MATLAB ${ }^{\oplus}$

Data Import and Export

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
MATLAB ${ }^{\circledR}$ Data Import and Export
© COPYRIGHT 2009-2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2009 Online only
March $2010 \quad$ Online only
September 2010 Online only
April $2011 \quad$ Online only
September 2011 Online only
March $2012 \quad$ Online only
September 2012 Online only
March 2013 Online only
September 2013 Online only
March 2014 Online only
October 2014 Online only
March 2015 Online only
September 2015 Online only
October 2015 Online only
March 2016 Online only
September 2016 Online only
March $2017 \quad$ Online only
September 2017 Online only
March $2018 \quad$ Online only
September 2018 Online only
March $2019 \quad$ Online only
September 2019 Online only

New for MATLAB 7.9 (Release 2009b)
Revised for Version 7.10 (Release 2010a)
Revised for Version 7.11 (Release 2010b)
Revised for Version 7.12 (Release 2011a)
Revised for Version 7.13 (Release 2011b)
Revised for Version 7.14 (Release 2012a)
Revised for Version 8.0 (Release 2012b)
Revised for Version 8.1 (Release 2013a)
Revised for Version 8.2 (Release 2013b)
Revised for Version 8.3 (Release 2014a)
Revised for Version 8.4 (Release 2014b)
Revised for Version 8.5 (Release 2015a)
Revised for Version 8.6 (Release 2015b)
Rereleased for Version 8.5.1 (Release 2015aSP1)
Revised for Version 9.0 (Release 2016a)
Revised for Version 9.1 (Release 2016b)
Revised for Version 9.2 (Release 2017a)
Revised for Version 9.3 (Release 2017b)
Revised for Version 9.4 (Release 2018a)
Revised for Version 9.5 (Release 2018b)
Revised for Version 9.6 (Release 2019a)
Revised for Version 9.7 (Release 2019b)

