'HeaderLines',1,

'"Format', '%f%f', 'Delimiter', 'space', 'MultipleDelimsAsOne',1);
options = weboptions('ContentReader',myreadtable);

For this data, call readtable with several Name, Value input arguments to convert the
data. For example, Format indicates that each row has two numbers. Spaces are

11-11



11 Internet File Access

delimiters, and multiple consecutive spaces are treated as a single delimiter. To call
readtable with these input arguments, wrap readtable and the arguments in a new
function, myreadtable. Create a weboptions object with myreadtable as the content
reader.

Download sunspot data and return the data as a table.

spots = webread(url,options);
whos ( 'spots"')

Name Size Bytes C(lass Attributes

spots 76x2 2932 table

Display the sunspot data by column and row.

spots(1l:4,{'Year', 'SSN'})

ans =
Year SSN
1945 32.3
1946 99.9

1947 170.9
1948 166.6

Plot sunspot numbers by year. Use table functions to select sunspot numbers up to the
year 2013. Convert the Year and SSN columns to arrays and plot them.

rows spots.Year < 2014;
vars {'Year','SSN'};
spots = spots(rows,vars);
year = spots.Year;
numspots = spots.SSN;
figure
plot(year,numspots);
title('Sunspot Data');
xlabel('Year');
ylabel('Number of Sunspots');
x1im([1940 2015])

ylim([0 180])

11-12



Convert Data from Web Service

Mumber of Sunspots

Sunspot Data
180 . . ' . . . .
M il
160r | | || III
] NS
140 | | | I| [ | |
| \ |
120 | | |I | |

-
o [
(= (=

=]
=

.
=
—

D L i L i
1840 1950 1960 1970 1980 1990 2000 2010
Year

[
[}
_——"'J-H-F__-
i\__\_‘—\_
e
<
<
<
-
L\—\_\_\_‘_\_\__

Aggregated data and web service courtesy of the NGDC. Sunspot data courtesy of the

AAVSQO, originally published in AAVSO Sunspot Counts: 1943-2013, AAVSO Solar Section
(R. Howe, Chair).

See NGDC Privacy Policy, Disclaimer, and Copyright for NGDC terms of service.

See AAVSO Solar Section for more information on AAVSO solar data, including terms
of use.

11-13


https://www.ngdc.noaa.gov/ngdcinfo/privacy.html
https://aavso.org/solar

11 Internet File Access

Download Web Page and Files

11-14

MATLAB provides two functions for reading content from RESTful web services: webread
and websave. With the webread function, you can read the contents of a web page to a
character array in the MATLAB workspace. With the websave function, you can save web
page content to a file.

Because it can create a character array in the workspace, the webread function is useful
for working with the contents of web pages in MATLAB. The websave function is useful
for saving web pages to a local folder.

Note When webread returns HTML as a character array, remember that only the HTML
in that specific web page is retrieved. The hyperlink targets, images, and so on, are not
retrieved.

If you need to pass parameters to a web page, the webread and websave functions let
you define the parameters as Name, Value pair arguments. For more information, see
the webread and websave reference pages.

Example — Use the webread Function

The following procedure demonstrates how to retrieve the contents of the web page
listing the files submitted to the MATLAB Central™ File Exchange, https://
www.mathworks.com/matlabcentral/fileexchange/. It assigns the results to a character
array, fulllList:

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/"';
fullList = webread(filex);

Retrieve a list of only those files uploaded to the File Exchange within the past seven days
that contain the word Simulink®. Set duration and term as parameters that webread
passes to the web page.

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/"';
recent = webread(filex, 'duration',7, ' 'term', 'simulink');


https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/matlabcentral/fileexchange/

Download Web Page and Files

Example — Use the websave Function

The following example builds on the procedure in the previous section, but saves the
content to a file:

% Locate the 1list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'https://www.mathworks.com/matlabcentral/fileexchange/"';

% Save the Web content to a file.
recent = websave('contains simulink.html', filex,
'duration',7, 'term', 'simulink');

MATLAB saves the web page as contains simulink.html. The output argument
recent contains the full path to contains simulink.html. Call the web function to
display contains simulink.html in a browser.

web(recent)

This page has links to files uploaded to the MATLAB Central File Exchange.

11-15



11

Internet File Access

Call Web Services from Functions

11-16

You can call webread from functions you define. Best practice is to allow your function to
pass HTTP request options to webread.

This code sample shows how to download climate data for a country. The sample defines a
function in a file named worldBankTemps .m that downloads annual temperatures from
the World Bank and converts them to degrees Fahrenheit. You can pass additional HTTP
request parameters with the options input argument. options is a weboptions object
that worldBankTemps passes to webread. You can call worldBankTemps with a country
name only when you do not need to define any other HTTP request parameters.

function temperatures = worldBankTemps(country,options)

% Get World Bank temperatures for a country, for example, 'USA'.

api = 'http://climatedataapi.worldbank.org/climateweb/rest/vl/";

api = [api 'country/cru/tas/year/'];
country = [api country];

o°

The options object contains additional HTTP
request parameters. If worldBankTemps was
not passed options as an input argument,
create a default weboptions object.
if ~exist('options','var')

options = weboptions;
end
s = webread(country,options);

o o°

o°

% Convert data to arrays

temperatures = struct('Years',[], 'DegreesInFahrenheit',[]);
temperatures(1l).Years = [s.year];
temperatures(1l).DegreesInFahrenheit = [s.data];

% Convert temperatures to Fahrenheit
temperatures(1l).DegreesInFahrenheit = temperatures(1).DegreesInFahrenheit * 9/5 + 32;
end

To get temperature data for the USA, call worldBankTemps. If the connection to the
World Bank web service times out, the service returns an error message.

S = worldBankTemps('USA")

Error using webread (line 112)

The connection to

URL 'http://climatedataapi.worldbank.org/climateweb/rest/v1l/country/cru/tas/year/USA'
timed out after 5.0 seconds. Set options.Timeout to a higher value.

If you create options and set its Timeout property to 60 seconds, then you can call
worldBankTemps again with options as an input argument. worldBankTemps passes
options to webread as an input argument. This time webread keeps the connection
open for a maximum of 60 seconds.



Call Web Services from Functions

options = weboptions('Timeout',60);
S = worldBankTemps('USA',options)

S:

Years:
DegreesInFahrenheit:

[1x112 double]
[1x112 double]

If your code does not allow you to pass request options to webread, that limits your
ability to respond to error messages returned by web services.

Error Messages Concerning Web Service Options

When you use a web service function in MATLAB the function might return an error
message that advises you to set a property of options, such as options.Timeout. This
table shows some typical error messages that refer to options properties and actions

you can take in response.

Error Message Contains Phrase

Action To Be Taken

Set options.Timeout to a higher
value.

options =
weboptions('Timeout',60)
data = webread(url,options)

Set options.ContentType to
'json'.

options =
weboptions('ContentType', 'json')
data = webread(url,options)

...the provided authentication
parameters, options.Username and
options.Password, are incorrect.

options =
weboptions('Username', 'your
username', 'Password', 'your
password")
data = webread(url,options)

11-17



11

Internet File Access

Send Email

11-18

To send an email from MATLAB, use the sendmail function. You can also attach files to
an email, which lets you mail files directly from MATLAB. To use sendmail, set up your
email address and your SMTP server information with the setpref function.

The setpref function defines two mail-related preferences:

* Email address: This preference sets your email address that will appear on the
message.

setpref('Internet','E mail', 'youraddress@yourserver.com');

* SMTP server: This preference sets your outgoing SMTP server address, which can be
almost any email server that supports the Post Office Protocol (POP) or the Internet
Message Access Protocol (IMAP).

setpref('Internet', 'SMTP Server', 'mail.server.network');

Find your outgoing SMTP server address in your email account settings in your email
client application. You can also contact your system administrator for the information.

Once you have properly configured MATLAB, you can use the sendmail function. The
sendmail function requires at least two arguments: the recipient's email address and the
email subject.

sendmail('recipient@someserver.com', 'Hello From MATLAB!');
You can supply multiple email addresses using a cell array of character vectors.

sendmail ({'recipient@someserver.com', 'recipient2@someserver.com'},
'Hello From MATLAB!');

You can specify a message body.

sendmail('recipient@someserver.com', 'Hello From MATLAB!',
'Thanks for using sendmail.');

You can attach files to an email.

sendmail('recipient@someserver.com', 'Hello from MATLAB!',
‘Thanks for using sendmail.', 'C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message can be
empty.



See Also

You can attach multiple files to an email.
sendmail('recipient@someserver.com', 'Hello from MATLAB!',

'Thanks for using sendmail.',6{'C:\yourFileSystem\message.txt',
'C:\yourFileSystem\message2.txt'});

See Also

sendmail | setpref

11-19



11 Internet File Access

Perform FTP File Operations

This example shows how to use an FTP object to connect to an FTP server and perform
remote file operations. To perform any file operation on an FTP server, follow these steps:
1  Connect to the server using the ftp function.

2 Perform operations using the appropriate MATLAB® FTP functions, such as the cd,
dir, and mget functions. Specify the FTP object for all operations.

3  When you finish work on the server, close the connection using the close function.
The National Centers for Environmental Information (NCEI) maintain an anonymous FTP
service providing public access to geophysical data. Access the FTP server to list its
contents, download a file, and list contents of a subfolder.