File Opening, Loading, and Saving

1
Supported File Formats for Import and Export 1-2
Methods for Importing Data 1-7
Tools that Import Multiple File Formats 1-7
Importing Specific File Formats 1-7
Importing Data with Low-Level I/O 1-8
Import Images, Audio, and Video Interactively 1-9
Viewing the Contents of a File 1-9
Specifying Variables 1-10
Generating Reusable MATLAB Code 1-11
Import or Export a Sequence of Files 1-13
Save and Load Parts of Variables in MAT-Files 1-14
Save and Load Using the matfile Function 1-14
Load Parts of Variables Dynamically 1-16
Avoid Inadvertently Loading Entire Variables 1-17
Partial Loading and Saving Requires Version 7.3 MAT-Files 1-17
MAT-File Versions 1-19
Overview of MAT-File Versions 1-19
Save to Nondefault MAT-File Version 1-21
Data Compression 1-21
Accelerate Save and Load Operations for Version 7.3 MAT-Files1-22
Growing Arrays Using matfile Function 1-23
Unexpected Results When Loading Variables Within a Function 1-25Create Temporary Files1-27
Text Files
2
Import Text Files 2-2
Import Text Files Using the Import Tool 2-2
Import Text Files Using readtable 2-3
Import Data from Text Files as Other Data Types 2-3
Read Text File Data Using Import Tool 2-5
Select Data Interactively 2-5
Import Data from Multiple Text Files 2-8
Import Dates and Times from Text Files 2-10
Import Numeric Data from Text Files into Matrix 2-15
Import Comma-Separated Data 2-15
Import Delimited Numeric Data 2-16
Import Mixed Data from Text File into Table 2-18
Import Block of Mixed Data from Text File into Table or Cell Array 2-22
Write Data to Text Files 2-27
Export Table to Text File 2-27
Export Cell Array to Text File 2-28
Export Numeric Array to Text File 2-30
Write to a Diary File 2-31
Read Collection or Sequence of Text Files 2-32
Import Block of Numeric Data from Text File 2-35
Import Spreadsheets 3-2
Import Spreadsheet Data Using the Import Tool 3-2
Import Spreadsheet Data Using readtable 3-3
Import Spreadsheet Data as Other Data Types 3-4
Read Spreadsheet Data Using Import Tool 3-5
Select Data Interactively 3-5
Import Data from Multiple Spreadsheets 3-7
Paste Data from Clipboard 3-7
Read Spreadsheet Data into Array or Individual Variables 3-9
Read Spreadsheet Data into Table 3-12
Read Collection or Sequence of Spreadsheet Files 3-16
Write Data to Excel Spreadsheets 3-19
Write Tabular Data to Spreadsheet File 3-19
Write Numeric and Text Data to Spreadsheet File 3-20
Disable Warning When Adding New Worksheet 3-21
Format Cells in Excel Files 3-21
Define Import Options for Tables 3-22
Low-Level File I/O
4
Import Text Data Files with Low-Level I/O 4-2
Overview 4-2
Reading Data in a Formatted Pattern 4-3
Reading Data Line-by-Line 4-5
Testing for End of File (EOF) 4-6
Opening Files with Different Character Encodings 4-9
Import Binary Data with Low-Level I/O 4-10
Low-Level Functions for Importing Data 4-10
Reading Binary Data in a File 4-10
Reading Portions of a File 4-13
Reading Files Created on Other Systems 4-15
Opening Files with Different Character Encodings 4-16
Export to Text Data Files with Low-Level I/O 4-18
Write to Text Files Using fprintf 4-18
Append To or Overwrite Existing Text Files 4-20
Open Files with Different Character Encodings 4-23
Export Binary Data with Low-Level I/O 4-24
Low-Level Functions for Exporting Data 4-24
Write Binary Data to a File 4-24
Overwrite or Append to an Existing Binary File 4-25
Create a File for Use on a Different System 4-27
Open Files with Different Character Encodings 4-28
Write and Read Complex Numbers 4-28
Internet of Things (IoT) Data
5
Aggregate Data in ThingSpeak Channel 5-2
Regularize Irregularly Sampled Data 5-4
Plot Data Read from ThingSpeak Channel 5-6
Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit 5-8
Images
6
Importing Images 6-2
Getting Information About Image Files 6-2
Reading Image Data and Metadata from TIFF Files 6-3
Exporting to Images 6-6
Exporting Image Data and Metadata to TIFF Files 6-6
Scientific Data
Import CDF Files Using Low-Level Functions 7-2
Represent CDF Time Values 7-5
Import CDF Files Using High-Level Functions 7-6
Export to CDF Files 7-10
Map NetCDF API Syntax to MATLAB Syntax 7-13