First, open the connection.

ftpobj = ftp('ftp.ngdc.noaa.gov"')

ftpobj

FTP Object
host: ftp.ngdc.noaa.gov
user: anonymous
dir: /
mode: binary

List the contents of the top-level folder on the FTP server.

dir(ftpobj)

DMSP Solid Earth googlel2c4c939d7b90761.html
INDEX. txt coastwatch hazards

README. txt dmspdalan index.html

STP ftp.html international

Snow Ice geomag ionosonde

Download the file named INDEX. txt using the mget function. mget copies the file to the
current MATLAB folder on your local machine. To view the contents of your copy of the
file, use the type function.

11-20



Perform FTP File Operations

mget (ftpobj, 'INDEX.txt"');
type INDEX.txt

National Centers for Environmental Information (NCEI),
formerly the National Geophysical Data Center (NGDC)

INDEX of anonymous ftp area
ftp.ngdc.noaa.gov

DIRECTORY/FILE DESCRIPTION OF CONTENTS

pub/ Public access area

DMSP/ Defense Meteorological Satellite Data Archive

geomag/ Geomagnetism and geomagnetics models

hazards/ Natural Hazards data, volcanoes, tsunamis, earthquakes

international/ International program information on IAGA/Oersted/wdc
ionosonde/ Ionosonde data

mgg/ Limited Marine Geology and Geophysics (most data in http area)
0D/ O0ffice of the Director

Snow Ice/ Snow and Ice Data Center

Solid Earth/  Historic Solid Earth Geophysics

STP/ Solar-Terrestrial Physics

tmp/ Pickup area for temporary outgoing data

wdc/ World Data Service for Geophysics, formerly World Data Centers

Please see file README.txt in this directory for more information and how to
contact NCEI. Direct E-mail inquiries to ncei.info@noaa.gov

Also see our web site: http://www.ngdc.noaa.gov/

NCEI is part of the:
U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA),
National Environmental Satellite, Data and Information Service (NESDIS)

Change to the subfolder named pub on the FTP server.
cd(ftpobj, 'pub")

ans =
I/publ

List the contents. pub is now the current folder on the FTP server. However, note that the
current MATLAB folder on your local machine has not changed. When you specify an FTP
object using functions such as cd and dir, the operations take place on the FTP server,
not your local machine.

11-21



11 Internet File Access

dir(ftpobj)
WebCD coast glac_lib krm outgoing results rgon

Close the connection to the FTP server.
close(ftpobj)

FTP service courtesy of the NCEIL. See the NCEI Privacy Policy, Disclaimer, and Copyright
for NCEI terms of service.

See Also
cd|close|dir| ftp | mget

Related Examples

. “Download Data from Web Service” on page 11-8
. “Download Web Page and Files” on page 11-14

. “Send Email” on page 11-18

. “Web Browsers and MATLAB”

11-22


https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Display Hyperlinks in the Command Window

Display Hyperlinks in the Command Window

In this section...

“Create Hyperlinks to Web Pages” on page 11-23
“Transfer Files Using FTP” on page 11-23

Create Hyperlinks to Web Pages

When you create a hyperlink to a Web page, append a full hypertext address on a single
line as input to the disp or fprintf command. For example, the following command:

disp('<a href = "https://www.mathworks.com">The MathWorks Web Site</a>"')
displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays the requested
page.

Transfer Files Using FTP

To create a link to an FTP site, enter the site address as input to the disp command as
follows:

disp('<a href = "ftp://ftp.mathworks.com">The MathWorks FTP Site</a>"')
This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested FTP site.

11-23


https://www.mathworks.com
ftp://ftp.mathworks.com




Large Data

“Getting Started with MapReduce” on page 12-3

“Write a Map Function” on page 12-10

“Write a Reduce Function” on page 12-15

“Speed Up and Deploy MapReduce Using Other Products” on page 12-20
“Build Effective Algorithms with MapReduce” on page 12-22

“Debug MapReduce Algorithms” on page 12-25

“Analyze Big Data in MATLAB Using MapReduce” on page 12-32

“Find Maximum Value with MapReduce” on page 12-43

“Compute Mean Value with MapReduce” on page 12-46

“Compute Mean by Group Using MapReduce” on page 12-50

“Create Histograms Using MapReduce” on page 12-56

“Simple Data Subsetting Using MapReduce” on page 12-64

“Using MapReduce to Compute Covariance and Related Quantities” on page 12-72
“Compute Summary Statistics by Group Using MapReduce” on page 12-79
“Using MapReduce to Fit a Logistic Regression Model” on page 12-87

“Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce” on page 12-95
“Compute Maximum Average HSV of Images with MapReduce” on page 12-101
“Getting Started with Datastore” on page 12-109

“Select Datastore for File Format or Application” on page 12-114

“Work with Remote Data” on page 12-118

“Read and Analyze Large Tabular Text File” on page 12-125

“Read and Analyze Image Files” on page 12-128

“Read and Analyze MAT-File with Key-Value Data” on page 12-133

“Read and Analyze Hadoop Sequence File” on page 12-137

“Develop Custom Datastore” on page 12-139

“Testing Guidelines for Custom Datastores” on page 12-148



12 Large Data

» “Set Up Datastore for Processing on Different Machines or Clusters” on page 12-159
* “Apache Parquet Data Type Mappings” on page 12-163

* “Tall Arrays for Out-of-Memory Data” on page 12-167

» “Deferred Evaluation of Tall Arrays” on page 12-175

* “Index and View Tall Array Elements” on page 12-181

+ “Histograms of Tall Arrays” on page 12-192

* “Visualization of Tall Arrays” on page 12-198

* “Grouped Statistics Calculations with Tall Arrays” on page 12-207
» “Extend Tall Arrays with Other Products” on page 12-215

* “Analyze Big Data in MATLAB Using Tall Arrays” on page 12-217
* “Develop Custom Tall Array Algorithms” on page 12-228

12-2



Getting Started with MapReduce

Getting Started with MapReduce

As the number and type of data acquisition devices grows annually, the sheer size and
rate of data being collected is rapidly expanding. These big data sets can contain
gigabytes or terabytes of data, and can grow on the order of megabytes or gigabytes per
day. While the collection of this information presents opportunities for insight, it also
presents many challenges. Most algorithms are not designed to process big data sets in a
reasonable amount of time or with a reasonable amount of memory. MapReduce allows
you to meet many of these challenges to gain important insights from large data sets.

In this section...
“What Is MapReduce?” on page 12-3
“MapReduce Algorithm Phases” on page 12-4

“Example MapReduce Calculation” on page 12-5

What Is MapReduce?

MapReduce is a programming technique for analyzing data sets that do not fit in memory.
You may be familiar with Hadoop® MapReduce, which is a popular implementation that
works with the Hadoop Distributed File System (HDFS™). MATLAB provides a slightly
different implementation of the MapReduce technique with the mapreduce function.

mapreduce uses a datastore to process data in small blocks that individually fit into
memory. Each block goes through a Map phase, which formats the data to be processed.
Then the intermediate data blocks go through a Reduce phase, which aggregates the
intermediate results to produce a final result. The Map and Reduce phases are encoded
by map and reduce functions, which are primary inputs to mapreduce. There are endless
combinations of map and reduce functions to process data, so this technique is both
flexible and extremely powerful for tackling large data processing tasks.

mapreduce lends itself to being extended to run in several environments. For more
information about these capabilities, see “Speed Up and Deploy MapReduce Using Other
Products” on page 12-20.

The utility of the mapreduce function lies in its ability to perform calculations on large
collections of data. Thus, mapreduce is not well-suited for performing calculations on
normal sized data sets which can be loaded directly into computer memory and analyzed
with traditional techniques. Instead, use mapreduce to perform a statistical or analytical
calculation on a data set that does not fit in memory.

12-3



12 Large Data

Each call to the map or reduce function by mapreduce is independent of all others. For
example, a call to the map function cannot depend on inputs or results from a previous
call to the map function. It is best to break up such calculations into multiple calls to
mapreduce.

MapReduce Algorithm Phases

mapreduce moves each block of data in the input datastore through several phases
before reaching the final output. The following figure outlines the phases of the algorithm
for mapreduce.

Map Phase ntermediate Phase Reduce Phase

(=

1t de KeyValueStore QOutput datastore
{keyl} [valuel],
luelterator tEeyl]
..... anmar 4 [valueZ2] , va radyurer 1 [outBey
Chnk L napper 1 —m . " (for kayl) ™ educer 1 — [outwall)
{keyM} [valuel], [ ]
St ke P— [value2], Valuelterator ol e b outRey?
R * mappertl o : i keyM) i e N [outvalp)

12-4

The algorithm has the following steps:

1

mapreduce reads a block of data from the input datastore using [data,info] =
read(ds), and then calls the map function to work on that block.

The map function receives the block of data, organizes it or performs a precursory
calculation, and then uses the add and addmulti functions to add key-value pairs to
an intermediate data storage object called a KeyValueStore. The number of calls to
the map function by mapreduce is equal to the number of blocks in the input
datastore.

After the map function works on all of the blocks of data in the datastore, mapreduce
groups all of the values in the intermediate KeyValueStore object by unique key.

Next, mapreduce calls the reduce function once for each unique key added by the
map function. Each unique key can have many associated values. mapreduce passes



Getting Started with MapReduce

the values to the reduce function as a ValueIterator object, which is an object
used to iterate over the values. The ValueIterator object for each unique key
contains all the associated values for that key.

5 The reduce function uses the hasnext and getnext functions to iterate through the
values in the ValueIterator object one at a time. Then, after aggregating the
intermediate results from the map function, the reduce function adds final key-value
pairs to the output using the add and addmulti functions. The order of the keys in
the output is the same as the order in which the reduce function adds them to the
final KeyValueStore object. That is, mapreduce does not explicitly sort the output.