Import NetCDF Files and OPeNDAP Data 7-15
MATLAB NetCDF Capabilities 7-15
Read from NetCDF File Using High-Level Functions 7-15
Find All Unlimited Dimensions in NetCDF File 7-18
Read from NetCDF File Using Low-Level Functions 7-19
Resolve Errors Reading OPeNDAP Data 7-23
Export to NetCDF Files 7-24
MATLAB NetCDF Capabilities 7-24
Create New NetCDF File From Existing File or Template 7-24
Merge Two NetCDF Files 7-26
Write Data to NetCDF File Using Low-Level Functions 7-28
Importing Flexible Image Transport System (FITS) Files 7-31
Importing HDF5 Files 7-33
Overview 7-33
Using the High-Level HDF5 Functions to Import Data 7-33
Using the Low-Level HDF5 Functions to Import Data 7-40
Exporting to HDF5 Files 7-41
Overview 7-41
Using the MATLAB High-Level HDF5 Functions to Export Data 7-41
Using the MATLAB Low-Level HDF5 Functions to Export Data
Using the MATLAB Low-Level HDF5 Functions to Export Data 7-42
Working with Non-ASCII Characters in HDF5 Files 7-50
Create Dataset and Attribute Names Containing Non-ASCII Characters 7-50
Create Variable-Length String Data Containing Non-ASCII Characters 7-51
Import HDF4 Files Programatically 7-54
Overview 7-54
Using the MATLAB HDF4 High-Level Functions 7-54
Map HDF4 to MATLAB Syntax 7-58
Import HDF4 Files Using Low-Level Functions 7-60
Import HDF4 Files Interactively 7-63
Step 1: Opening an HDF4 File in the HDF Import Tool 7-63
Step 2: Selecting a Data Set in an HDF File 7-65
Step 3: Specifying a Subset of the Data (Optional) 7-66
Step 4: Importing Data and Metadata 7-66
Step 5: Closing HDF Files and the HDF Import Tool 7-67
Using the HDF Import Tool Subsetting Options 7-67
About HDF4 and HDF-EOS 7-80
Export to HDF4 Files 7-81
Write MATLAB Data to HDF4 File $7-81$
Manage HDF4 Identifiers 7-83
Audio and Video
8
Read and Write Audio Files 8-2
Record and Play Audio 8-5
Record Audio 8-5
Play Audio 8-7
Record or Play Audio within a Function 8-8
Read Video Files 8-10
Supported Video and Audio File Formats 8-15
Video Data in MATLAB 8-15
Audio Data in MATLAB 8-17
Convert Between Image Sequences and Video 8-20
XML Documents
9
Importing XML Documents 9-2
What Is an XML Document Object Model (DOM)? 9-2
Example - Finding Text in an XML File 9-3
Exporting to XML Documents 9-5
Creating an XML File 9-5
Updating an Existing XML File 9-7
Memory-Mapping Data Files
10
Overview of Memory-Mapping 10-2
What Is Memory-Mapping? 10-2
Benefits of Memory-Mapping 10-2
When to Use Memory-Mapping 10-4
Maximum Size of a Memory Map 10-5
Byte Ordering 10-5
Map File to Memory 10-6
Create a Simple Memory Map 10-6
Specify Format of Your Mapped Data 10-7
Map Multiple Data Types and Arrays 10-8
Select File to Map 10-10
Read from Mapped File 10-12
Write to Mapped File 10-18
Write to Memory Mapped as Numeric Array 10-18
Write to Memory Mapped as Scalar Structure 10-19
Write to Memory Mapped as Nonscalar Structure 10-20
Syntaxes for Writing to Mapped File 10-21
Work with Copies of Your Mapped Data 10-22
Delete Memory Map 10-25
Ways to Delete a Memory Map 10-25
The Effect of Shared Data Copies On Performance 10-25
Share Memory Between Applications 10-26
Internet File Access
11
Server Authentication 11-2
Server Authentication For RESTful Web Services 11-2
Server Authentication For HTTP Web Services 11-2
Proxy Server Authentication 11-4
RESTful Web Services 11-4
HTTP Web Services 11-4
Use MATLAB Web Preferences For Proxy Server Settings 11-4
Use System Settings For Proxy Server Settings 11-5
MATLAB and Web Services Security 11-7
MATLAB Does Not Verify Certificate Chains 11-7
Download Data from Web Service 11-8
Convert Data from Web Service 11-11
Download Web Page and Files 11-14
Example - Use the webread Function 11-14
Example - Use the websave Function 11-15
Call Web Services from Functions 11-16
Error Messages Concerning Web Service Options 11-17
Send Email 11-18
Perform FTP File Operations 11-20
Display Hyperlinks in the Command Window 11-23
Create Hyperlinks to Web Pages 11-23
Transfer Files Using FTP 11-23
Large Data
12
Getting Started with MapReduce 12-3
What Is MapReduce? 12-3
MapReduce Algorithm Phases 12-4
Example MapReduce Calculation 12-5
Write a Map Function 12-10