Note The reduce function writes the final key-value pairs to a final KeyValueStore
object. From this object, mapreduce pulls the key-value pairs into the output
datastore, which is a KeyValueDatastore object by default.

Example MapReduce Calculation

This example uses a simple calculation (the mean travel distance in a set of flight data) to
illustrate the steps needed to run mapreduce.

Prepare Data

The first step to using mapreduce is to construct a datastore for the data set. Along with
the map and reduce functions, the datastore for a data set is a required input to
mapreduce, since it allows mapreduce to process the data in blocks.

mapreduce works with most types of datastores. For example, create a
TabularTextDatastore object for the airlinesmall. csv data set.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA")
ds =
TabularTextDatastore with properties:

Files: {
' ...\matlab\toolbox\matlab\demos\airlinesmall.csv'

}
FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
ReadVariableNames: true
VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
DatetimelLocale: en_US

Text Format Properties:

NumHeaderLines: 0
Delimiter: ','

12-5



12 Large Data

12-6

RowDelimiter: ‘\r\n’
TreatAsMissing: 'NA'
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle: ''
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
SelectedFormats: {'sf', 'sf', '%f' ... and 26 more}
ReadSize: 20000 rows

Several of the previously described options are useful in the context of mapreduce. The
mapreduce function executes read on the datastore to retrieve data to pass to the
map function. Therefore, you can use the SelectedVariableNames,
SelectedFormats, and ReadSize options to directly configure the block size and type
of data that mapreduce passes to the map function.

For example, to select the Distance (total flight distance) variable as the only variable of
interest, specify SelectedVariableNames.

ds.SelectedVariableNames = 'Distance’;

Now, whenever the read, readall, or preview functions act on ds, they will return only
information for the Distance variable. To confirm this, you can preview the first few
rows of data in the datastore. This allows you to examine the format of the data that the
mapreduce function will pass to the map function.

preview(ds)
ans =

Distance

308
296
480
296
373
308
447
954



Getting Started with MapReduce

To view the exact data that mapreduce will pass to the map function, use read.

For additional information and a complete summary of the available options, see
“Datastore”.

Write Map and Reduce Functions

The mapreduce function automatically calls the map and reduce functions during
execution, so these functions must meet certain requirements to run properly.

1 The inputs to the map function are data, info, and intermkKVStore:

* data and info are the result of a call to the read function on the input
datastore, which mapreduce executes automatically before each call to the
map function.

* 1intermKVStore is the name of the intermediate KeyValueStore object to which
the map function needs to add key-value pairs. The add and addmulti functions
use this object name to add key-value pairs. If none of the calls to the map
function add key-value pairs to intermKVStore, then mapreduce does not call
the reduce function and the resulting datastore is empty.

A simple example of a map function is:

function MeanDistMapFun(data, info, intermKVStore)
distances = data.Distance(~isnan(data.Distance));
sumLenValue = [sum(distances) length(distances)];
add(intermKVStore, 'sumAndLength', sumLenValue);
end

This map function has only three lines, which perform some straightforward roles.
The first line filters out all NaN values in the block of distance data. The second line
creates a two-element vector with the total distance and count for the block, and the
third line adds that vector of values to intermKVStore with the key,
"sumAndLength'. After this map function runs on all of the blocks of data in ds, the
intermKVStore object contains the total distance and count for each block of
distance data.

Save this function in your current folder as MeanDistMapFun.m.

2 The inputs to the reduce function are intermKey, intermvValIter, and
outKVStore:

12-7



12 Large Data

12-8

* intermKey is for the active key added by the map function. Each call to the
reduce function by mapreduce specifies a new unique key from the keys in the
intermediate KeyValueStore object.

* intermVallteristhe ValueIterator associated with the active key,
intermKey. This ValueIterator object contains all of the values associated
with the active key. Scroll through the values using the hasnext and getnext
functions.

* outKVStore is the name for the final KeyValueStore object to which the reduce
function needs to add key-value pairs. mapreduce takes the output key-value
pairs from outKVStore and returns them in the output datastore, which is a
KeyValueDatastore object by default. If none of the calls to the reduce function
add key-value pairs to outKVStore, then mapreduce returns an empty datastore.

A simple example of a reduce function is:

function MeanDistReduceFun(intermKey, intermVallter, outKVStore)
sumLen = [0 O];
while hasnext(intermVallter)
sumLen = sumLen + getnext(intermVallter);
end
add(outKVStore, 'Mean', sumLen(1l)/sumLen(2));
end

This reduce function loops through each of the distance and count values in
intermVallIter, keeping a running total of the distance and count after each pass.
After this loop, the reduce function calculates the overall mean flight distance with a
simple division, and then adds a single key to outKVStore.

Save this function in your current folder as MeanDistReduceFun.m.

For information about writing more advanced map and reduce functions, see “Write a
Map Function” on page 12-10 and “Write a Reduce Function” on page 12-15.

Run mapreduce

After you have a datastore, a map function, and a reduce function, you can call
mapreduce to perform the calculation. To calculate the average flight distance in the
data set, call mapreduce using ds, MeanDistMapFun, and MeanDistReduceFun.

outds = mapreduce(ds, @MeanDistMapFun, @MeanDistReduceFun);
>k >k 3k >k >k 3k >k 3k 3k >k 3k 5k >k 5k 5k >k >k >k >k >k >k 5k >k 5k >k >k 3k >k 5k >k >k %

* MAPREDUCE PROGRESS *



See Also

>k 3k 3k >k >k 3k >k 3k 5k >k 3k 5k >k >k 5k >k >k 5k >k 5k 5k 5k 5k 5k >k 3k >k >k 5k >k >k &
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 100%

By default, the mapreduce function displays progress information at the command line
and returns a KeyValueDatastore object that points to files in the current folder. You
can adjust all three of these options using the Name, Value pair arguments for
'"OutputFolder’', 'OutputType', and 'Display'. For more information, see the
reference page for mapreduce.

View Results

Use the readall function to read the key-value pairs from the output datastore.

readall(outds)
ans =
Key Value
'Mean' [702.1630]
See Also

datastore | mapreduce

Related Examples
. “Build Effective Algorithms with MapReduce” on page 12-22

12-9



12 Large Data

Write a Map Function

In this section...

“Role of Map Function in MapReduce” on page 12-10
“Requirements for Map Function” on page 12-11
“Sample Map Functions” on page 12-12

Role of Map Function in MapReduce

mapreduce requires both an input map function that receives blocks of data and that
outputs intermediate results, and an input reduce function that reads the intermediate
results and produces a final result. Thus, it is normal to break up a calculation into two
related pieces for the map and reduce functions to fulfill separately. For example, to find
the maximum value in a data set, the map function can find the maximum value in each
block of input data, and then the reduce function can find the single maximum value
among all of the intermediate maxima.

This figure shows the Map phase of the mapreduce algorithm.
Map Phass Intermediate Phase

Group values by unigue key

a1t datactare
put datastore KeyValueStore {keyl} [valuel],
[valueZ] ,
mapper 1
- read By o | frevi}
add or addmulti {valuel}
{key2} [valuel],
[valual],
—™
mapper M
read {kayH}
chunk M ' d {valuaP}
add o addmulti
{kayd} [valuel],
[value2] ,

12-10



Write a Map Function

The Map phase of the mapreduce algorithm has the following steps:

1 mapreduce reads a single block of data using the read function on the input
datastore, then calls the map function to work on the block.

2  The map function then works on the individual block of data and adds one or more
key-value pairs to the intermediate KeyValueStore object using the add or
addmulti functions.

3 mapreduce repeats this process for each of the blocks of data in the input datastore,
so that the total number of calls to the map function is equal to the number of blocks
of data. The ReadSize property of the datastore determines the number of data
blocks.

The Map phase of the mapreduce algorithm is complete when the map function
processes each of the blocks of data in the input datastore. The result of this phase of the
mapreduce algorithm is a KeyValueStore object that contains all of the key-value pairs
added by the map function. After the Map phase, mapreduce prepares for the Reduce
phase by grouping all the values in the KeyValueStore object by unique key.

Requirements for Map Function

mapreduce automatically calls the map function for each block of data in the input
datastore. The map function must meet certain basic requirements to run properly during
these automatic calls. These requirements collectively ensure the proper movement of
data through the Map phase of the mapreduce algorithm.

The inputs to the map function are data, info, and intermKVStore:

* dataand info are the result of a call to the read function on the input datastore,
which mapreduce executes automatically before each call to the map function.

* intermKVStore is the name of the intermediate KeyValueStore object to which the
map function needs to add key-value pairs. The add and addmulti functions use this
object name to add key-value pairs. If the map function does not add any key-value
pairs to the intermKVStore object, then mapreduce does not call the reduce
function and the resulting datastore is empty.

In addition to these basic requirements for the map function, the key-value pairs added by
the map function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be
NaN, complex, logical, or sparse.

12-11



12 Large Data

12-12

2 All keys added by the map function must have the same class.
3 Values can be any MATLAB object, including all valid MATLAB data types.

Note The above key-value pair requirements may differ when using other products with
mapreduce. See the documentation for the appropriate product to get product-specific
key-value pair requirements.

Sample Map Functions
Here are a few illustrative map functions used in mapreduce examples.
Identity Map Function

A map function that simply returns what mapreduce passes to it is called an identity
mapper. An identity mapper is useful to take advantage of the grouping of values by
unique key before doing calculations in the reduce function. The identityMapper
mapper file is one of the mappers used in the example “Tall Skinny QR (TSQR) Matrix
Factorization Using MapReduce” on page 12-95.

function identityMapper(data, info, intermKVStore)
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore, 'Identity', X);
end

Simple Map Function

One of the simplest examples of a nonidentity mapper is maxArrivalDelayMapper,
which is the mapper for the example “Find Maximum Value with MapReduce” on page 12-
43. For each chunk of input data, this mapper calculates the maximum arrival delay and
adds a key-value pair to the intermediate KeyValueStore.
function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

Advanced Map Function

A more advanced example of a mapper is statsByGroupMapper, which is the mapper
for the example “Compute Summary Statistics by Group Using MapReduce” on page 12-



See Also

79. This mapper uses a nested function to calculate several statistical quantities (count,
mean, variance, and so on) for each chunk of input data, and then adds several key-value
pairs to the intermediate KeyValueStore object. Also, this mapper uses four input
arguments, whereas mapreduce only accepts a map function with three input arguments.
To get around this, pass in the extra parameter using an anonymous function during the
call to mapreduce, as outlined in the example.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first

delays = data.ArrDelay;
groups = data. (groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);

delays = delays(notNaN);

% Find the unique group levels in this chunk

[intermKeys,~,idx] = unique(groups, 'stable');

% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);

function out = grpstatsfun(x)

n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).”2)/n; % variance
s = sum((x-m).”3)/n; % skewness without normalization
k = sum((x-m).”4)/n; % kurtosis without normalization
out = {[n, m, v, s, kl};

end

end
More Map Functions

For more information about common programming patterns in map or reduce functions,
see “Build Effective Algorithms with MapReduce” on page 12-22.

See Also

add | addmulti | datastore | mapreduce

More About
. KeyValueStore
. “Write a Reduce Function” on page 12-15

12-13



12 Large Data

. “Getting Started with MapReduce” on page 12-3

12-14



Write a Reduce Function

Write a Reduce Function

In this section...

“Role of the Reduce Function in MapReduce” on page 12-15
“Requirements for Reduce Function” on page 12-16
“Sample Reduce Functions” on page 12-17

Role of the Reduce Function in MapReduce

mapreduce requires both an input map function that receives blocks of data and that
outputs intermediate results, and an input reduce function that reads the intermediate
results and produces a final result. Thus, it is normal to break up a calculation into two
related pieces for the map and reduce functions to fulfill separately. For example, to find
the maximum value in a data set, the map function can find the maximum value in each
block of input data, and then the reduce function can find the single maximum value
among all of the intermediate maxima.

This figure shows the Reduce phase of the mapreduce algorithm.

Intermediate Phase Reduce Phase
reducer 1 KeyValueStore Output datastors
Valuelterator hasnext Of getnext o | tkey1ll [valuell, {kewl} [valusll,
{for keyl) » v [valueZ] , [valueZ] ,
add or addmulti : :
—m
reducer M {keyM} [valuel], {keyM} [valuel],
[valuaZ] , [valueZ] ,
Valuslterator p| | basnext or getnext : :
(for keyM) >
add or addmulti

The Reduce phase of the mapreduce algorithm has the following steps:

12-15



12 Large Data

12-16

1  The result of the Map phase of the mapreduce algorithm is an intermediate
KeyValueStore object that contains all of the key-value pairs added by the map
function. Before calling the reduce function, mapreduce groups the values in the
intermediate KeyValueStore object by unique key. Each unique key in the
intermediate KeyValueStore object results in a single call to the reduce function.

2 For each key, mapreduce creates a ValueIterator object that contains all of the
values associated with that key.

3  The reduce function scrolls through the values from the ValueIterator object
using the hasnext and getnext functions, which are typically used in a while loop.

4  After performing a summary calculation, the reduce function adds one or more key-
value pairs to the final KeyValueStore object using the add and addmulti
functions.

The Reduce phase of the mapreduce algorithm is complete when the reduce function
processes all of the unique intermediate keys and their associated values. The result of
this phase of the mapreduce algorithm (similar to the Map phase) is a KeyValueStore
object containing all of the final key-value pairs added by the reduce function. After the
Reduce phase, mapreduce pulls the key-value pairs from the KeyValueStore and
returns them in a datastore (a KeyValueDatastore object by default). The key-value
pairs in the output datastore are not in sorted order; they appear in the same order as
they were added by the reduce function.

Requirements for Reduce Function

mapreduce automatically calls the reduce function for each unique key in the
intermediate KeyValueStore object, so the reduce function must meet certain basic
requirements to run properly during these automatic calls. These requirements
collectively ensure the proper movement of data through the Reduce phase of the
mapreduce algorithm.

The inputs to the reduce function are intermKey, intermValIter, and outKVStore:

* intermKey is one of the unique keys added by the map function. Each call to the
reduce function by mapreduce specifies a new unique key from the keys in the
intermediate KeyValueStore object.

* intermVallteristhe Valuelterator object associated with the active key,
intermKey. This ValueIterator object contains all of the values associated with the
active key. Scroll through the values using the hasnext and getnext functions.



Write a Reduce Function

* outKVStore is the name for the final KeyValueStore object to which the reduce
function needs to add key-value pairs. The add and addmulti functions use this
object name to add key-value pairs to the output. mapreduce takes the output key-
value pairs from outKVStore and returns them in the output datastore, which is a
KeyValueDatastore object by default. If the reduce function does not add any key-
value pairs to outKVStore, then mapreduce returns an empty datastore.

In addition to these basic requirements for the reduce function, the key-value pairs added
by the reduce function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be
NaN, logical, complex, or sparse.

2 All keys added by the reduce function must have the same class, but that class may
differ from the class of the keys added by the map function.

3 Ifthe OutputType argument of mapreduceis 'Binary' (the default), then a value
added by the reduce function can be any MATLAB object, including all valid MATLAB
data types.

4 Ifthe OutputType argument of mapreduce is 'TabularText', then a value added
by the reduce function can be a numeric scalar, character vector, or string. In this
case, the value cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products with
mapreduce. See the documentation for the appropriate product to get product-specific
key-value pair requirements.

Sample Reduce Functions
Here are a few illustrative reduce functions used in mapreduce examples.
Simple Reduce Function

One of the simplest examples of a reducer is maxArrivalDelayReducer, which is the
reducer for the example “Find Maximum Value with MapReduce” on page 12-43. The

map function in this example finds the maximum arrival delay in each chunk of input data.
Then the reduce function finishes the task by finding the single maximum value among all
of the intermediate maxima. To find the maximum value, the reducer scrolls through the
values in the ValueIterator object and compares each value to the current maximum.
mapreduce only calls this reducer function once, since the mapper adds a single unique

12-17



12 Large Data

key to the intermediate KeyValueStore object. The reduce function adds a single key-
value pair to the output.

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -Inf;
while hasnext(intermVallter)
maxVal = max(getnext(intermVallter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, 'MaxArrivalDelay',maxVal);
end

Advanced Reduce Function

A more advanced example of a reducer is statsByGroupReducer, which is the reducer
for the example “Compute Summary Statistics by Group Using MapReduce” on page 12-
79. The map function in this example groups the data in each input using an extra
parameter (airline carrier, month, and so on), and then calculates several statistical
quantities for each group of data. The reduce function finishes the task by retrieving the
statistical quantities and concatenating them into long vectors, and then using the vectors
to calculate the final statistical quantities for count, mean, variance, skewness, and
kurtosis. The reducer stores these values as fields in a structure, so that each unique key
has a structure of statistical quantities in the output.

function statsByGroupReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the StatisticsByGroupMapReduceExample.

o°

Copyright 2014 The MathWorks, Inc.

~un < 335
[ TR TR TR
MDD D

’
’
’
’
’

% get all sets of intermediate statistics
while hasnext(intermValIter)
value = getnext(intermVallter);

[n; value(l)];

[m; value(2)];

[v; value(3)];

[s; value(4)];

[k; value(5)];

xun <335

end

% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the

% CovarianceMapReduceExample for an alternative pairwise reduction approach

)

% combine the intermediate results

12-18



See Also

count = sum(n);

meanVal = sum(n.*m)/count;

d = m - meanVal;

variance = (sum(n.*v) + sum(n.*d.”2))/count;

skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.”2)))./(count*variance”(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.”3)))./(count*variance”2);

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',bvariance,...
'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% add results to the output datastore
add (outKVStore, intermKey,outValue);

More Reduce Functions

For more information about common programming patterns in map or reduce functions,
see “Build Effective Algorithms with MapReduce” on page 12-22.

See Also

add | addmulti | datastore | getnext | hasnext | mapreduce

More About

. KeyValueStore

. ValueIterator

. “Write a Map Function” on page 12-10

. “Getting Started with MapReduce” on page 12-3

12-19



12 Large Data

Speed Up and Deploy MapReduce Using Other Products

12-20

In this section...

“Execution Environment” on page 12-20
“Running in Parallel” on page 12-20

“Application Deployment” on page 12-20

Execution Environment

To use mapreduce with Parallel Computing Toolbox™, MATLAB Parallel Server™, or
MATLAB Compiler™, use the mapreducer configuration function to change the execution
environment for mapreduce. This enables you to start small to verify your map and
reduce functions, then quickly scale up to run larger calculations.

Running in Parallel

Parallel Computing Toolbox can immediately speed up your mapreduce algorithms by
using the full processing power of multicore computers to execute applications with a
parallel pool of workers. If you already have Parallel Computing Toolbox installed, then
you probably do not need to do anything special to take advantage of these capabilities.
For more information about using mapreduce with Parallel Computing Toolbox, see “Run
mapreduce on a Parallel Pool” (Parallel Computing Toolbox).

MATLAB Parallel Server enables you to run the same applications on a remote computer
cluster. For more information, including how to configure MATLAB Parallel Server to
support Hadoop clusters, see “Tall Arrays and mapreduce” (Parallel Computing Toolbox).