Role of Map Function in MapReduce 12-10
Requirements for Map Function 12-11
Sample Map Functions 12-12
Write a Reduce Function 12-15
Role of the Reduce Function in MapReduce 12-15
Requirements for Reduce Function 12-16
Sample Reduce Functions 12-17
Speed Up and Deploy MapReduce Using Other Products 12-20
Execution Environment 12-20
Running in Parallel 12-20
Application Deployment 12-20
Build Effective Algorithms with MapReduce 12-22
Debug MapReduce Algorithms 12-25
Set Breakpoint 12-25
Execute mapreduce 12-26
Step Through Map Function 12-26
Step Through Reduce Function 12-28
Analyze Big Data in MATLAB Using MapReduce 12-32
Find Maximum Value with MapReduce 12-43
Compute Mean Value with MapReduce 12-46
Compute Mean by Group Using MapReduce 12-50
Create Histograms Using MapReduce 12-56
Simple Data Subsetting Using MapReduce 12-64
Using MapReduce to Compute Covariance and Related Quantities 12-72
Compute Summary Statistics by Group Using MapReduce 12-79
Using MapReduce to Fit a Logistic Regression Model $12-87$
Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce 12-95
Compute Maximum Average HSV of Images with MapReduce 12-101
Getting Started with Datastore 12-109
What Is a Datastore? 12-109
Create and Read from a Datastore 12-110
Select Datastore for File Format or Application 12-114
Datastores for Standard File Formats 12-114
Datastores for Specific Applications 12-115
Custom File Formats 12-117
Nondeterministic Datastores 12-117
Work with Remote Data 12-118
Amazon S3 12-118
Microsoft Azure Storage Blob 12-120
Hadoop Distributed File System 12-122
Read and Analyze Large Tabular Text File 12-125
Read and Analyze Image Files 12-128
Read and Analyze MAT-File with Key-Value Data 12-133
Read and Analyze Hadoop Sequence File 12-137
Develop Custom Datastore 12-139
Overview 12-139
Implement Datastore for Serial Processing 12-140
Add Support for Parallel Processing 12-143
Add Support for Hadoop 12-144
Add Support for Shuffling 12-145
Validate Custom Datastore 12-146
Testing Guidelines for Custom Datastores 12-148
Unit Tests 12-148
Workflow Tests 12-156
Next Steps 12-158
Set Up Datastore for Processing on Different Machines or Clusters 12-159
Save Datastore and Load on Different File System Platform 12-159Process Datastore Using Parallel and Distributed Computing12-160
Apache Parquet Data Type Mappings 12-163
Numeric Data Types 12-164
Text Data Types 12-165
Date and Time Data Types 12-165
Tall Arrays for Out-of-Memory Data 12-167
What is a Tall Array? 12-167
Benefits of Tall Arrays 12-167
Creating Tall Tables 12-167
Creating Tall Timetables 12-169
Creating Tall Arrays 12-170
Deferred Evaluation 12-170
Evaluation with gather 12-172
Saving, Loading, and Checkpointing Tall Arrays 12-173
Supporting Functions 12-174
Deferred Evaluation of Tall Arrays 12-175
Display of Unevaluated Tall Arrays 12-175
Evaluation with gather 12-176
Resolve Errors with gather 12-177
Example: Calculate Size of Tall Array 12-177
Example: Multi-pass Calculations with Tall Arrays 12-178
Summary of Behavior and Recommendations 12-180
Index and View Tall Array Elements 12-181
Extract Top Rows of Array 12-181
Extract Bottom Rows of Array 12-182
Indexing Tall Arrays 12-182
Extract Tall Table Variables 12-185
Concatenation with Tall Arrays 12-187
Assignment and Deletion with Tall Arrays 12-187
Extract Specified Number of Rows in Sorted Order 12-188
Summarize Tall Array Contents 12-189
Return Subset of Calculation Results 12-191
Histograms of Tall Arrays 12-192
Visualization of Tall Arrays 12-198
Tall Array Plotting Examples 12-199
Grouped Statistics Calculations with Tall Arrays 12-207
Extend Tall Arrays with Other Products 12-215
Statistics and Machine Learning 12-215
Control Where Your Code Runs 12-215
Work with Databases 12-216
Analyze Big Data in MATLAB Using Tall Arrays 12-217
Develop Custom Tall Array Algorithms 12-228
Reasons to Implement Custom Algorithms 12-228
Supported APIs 12-229
Background: Tall Array Blocks 12-229
Single-Step Transformation Operation 12-231
Two-Step Reduction Operation 12-235
Sliding-Window Operations 12-239
Control Output Data Type 12-245
Coding and Performance Tips 12-246