Application Deployment

MATLAB Compiler enables you to create standalone mapreduce applications or
deployable archives, which you can share with colleagues or deploy to production Hadoop
systems.

For more information, see “MapReduce Applications on Hadoop Clusters” (MATLAB
Compiler).



See Also

See Also

gcmr | mapreducer

12-21



12 Large Data

Build Effective Algorithms with MapReduce

12-22

The mapreduce example files that ship with MATLAB illustrate different programming
techniques. You can use these examples as a starting point to quickly prototype similar
mapreduce calculations.

Note The associated files for these examples are all in the toolbox/matlab/demos/

folder.

Example Link Primary File Description Notable
Programming
Techniques

“Find Maximum MaxMapReduceExam |Find maximum One intermediate key

Value with ple.m arrival delay and minimal

MapReduce” on page computation.

12-43

“Compute Mean MeanMapReduceExa |Find mean arrival One intermediate key

Value with mple.m delay with intermediate

MapReduce” on page state (accumulating

12-46 intermediate sum
and count).

“Create Histograms |[VisualizationMap |Visualize data using |Low-volume

Using MapReduce”
on page 12-56

ReduceExample.m

histograms

summaries of data,
sufficient to generate
a graphic and gain
preliminary insights.

“Compute Mean by
Group Using
MapReduce” on page
12-50

MeanByGroupMapRe
duceExample.m

Compute mean
arrival delay for each
day of the week

Perform simple
computations on
subgroups of input
data using several
intermediate keys.




Build Effective Algorithms with MapReduce

Example Link

Primary File

Description

Notable
Programming
Techniques

“Compute Maximum
Average HSV of
Images with
MapReduce” on page
12-101

HueSaturationVal
ueExample.m

Determine average
maximum hue,
saturation, and
brightness in an
image collection

Analyzes an image
datastore using three
intermediate keys.
The outputs are
filenames, which can
be used to view the
images.

“Simple Data
Subsetting Using
MapReduce” on page
12-64

SubsettingMapRed
uceExample.m

Create single table
from subset of large
data set

Extraction of subset
of large data set to
look for patterns.
The procedure is
generalized using a
parameterized map
function to pass in
the subsetting
criteria.

“Using MapReduce
to Compute
Covariance and
Related Quantities”
on page 12-72

CovarianceMapRed
uceExample.m

Compute covariance
and related
quantities

Calculate several
intermediate values
and store them with
the same key. Use
covariance to obtain
a correlation matrix
and regression
coefficients, and to
perform principal
components analysis.

12-23



12 Large Data

12-24

Example Link

Primary File

Description

Notable
Programming
Techniques

“Compute Summary
Statistics by Group
Using MapReduce”
on page 12-79

StatisticsByGrou
pMapReduceExampl
e.m

Compute summary
statistics organized
by group

Use an anonymous
function to pass an
extra grouping
parameter to a
parameterized map
function. This
parameterization
allows you to quickly
recalculate statistics
using different
grouping variables.

“Using MapReduce
to Fit a Logistic
Regression Model”
on page 12-87

LogitMapReduceEx
ample.m

Fit simple logistic
regression model

Chain multiple
mapreduce calls to
carry out an iterative
regression algorithm.
An anonymous
function passes
information from one
iteration to the next
to supply information
directly to the map
function.

“Tall Skinny QR
(TSQR) Matrix
Factorization Using
MapReduce” on page
12-95

TSQRMapReduceExa
mple.m

Tall skinny QR
decomposition

Chain multiple
mapreduce calls to
perform multiple
iterations of
factorizations. Also
use the info input
argument of the map
function to compute
intermediate
numeric keys.




Debug MapReduce Algorithms

Debug MapReduce Algorithms

This example shows how to debug your mapreduce algorithms in MATLAB using a simple
example file, MaxMapReduceExample.m. Debugging enables you to follow the movement
of data between the different phases of mapreduce execution and inspect the state of all
intermediate variables.

In this section...

“Set Breakpoint” on page 12-25
“Execute mapreduce” on page 12-26
“Step Through Map Function” on page 12-26

“Step Through Reduce Function” on page 12-28

Set Breakpoint

Set one or more breakpoints in your map or reduce function files so you can examine the
variable values where you think the problem is. For more information, see “Set
Breakpoints”.

Open the file maxArrivalDelayMapper.m.
edit maxArrivalDelayMapper.m
Set a breakpoint on line 9. This breakpoint causes execution of mapreduce to pause right

before each call to the map function adds a key-value pair to the intermediate
KeyValueStore object, named intermKVStore.

1 function maxArrivalDelayMapper (data, info, intermEV3tore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc.

5

& % Data is an n-by-1 table of the ArrDelay. &s the data source is tabular,
7 % the return of read is a table object

B = partMax = max(data.krrDelay):

3@ add (intermEV3tore, 'PartialMaxfirrivallelay',partMax):

12-25



12 Large Data

Execute mapreduce

Run the mapreduce example file MaxMapReduceExample.m. Specify mapreducer(0) to
ensure that the algorithm does not run in parallel, since parallel execution of mapreduce
using Parallel Computing Toolbox ignores breakpoints.

mapreducer(0);
MaxMapReduceExample

MATLAB stops execution of the file when it encounters the breakpoint in the map
function. During the pause in execution, you can hover over the different variable names
in the map function, or type one of the variable names at the command line to inspect the
values.

In this case, the display indicates that, as yet, there are no key-value pairs in

intermKVStore.

1 function maxArrivalDelayMapper (data, info, intermEVStore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc

5

& % Data is an n-by-1 table of the ArrDelay. &s the data source is tabular,
7 % the return of read is a table object

B = partMax = max(data.krrDelay):

9@ “add(intermEVStore, 'PartialMaxArrivallelay',partMax):

intermEVStore: 1xl matlab.mapreduce.KeyValueStore =

FKeyValueS5tore with no key-value pairs.

Feys must be numeric scalars or strings, and values may be any type.

Use add or addmulti to add more key-value pairs.

Step Through Map Function

1 Continue past the breakpoint. You can use dbstep to execute a single line, or
dbcont to continue execution until MATLAB encounters another breakpoint.

L T . .
Alternatively, you can click Il'i’_'l Step or L Continue in the Editor tab. For more
information about all the available options, see “Debug a MATLAB Program”.

12-26



Debug MapReduce Algorithms

In this case, use dbstep (or click ﬂi’_'l Step) to execute only line 9, which adds a key-
value pair to intermKVStore. Inspect the new display for intermKVStore.

1 function maxArrivalDelayMapper (data, info, intermEVStore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc.

5

a % Data i=s an n-by-1 table of the ArrDelay. A= the data source is tabular,
7 % the return of read i= a table object

8 - partMax = max (data.hArrDelay);

1@ add (intermEV5tore, 'PartialMaxfrriwvalDelay',partMax);

intermEVS5tore: 1x]1 matlab.mapreduce.KeyValueStore =

KeyValueStore containing string keys.

Keys must be strings, and wvalues may be any type.

Last 1 key-value pair added:

Key Value

'PartialMaxfrrivalDelay"® [186]

Use add or addmulti to add more key-value pairs.

[,
Now, use dbcont (or click Lf'-* Continue) to continue execution of mapreduce.
During the next call to the map function, MATLAB halts again on line 9. The new
display for intermKVStore indicates that it does not contain any key-value pairs,
because the display is meant to show only the most recent key-value pairs that are
added in the current call to the map (or reduce) function.

Step past line 9 again using dbstep (or click Ili’_'l Step) to add the next key-value pair

to intermKVStore, and inspect the new display for the variable. MATLAB displays
only the key-value pair added during the current call to the map function.

12-27



12 Large Data

12-28

1 function maxArrivalDelayMapper (data, info, intermEVStore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc.

5

& % Data is an n-by-1 table of th . A3 the data source 1is tabular,
7 % the return of read is a tabl

B = partMax = max(data.krrDelay):

3@ add[l:i.ntermKVStoIe, 'PartialMaxfrrivallelay',partMax);

intermEVStore: 1xl matlab.mapreduce.KeyValueStore =

FKeyValueStore containing string keys.

Feys must be strings, and values may be any type.

Last 1 key-value palir added:

Eey Value

'PartialMaxfArrivalDelay" [339]

Use add or addmulti to add more key-value pairs.

4 Complete the debugging of the map function by removing the breakpoint and closing
the file maxArrivalDelayMapper.m.

Step Through Reduce Function

1  You can use the same process to set breakpoints and step through execution of a
reduce function. The reduce function for this example is
maxArrivalDelayReducer.m. Open this file for editing.

edit maxArrivalDelayReducer.m

2 Set two breakpoints: one on line 10, and one on line 13. This enables you to inspect
the Valuelterator and the final key-value pairs added to the output, outKVStore.

3 Run the main example file.

MaxMapReduceExample

4 The execution of the example will pause when the breakpoint on line 10 is
encountered. The debug display for the ValueIterator indicates the active key and
whether any values remain to be retrieved.



Debug MapReduce Algorithms

M1 o s L R

9 —
10 @
1 -
12
13 @

function maxlArrivalDelayReducer (intermEey, intermVallter, outEVStore)

% Reducer function for the MaxMapreduceExample.

% Copyright 2014 The MathWorks, Inc.

% int ey is 'PartialMaxfrrivalDelay'. in iterator of
% all ez that has the key 'PartialMaxar

maxVal = -inf;

while hasnext (intermVallter)

maxVal = max (getnext (intermVallter), maxVal);

end
% The key-value pair add|

add (outEVStore, "MaxArriv|

intermVallter: 1x1 matlab.mapreduce.ValueIlterator =

Valuelterator with properties:

Eey: 'PartialMaxfAirrivalDelay'

Cne or more values are available.
Use hasnext to check if more walues are available.

Use getnext to get the next wvalue.

Now, remove the breakpoint on line 10 and use dbcont (or click Lo Continue) to

continue execution of the example until the next breakpoint is reached (on line 13).
Since this reduce function continually compares each new value from the
Valuelterator to the global maximum, mapreduce execution ends by adding a
single key-value pair to outKVStore.

Use dbstep (or click ll‘i-‘_'l Step) to execute line 13 only. The display for outKVStore

shows the global maximum value that mapreduce will return as the final answer.

12-29




12 Large Data

wooo 1 o e L R

e
[ T e B |

12-30

function maxArrivalDelayReducer (intermEey, intermValIter, outEVStore)

% BReducer function for the MaxMapreduceExample.

% Copyright 2014 The MathWorks, Inc

% intermFey i= 'PartialMaxfrrivalDelay'. intermValIter is an iterator of
% all walues that has the key 'PartialMaxArrivalDelavy'.
maxVal = —-inf;

while hasnext (intermValIter)
maxVal = max (getnext (intermVallter), maxVal);
end

% The kevy-value pair added to outEVStore will become the output of mapreduce

13 .' add[butK\FStore, 'MaxArrivalDelay',maxVal);

outEVStore: 1x]l matlab.mapreduce.KeyValueStore =

KeyValueStore containing string kevs.

Keys must be strings, and wvalues may be any tvpe.

Last 1 key-value pair added:

Eey Value

'MaxArrivalDelay" [1014]

Use add or addmulti to add more key-value pairs.

Now use dbcont (or click LE) Continue) to advance execution, enabling the example
to finish running. mapreduce returns the final results.

Map 100% Reduce 100%
ans =

Key Value

'MaxArrivalDelay' [1014]

For a complete guide to debugging in MATLAB, see “Debugging and Analysis”.



See Also

See Also

mapreduce

More About

. KeyValueStore
. Valuelterator
. “Getting Started with MapReduce” on page 12-3

12-31



12 Large Data

Analyze Big Data in MATLAB Using MapReduce

This example shows how to use the datastore and mapreduce functions to process a
large amount of file-based data. The MapReduce algorithm is a mainstay of many modern
"big data" applications. This example operates on a single computer, but the code can
scale up to use Hadoop®.

Throughout this example, the data set is a collection of records for USA domestic airline
flights between 1987 and 2008. If you have experimented with "big data" before, you may
already be familiar with this data set. The full data set can be downloaded from https://
stat-computing.org/dataexpo/2009/the-data.html. A small subset of the data set is also
included with MATLAB® to allow you to run this and other examples without
downloading the entire data set.

Introduction to datastore

Creating a datastore allows you to access a collection of data in a block-based manner.
A datastore can process arbitrarily large amounts of data, and the data can even be
spread across multiple files. You can create a datastore for many file types, including a
collection of tabular text files (demonstrated here), a SQL database (Database Toolbox™
required) or a Hadoop® Distributed File System (HDFS™).

Create a datastore for a collection of tabular text files and preview the contents.

ds = datastore('airlinesmall.csv');
dsPreview = preview(ds);
dsPreview(:,10:15)

ans=8x6 table
FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay

1503 {'NA"} 53 57 {'NA"} 8
1550 {'NA"} 63 56 {'NA"} 8
1589 {'NA"} 83 82 {'NA"} 21
1655 {'NA"} 59 58 {'NA"} 13
1702 {'NA"} 77 72 {'NA"} 4
1729 {'NA"} 61 65 {'NA"} 59
1763 {'NA"} 84 79 {'NA"} 3
1800 {'NA"} 155 143 {'NA"} 11

The datastore automatically parses the input data and makes a best guess as to the type
of data in each column. In this case, use the 'TreatAsMissing' Name-Value pair

12-32


https://stat-computing.org/dataexpo/2009/the-data.html
https://stat-computing.org/dataexpo/2009/the-data.html

Analyze Big Data in MATLAB Using MapReduce

argument to have datastore replace the missing values correctly. For numeric variables
(such as 'AirTime'), datastore replaces every instance of 'NA' with a NaN value,
which is the IEEE arithmetic representation for Not-a-Number.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA'");
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'CancellationCode')} = '%s';

dsPreview = preview(ds);
dsPreview(:,{'AirTime', 'TaxiIn', 'TailNum', 'CancellationCode'})

ans=8x4 table

AirTime TaxilIn TailNum CancellationCode
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}
NaN NaN {'NA'} {'NA'}

Scan for rows of interest

datastore objects contain an internal pointer to keep track of which block of data the
read function returns next. Use the hasdata and read functions to step through the
entire data set, and filter the data set to only the rows of interest. In this case, the rows of
interest are flights on United Airlines ("UA") departing from Boston ("BOS").

subset = [1;

while hasdata(ds)
t = read(ds);
t = t(strcmp(t.UniqueCarrier, 'UA') & strcmp(t.Origin, 'BOS'), :);
subset = vertcat(subset, t);

end

subset(1:10,[9,10,15:17])

ans=10x5 table
UniqueCarrier FlightNum ArrDelay DepDelay Origin

12-33



12 Large Data

12-34

{'UA"} 121 -9 0 {'B0OS"}
{'UA"'} 1021 -9 -1 {'B0OS"}
{'UA"} 519 15 8 {'B0OS"}
{'UA"} 354 9 8 {'B0OS"}
{'UA"} 701 -17 0 {'B0OS"}
{'UA"} 673 -9 -1 {'B0OS"}
{'UA"'} 91 -3 2 {'B0OS"}
{'UA"} 335 18 4 {'B0OS"}
{'UA"} 1429 1 -2 {'B0S'}
{'UA"} 53 52 13 {'B0OS"}

Introduction to mapreduce

MapReduce is an algorithmic technique to "divide and conquer" big data problems. In
MATLAB, mapreduce requires three input arguments:
A datastore to read data from

2 A "mapper" function that is given a subset of the data to operate on. The output of
the map function is a partial calculation. mapreduce calls the mapper function one
time for each block in the datastore, with each call operating independently.

3 A 'reducer" function that is given the aggregate outputs from the mapper function.
The reducer function finishes the computation begun by the mapper function, and
outputs the final answer.

This is an over-simplification to some extent, since the output of a call to the mapper
function can be shuffled and combined in interesting ways before being passed to the
reducer function. This will be examined later in this example.

Use mapreduce to perform a computation

A simple use of mapreduce is to find the longest flight time in the entire airline data set.
To do this:

1 The "mapper" function computes the maximum of each block from the datastore.

2 The "reducer" function then computes the maximum value among all of the maxima
computed by the calls to the mapper function.

First, reset the datastore and filter the variables to the one column of interest.

reset(ds);
ds.SelectedVariableNames = {'ActualElapsedTime'};



Analyze Big Data in MATLAB Using MapReduce

Write the mapper function, maxTimeMapper.m. It takes three input arguments:

1 The input data, which is a table obtained by applying the read function to the
datastore.

2 A collection of configuration and contextual information, info. This can be ignored in
most cases, as it is here.

3 Anintermediate data storage object, which records the results of the calculations
from the mapper function. Use the add function to add Key/Value pairs to this
intermediate output. In this example, the name of the key ('MaxElapsedTime') is
arbitrary.

Save the following mapper function (maxTimeMapper.m) in your current folder.

function maxTimeMapper(data, ~, intermKVStore)
maxElapsedTime = max(data{:,:});
add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end

Next, write the reducer function. It also takes three input arguments:

1 A set of input "keys". Keys will be discussed further below, but they can be ignored in
some simple problems, as they are here.

2 An intermediate data input object that mapreduce passes to the reducer function.
This data is in the form of Key/Value pairs, and you use the hasnext and getnext
functions to iterate through the values for each key.

3 A final output data storage object. Use the add and addmulti functions to directly
add Key/Value pairs to the output.

Save the following reducer function (maxTimeReducer.m) in your current folder.

function maxTimeReducer(~, intermValsIter, outKVStore)
maxElapsedTime = -Inf;
while(hasnext(intermValsIter))
maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));
end
add (outKVStore, "MaxElapsedTime", maxElapsedTime);
end

Once the mapper and reducer functions are written and saved in your current folder, you
can call mapreduce using the datastore, mapper function, and reducer function. If you
have Parallel Computing Toolbox (PCT), MATLAB will automatically start a pool and

12-35



12 Large Data

12-36

parallelize execution. Use the readall function to display the results of the MapReduce
algorithm.

result = mapreduce(ds, @maxTimeMapper, @maxTimeReducer);

>k 3k 3k 3k 3ko3kook 3k Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K >k >k >k >k kkok sk

* MAPREDUCE PROGRESS *
3k 3k 3k 3k 5k >k 3k 5k >k 3k 3k 3k 3k 3K 3k 3k 3k 3k Sk 3k koo >k ko ok >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

readall(result)

ans=1x2 table
Key Value

{'MaxElapsedTime'} {[1650]}

Use of keys in mapreduce

The use of keys is an important and powerful feature of mapreduce. Each call to the
mapper function adds intermediate results to one or more named "buckets", called keys.
The number of calls to the mapper function by mapreduce corresponds to the number of
blocks in the datastore.

If the mapper function adds values to multiple keys, this leads to multiple calls to the
reducer function, with each call working on only one key's intermediate values. The
mapreduce function automatically manages this data movement between the map and
reduce phases of the algorithm.