TCP/IP Support in MATLAB

TCP/IP Communication Overview 13-2
Create a TCP/IP Connection 13-3
Configure Properties for TCP/IP Communication 13-6
Write and Read Data over TCP/IP Interface 13-9
Write Data 13-9
Read Data 13-9
Acquire Data from a Weather Station Server 13-10
Read and Write uint8 Data 13-11
Bluetooth Low Energy Communication
14
Bluetooth Low Energy Communication Overview 14-2
Prerequisites and Setup 14-2
Bluetooth Low Energy Concepts 14-2
Services, Characteristics, and Descriptors 14-3
Find Your Bluetooth Low Energy Peripheral Devices 14-5
Scan for Devices 14-5
Connect to a Device 14-7
Work with Device Characteristics and Descriptors 14-9
Access Device Characteristics 14-9
Access Device Descriptors 14-12
Collect Data from Fitness Monitoring Devices 14-15
Track Orientation of Bluetooth Low Energy Device 14-23
Troubleshooting Bluetooth Low Energy 14-30
Supported Platforms 14-30
Device Discovery and Connection 14-30
Read and Write Data 14-31

File Opening, Loading, and Saving

- "Supported File Formats for Import and Export" on page 1-2
- "Methods for Importing Data" on page 1-7
- "Import Images, Audio, and Video Interactively" on page 1-9
- "Import or Export a Sequence of Files" on page 1-13
- "Save and Load Parts of Variables in MAT-Files" on page 1-14
- "MAT-File Versions" on page 1-19
- "Growing Arrays Using matfile Function" on page 1-23
- "Unexpected Results When Loading Variables Within a Function" on page 1-25
- "Create Temporary Files" on page 1-27

Supported File Formats for Import and Export

The following table shows the file formats that you can import and export from the MATLAB application.

In addition to the functions in the table, you also can use the Import Tool to import text or spreadsheet file formats interactively.

File Content	Extension	Description	Import Function	Export Function		
MATLAB formatted data	MAT	Saved MATLAB workspace	load	save		
		Partial access of variables in MATLAB workspace	matfile	matfile		
Text	any, including: CSV TXT	Comma delimited numbers	readmatrix	writematrix		
		Delimited numbers readmatrix	writematrix			
		Delimited numbers, or a mix of text and numbers	textscan	none		
		Column-oriented delimited numbers or a mix of text and numbers	readtable	readcell	writetable	writecell
:---						

File Content	Extension	Description	Import Function	Export Function
Spreadsheet	XLS XLSX XLSM XLSB (Systems with Microsoft ${ }^{\text {® }}$ Excel ${ }^{\circledR}$ for Windows ${ }^{\circledR}$ only) XLTM (import only) XLTX (import only) ODS (Systems with Microsoft Excel for Windows only)	Column-oriented data in worksheet or range of spreadsheet	readmatrix readtable readcell readvars	writematrix writetable writecell
Extensible Markup Language	XML	XML-formatted text	xml read	xmlwrite
Data Acquisition Toolbox ${ }^{\text {TM }}$ file	DAQ	Data Acquisition Toolbox	daqread	none
Scientific data	CDF	Common Data Format	See "Common Data Format"	See cdflib
	FITS	Flexible Image Transport System	See "FITS Files"	See "FITS Files"
	HDF	Hierarchical Data Format, version 4, or HDF-EOS v. 2	See "HDF4 Files"	See "HDF4 Files"
	H5	HDF or HDF-EOS, version 5	See "HDF5 Files"	See "HDF5 Files"
	NC	Network Common Data Form (netCDF)	See "NetCDF Files"	See "NetCDF Files"

File Content	Extension	Description	Import Function	Export Function
Image	BMP	Windows Bitmap	imread	imwrite
	GIF	Graphics Interchange Format		
	HDF	Hierarchical Data Format		
	JPEG	Joint Photographic		
	JPG	Experts Group		
	JP2	JPEG 2000		
	JPF			
	JPX			
	J2C			
	J2K			
	PBM	Portable Bitmap		
	PCX	Paintbrush		
	PGM	Portable Graymap		
	PNG	Portable Network Graphics		
	PNM	Portable Any Map		
	PPM	Portable Pixmap		
	RAS	Sun ${ }^{\text {TM }}$ Raster		
	$\begin{aligned} & \mathrm{TIFF} \\ & \mathrm{TIF} \end{aligned}$	Tagged Image File Format		
	XWD	X Window Dump		
	CUR	Windows Cursor resources	imread	none
	ICO	Windows Icon resources		
Audio (all platforms)	$\begin{aligned} & \mathrm{AU} \\ & \mathrm{SND} \end{aligned}$	NeXT/Sun sound	audioread	audiowrite
	AIFF	Audio Interchange File Format		