This flexibility is useful in many contexts. The example below uses keys in a relatively
obvious way for illustrative purposes.



Analyze Big Data in MATLAB Using MapReduce

Calculating group-wise metrics with mapreduce

The behavior of the mapper function in this application is more complex. For every flight
carrier found in the input data, use the add function to add a vector of values. This vector
is a count of the number of flights for that carrier on each day in the 21+ years of data.
The carrier code is the key for this vector of values. This ensures that all of the data for
each carrier will be grouped together when mapreduce passes it to the reducer function.

Save the following mapper function (countFlightsMapper.m) in your current folder.

function countFlightsMapper(data, ~, intermKVStore)
dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987, 1f
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
[airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');

for i = l:numel(airlineName)
dayTotals = accumarray(dayNumber(airlineIndex==1i), 1, [daysSinceEpoch, 1]);
add(intermKVStore, airlineName{i}, dayTotals);
end
end

The reducer function is less complex. It simply iterates over the intermediate values and
adds the vectors together. At completion, it outputs the values in this aggregate vector.
Note that the reducer function does not need to sort or examine the
intermediateKeysIn values; each call to the reducer function by mapreduce only
passes the values for one airline carrier.

Save the following reducer function (countFlightsReducer.m) in your current folder.

function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
dayArray = zeros(daysSinceEpoch, 1);

while hasnext(intermValsIter)
dayArray = dayArray + getnext(intermValsIter);
end
add (outKVStore, intermKeysIn, dayArray);
end

Reset the datastore and select the variables of interest. Once the mapper and reducer

functions are written and saved in your current folder, you can call mapreduce using the
datastore, mapper function, and reducer function.

12-37



12 Large Data

reset(ds);
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier'};
result = mapreduce(ds, @countFlightsMapper, @countFlightsReducer);

sk sk ok ok ok oK K oK oK oK K oK oK oK K o oK oK oK K o oK ok K o oK oK ok K o oK K

* MAPREDUCE PROGRESS *
Sk sk sk 3k >k ok 3k sk >k sk K 3k >k sk 3K 3 >k ok K sk >k ok K >k ok ok K >k ok ok K
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

result = readall(result);

In case this example was run with only the sample data set, load the results of the
mapreduce algorithm run on the entire data set.

load airlineResults

Visualizing the results

Using only the top 7 carriers, apply a filter to the data to smooth out the effects of
weekend travel. This would otherwise clutter the visualization.

lines = result.Value;

lines = horzcat(lines{:});

[~,sortOrder] = sort(sum(lines), 'descend');
lines = lines(:,sortOrder(1:7));

result = result(sortOrder(1:7),:);

lines(lines==0) = nan;

12-38



Analyze Big Data in MATLAB Using MapReduce

for carrier=1:size(lines,?2)
lines(:,carrier) = filter(repmat(1/7, [7 11), 1, lines(:,carrier));
end

Plot the data.

figure('Position',[1 1 800 600]);
plot(datetime(1987,10,1):caldays(1l) :datetime(2008,12,31),lines)
title ('Domestic airline flights per day per carrier')
xlabel('Date')

ylabel('Flights per day (7-day moving average)')
legend(result.Key, 'Location', 'South')

12-39



12 Large Data

Domestic airline flights per day per carrier
T T

3500

3000

2500

1500

1000

Flights per day (7-day moving average)

500

2000 T(]M

VN

. VIR ”W
]

I|b- A

thmrnyﬂ*qwﬁrr

WHN
AA
us
UA
NW
co
I 1

it P AW b g
Al AL ATRL AN I Ry N

ll.r. | ,,'li [ FE:“ _.Ir

L&r"llf1|~«/p*h“" 1 Y

o mwwdw

i ,W(

A
(O

Tl qﬂ""j “]F_

e

Ve
N I_Lr

1995 2000
Date

2005

The plot shows the emergence of Southwest Airlines (WN) during this time period.

Learning more

This example only scratches the surface of what is possible with mapreduce. See the
documentation for mapreduce for more information, including information on using it

with Hadoop and MATLAB® Parallel Server™.

Local Functions

Listed here are the local functions that mapreduce applies to the data.

12-40



See Also

function maxTimeMapper(data, ~, intermKVStore)
maxElapsedTime = max(data{:,:});
add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end
function maxTimeReducer(~, intermValsIter, outKVStore)
maxElapsedTime = -Inf;
while(hasnext(intermValsIter))
maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));

end

add (outKVStore, "MaxElapsedTime", maxElapsedTime);
end
function countFlightsMapper(data, ~, intermKVStore)

dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987, 1f
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
[airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');

for i = l:numel(airlineName)
dayTotals = accumarray(dayNumber(airlineIndex==1i), 1, [daysSinceEpoch, 1]);
add(intermKVStore, airlineName{i}, dayTotals);
end
end
function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
dayArray = zeros(daysSinceEpoch, 1);

while hasnext(intermValsIter)
dayArray = dayArray + getnext(intermValsIter);
end
add (outKVStore, intermKeysIn, dayArray);
end

See Also

datastore | mapreduce

More About
. “Getting Started with MapReduce” on page 12-3

12-41



12 Large Data

. “Build Effective Algorithms with MapReduce” on page 12-22

12-42



Find Maximum Value with MapReduce

Find Maximum Value with MapReduce

This example shows how to find the maximum value of a single variable in a data set
using mapreduce. It demonstrates the simplest use of mapreduce since there is only one
key and minimal computation.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival and
departure times. In this example, select ArrDelay (flight arrival delay) as the variable of

interest.
ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay’;

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variable of interest, which you can verify using preview.

preview(ds)

ans=8x1 table
ArrDelay

8
8
21
13
4
59
3
11

Run MapReduce
The mapreduce function requires a map function and a reduce function as inputs. The

mapper receives blocks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

12-43



12 Large Data

In this example, the mapper finds the maximum arrival delay in each block of data. The
mapper then stores these maximum values as the intermediate values associated with the
key 'PartialMaxArrivalDelay’.

Display the map function file.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

The reducer receives a list of the maximum arrival delays for each block and finds the
overall maximum arrival delay from the list of values. mapreduce only calls this reducer
once, since the mapper only adds a single unique key. The reducer uses add to add a final
key-value pair to the output.

Display the reduce function file.

function maxArrivalDelayReducer(intermKey, intermValIlter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermVallter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -Inf;
while hasnext(intermVallter)
maxVal = max(getnext(intermVallter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, 'MaxArrivalDelay',maxVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxDelay = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer);

>k 3k 3k 3k 3ko3kook Skok Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K Kk K >k >k kokkok sk

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k 3k 3K 3k ok 3k 3k Sk 3k kook >k ko ok >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

12-44



See Also

mapreduce returns a datastore, maxDelay, with files in the current folder.

Read the final result from the output datastore, maxDelay.
readall(maxDelay)

ans=1x2 table
Key Value

{'MaxArrivalDelay'} {[10141}

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

T T T T T T T T T TS

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermValIlter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay’.
maxVal = -Inf;
while hasnext(intermVallter)
maxVal = max(getnext(intermVallter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, 'MaxArrivalDelay',maxVal);
end

T T T T T T RIS

See Also

datastore | mapreduce

More About

. “Getting Started with MapReduce” on page 12-3
. “Build Effective Algorithms with MapReduce” on page 12-22

12-45



12 Large Data

Compute Mean Value with MapReduce

This example shows how to compute the mean of a single variable in a data set using
mapreduce. It demonstrates a simple use of mapreduce with one key, minimal
computation, and an intermediate state (accumulating intermediate sum and count).

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival and
departure times. In this example, select ArrDelay (flight arrival delay) as the variable of

interest.
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA");
ds.SelectedVariableNames = 'ArrDelay’;

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variable of interest, which you can verify using preview.

preview(ds)

ans=8x1 table
ArrDelay

8
8
21
13
4
59
3
11

Run MapReduce
The mapreduce function requires a map function and a reduce function as inputs. The

mapper receives blocks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

12-46



Compute Mean Value with MapReduce

In this example, the mapper finds the count and sum of the arrival delays in each block of
data. The mapper then stores these values as the intermediate values associated with the
key "PartialCountSumDelay".

Display the map function file.

function meanArrivalDelayMapper (data, info, intermKVStore)
% Data is an n-by-1 table of the ArrDelay. Remove missing values first:
data(isnan(data.ArrDelay),:) = [];

% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, "PartialCountSumDelay",partCountSum);

end

The reducer accepts the count and sum for each block stored by the mapper. It sums up
the values to obtain the total count and total sum. The overall mean arrival delay is a
simple division of the values. mapreduce only calls this reducer once, since the mapper
only adds a single unique key. The reducer uses add to add a single key-value pair to the
output.

Display the reduce function file.

function meanArrivalDelayReducer(intermKey, intermValIlter, outKVStore)
count = 0;
sum = 0;
while hasnext(intermVallter)
countSum = getnext(intermVallter);
count = count + countSum(1l);
sum = sum + countSum(2);
end
meanDelay = sum/count;

% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, "MeanArrivalDelay",meanDelay) ;
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelay = mapreduce(ds, @meanArrivalDelayMapper, @meanArrivalDelayReducer);

>k 3k 3k 3k 3k 3kook ok Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K Kk K >k >k >k ko kok sk

* MAPREDUCE PROGRESS *

>k 3k 3k 3ko3ko3kook Sk ok Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K K >k >k >k ok kok sk

12-47



12 Large Data

12-48

Map 0% Reduce 0
Map 16% Reduce 0
Map 32% Reduce 0
Map 48% Reduce 0
Map 65% Reduce 0
Map 81% Reduce 0
Map 97% Reduce 0
Map 100% Reduce 0
Map 100% Reduce 100

0° 0% 0% 0% 0 o° o° o° o°

mapreduce returns a datastore, meanDelay, with files in the current folder.
Read the final result from the output datastore, meanDelay.

readall(meanDelay)

ans=1x2 table
Key Value

{'MeanArrivalDelay'} {[7.1201]}

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function meanArrivalDelayMapper (data, info, intermKVStore)
% Data is an n-by-1 table of the ArrDelay. Remove missing values first:
data(isnan(data.ArrDelay),:) = [1;

% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, "PartialCountSumDelay",partCountSum);

end

function meanArrivalDelayReducer(intermKey, intermVallter, outKVStore)
count = 0;
sum = 0;
while hasnext(intermVallter)
countSum = getnext(intermVallter);
count = count + countSum(1);
sum = sum + countSum(2);
end
meanDelay = sum/count;



See Also

% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, "MeanArrivalDelay",meanDelay);

See Also

datastore | mapreduce

More About
. “Getting Started with MapReduce” on page 12-3
. “Build Effective Algorithms with MapReduce” on page 12-22

12-49



12 Large Data

Compute Mean by Group Using MapReduce

12-50

This example shows how to compute the mean by group in a data set using mapreduce. It
demonstrates how to do computations on subgroups of data.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival and
departure times. In this example, select DayOfWeek and ArrDelay (flight arrival delay)
as the variables of interest.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA'");
ds.SelectedvVariableNames = {'ArrDelay', 'DayOfWeek'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variables of interest, which you can verify using preview.

preview(ds)

ans=8x2 table
ArrDelay DayOfWeek

8
8
21
13
4
59
3
11

O WA,UU =W

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives blocks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper computes the count and sum of delays by the day of week in
each block of data, and then stores the results as intermediate key-value pairs. The keys



Compute Mean by Group Using MapReduce

are integers (1 to 7) representing the days of the week and the values are two-element
vectors representing the count and sum of the delay of each day.

Display the map function file.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Data is an n-by-2 table: first column is the DayOfWeek and the second
% is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN = ~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);

% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore, intermKeys,intermVals);

function out = countsum(x)
n = length(x); % count
s = sum(Xx); % mean
out = {[n, sl};
end
end

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key
(in this case, day of the week). Thus, each call to the reducer works on the values
associated with one day of the week. The reducer receives a list of the intermediate count
and sum of delays for the day specified by the input key (intermKey) and sums up the
values into the total count, n and total sum s. Then, the reducer calculates the overall
mean, and adds one final key-value pair to the output. This key-value pair represents the
mean flight arrival delay for one day of the week.

Display the reduce function file.

function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
n=20;
s = 0;

% get all sets of intermediate results
while hasnext(intermVallter)

12-51



12 Large Data

intermValue = getnext(intermVallter);
n =n + intermValue(l);
s = s + intermValue(2);

end

% accumulate the sum and count
mean = s/n;
% add results to the output datastore
add (outKVStore,intermKey,mean);

end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelayByDay = mapreduce(ds, @meanArrivalDelayByDayMapper,
@meanArrivalDelayByDayReducer);

>k 3k 3k 3k 3k 3kook ok ok Sk Sk 5k 5k 5k 5k 5K 5K 5K 5K 5K K K Kk >k >k >k >k ok kok ok

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k 3k 3K 3k ok 3k 3k 5k 3k 3k ok >k kook >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 14%
Map 100% Reduce 29%
Map 100% Reduce 43%
Map 100% Reduce 57%
Map 100% Reduce 71%
Map 100% Reduce 86%
Map 100% Reduce 100%

mapreduce returns a datastore, meanDelayByDay, with files in the current folder.
Read the final result from the output datastore, meanDelayByDay.

result = readall(meanDelayByDay)

result=7x2 table
Key Value

12-52



Compute Mean by Group Using MapReduce

{[7.0038]}
{[7.0833]}
{[9.4193]}
{[9.3185]}
{[4.2095]}
{[5.8569]1}
{[6.5241]}

~NNOPROUOTEE W

Organize Results

The integer keys (1 to 7) represent the days of the week. To organize the results more,
convert the keys to a categorical array, retrieve the numeric values from the single
element cells, and rename the variable names of the resulting table.

result.Key = categorical(result.Key, 1:7,

{'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat','Sun'});
result.Value = cell2mat(result.Value);
result.Properties.VariableNames = {'DayOfWeek', 'MeanArrDelay'}

result=7x2 table
DayOfWeek MeanArrDelay

Wed 7.0038
Mon 7.0833
Fri 9.4193
Thu 9.3185
Sat 4.2095
Tue 5.8569
Sun 6.5241

Sort the rows of the table by mean flight arrival delay. This reveals that Saturday is the
best day of the week to travel, whereas Friday is the worst.

result = sortrows(result, 'MeanArrDelay"')

result=7x2 table
DayOfWeek MeanArrDelay

Sat 4.2095
Tue 5.8569
Sun 6.5241

12-53



12 Large Data

12-54

Wed 7.0038
Mon 7.0833
Thu 9.3185
Fri 9.4193

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Data is an n-by-2 table: first column is the DayOfWeek and the second
% 1is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN = ~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);

% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore, intermKeys,intermvVals);

function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, sl};

end

function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
n=20;
s = 0;

% get all sets of intermediate results

while hasnext(intermVallter)
intermValue = getnext(intermVallter);
n =n + intermValue(1l);
s = s + intermValue(2);

end

% accumulate the sum and count



See Also

mean = s/n;
% add results to the output datastore
add (outKVStore,intermKey,mean);

end

== === mcecmcmemeeeemcmcmemmememmmemememememmesmememememmmeemmmm-m-m—m———-——=-

See Also

datastore | mapreduce

More About
. “Getting Started with MapReduce” on page 12-3
. “Build Effective Algorithms with MapReduce” on page 12-22

12-55



12 Large Data

Create Histograms Using MapReduce

12-56

This example shows how to visualize patterns in a large data set without having to load all
of the observations into memory simultaneously. It demonstrates how to compute lower
volume summaries of the data that are sufficient to generate a graphic.

Histograms are a common visualization technique that give an empirical estimate of the
probability density function (pdf) of a variable. Histograms are well-suited to a big data
environment, because they can reduce the size of raw input data to a vector of counts.
Each count is the number of observations that falls within each of a set of contiguous,
numeric intervals or bins.

The mapreduce function computes counts separately on multiple blocks of the data. Then
mapreduce sums the counts from all blocks. The map function and reduce function are
both extremely simple in this example. Nevertheless, you can build flexible visualizations
with the summary information that they collect.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set
contains 29 columns of flight information for several airline carriers, including arrival and
departure times. In this example, select ArrDelay (flight arrival delay) as the variable of
interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay’;

The datastore treats 'NA' values as missing, and replaces the missing values with NaN
values by default. Additionally, the SelectedVariableNames property allows you to
work with only the selected variable of interest, which you can verify using preview.

preview(ds)

ans=8x1 table
ArrDelay



Create Histograms Using MapReduce

3
11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The
mapper receives blocks of data and outputs intermediate results. The reducer reads the
intermediate results and produces a final result.

In this example, the mapper collects the counts of flights with various amounts of arrival
delay by accumulating the arrival delays into bins. The bins are defined by the fourth
input argument to the map function, edges.

Display the map function file.

function visualizationMapper(data, ~, intermKVStore, edges)
% Count how many flights have arrival delay in each interval specified by
% the EDGES vector, and add these counts to INTERMKVSTORE.
counts = histc(data.ArrDelay, edges);
add(intermKVStore, 'Null', counts);
end

The bin size of the histogram is important. Bins that are too wide can obscure important
details in the data set. Bins that are too narrow can lead to a noisy histogram. When
working with very large data sets, it is best to avoid making multiple passes over the data
to try out different bin widths. A simple way to avoid making multiple passes is to collect
counts with bins that are narrow. Then, to get wider bins, you can aggregate adjacent bin
counts without reprocessing the raw data. The flight arrival delays are reported in 1-
minute increments, so define 1-minute bins from -60 minutes to 599 minutes.

edges = -60:599;

Create an anonymous function to configure the map function to use the bin edges. The
anonymous function allows you to specialize the map function by specifying a particular
value for its fourth input argument. Then, you can call the map function via the
anonymous function, using only the three input arguments that the mapreduce function
expects.

ourVisualizationMapper = ...
@(data, info, intermKVstore) visualizationMapper(data, info, intermKVstore, edges)

Display the reduce function file. The reducer sums the counts stored by the mapper.

12-57



12 Large Data

12-58

function visualizationReducer(~, intermVallList, outKVStore)
if hasnext(intermVallList)
outVal = getnext(intermValList);
else
outVal = [];
end
while hasnext(intermValList)
outVal = outVal + getnext(intermVallList);
end
add (outKVStore, 'Null', outVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, ourVisualizationMapper, @visualizationReducer);

K ok ok ok ok ok oK ok ok koK ok ok ok oK oK oK ok 3k oK ok ok 3k oK oK oK kK oK ok K

* MAPREDUCE PROGRESS *
3k 5k 5k 5k 5k 5k 5k 5K 5k 5k 5k 5k K K K K K 3k K 3k 3k >k >k %k >k %k >k K ok >k ok ok
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result, with files in the current folder.
Organize Results

Read the final bin count results from the output datastore.

r = readall(result);
counts = r.Value{l};

Visualize Results

Plot the raw bin counts using the whole range of the data (apart from a few outliers
excluded b