File Content	Extension	Description	Import Function	Export Function
	AIFC	Audio Interchange File Format, with compression codecs		
	FLAC	Free Lossless Audio Codec		
	OGG	Ogg Vorbis		
	WAV	Microsoft WAVE sound		
Audio (Windows)	$\begin{aligned} & \text { M4A } \\ & \text { MP4 } \end{aligned}$	MPEG-4	audioread	audiowrite
	any	Formats supported by Microsoft Media Foundation	audioread	none
Audio (Mac)	$\begin{aligned} & \text { M4A } \\ & \text { MP4 } \end{aligned}$	MPEG-4	audioread	audiowrite
Audio (Linux ${ }^{\circledR}$)	any	Formats supported by GStreamer	audioread	none
Video (all platforms)	AVI	Audio Video Interleave	VideoReader	VideoWriter
	MJ2	Motion JPEG 2000		
Video (Windows)	MPG	MPEG-1	VideoReader	none
	$\begin{aligned} & \text { ASF } \\ & \text { ASX } \\ & \text { WMV } \end{aligned}$	Windows Media ${ }^{\circledR}$		
	any	Formats supported by Microsoft DirectShow ${ }^{\circledR}$		
Video (Windows 7 or later)	$\begin{aligned} & \text { MP4 } \\ & \text { M4V } \end{aligned}$	MPEG-4	VideoReader	VideoWriter
	MOV	QuickTime	VideoReader	none
	any	Formats supported by Microsoft Media Foundation		

File Content	Extension	Description	Import Function	Export Function
Video (Mac)	MP4 M4V	MPEG-4	VideoReader	VideoWriter
	MPG	MPEG-1	VideoReader	none
	MOV	QuickTime		
	any	Formats supported by QuickTime, including .3gp, . 3g2, and .dv		
Video (Linux)	any	Formats supported by your installed GStreamer plug-ins, including .ogg	VideoReader	none
Triangulation	STL	Stereolithography	stlread	stlwrite

You can use web services such as a RESTful or WSDL to read and write data in an internet media type format such as JSON, XML, image, or text. For more information, see:

- "Web Access"
- "WSDL (Web Services Description Language)"

Methods for Importing Data

```
In this section...
"Tools that Import Multiple File Formats" on page 1-7
"Importing Specific File Formats" on page 1-7
"Importing Data with Low-Level I/O" on page 1-8
```

Caution When you import data into the MATLAB workspace, the new variables you create overwrite any existing variables in the workspace that have the same name.

Tools that Import Multiple File Formats

You can import data into MATLAB from a disk file or the system clipboard interactively.
To import data from a file, do one of the following:

- On the Home tab, in the Variable section, select Import Data $\sqrt{6}$
- Double-click a file name in the Current Folder browser.
- Call uiimport.

To import data from the clipboard, do one of the following:

- On the Workspace browser title bar, click \odot, and then select Paste.
- Call uiimport.

To import without invoking a graphical user interface, the easiest option is to use the importdata function.

For a complete list of the formats you can import interactively or with importdata, see "Supported File Formats for Import and Export" on page 1-2.

Importing Specific File Formats

MATLAB includes functions tailored to import specific file formats. Consider using formatspecific functions instead of importing data interactively when you want to import only a portion of a file. Many of the format-specific functions provide options for selecting
ranges or portions of data. Some format-specific functions allow you to request multiple optional outputs. This option is not available when you import interactively.

For a complete list of the format-specific functions, see "Supported File Formats for Import and Export" on page 1-2.

For binary data files, consider "Overview of Memory-Mapping" on page 10-2. Memorymapping enables you to access file data using standard MATLAB indexing operations.

Alternatively, MATLAB toolboxes perform specialized import operations. For example, use Database Toolbox ${ }^{\mathrm{TM}}$ software for importing data from relational databases. Refer to the documentation on specific toolboxes to see the available import features.

Importing Data with Low-Level I/O

If the Import Wizard, importdata, and format-specific functions cannot read your data, use low-level I/O functions such as fscanf or fread. Low-level functions allow the most control over reading from a file, but require detailed knowledge of the structure of your data. For more information, see:

- "Import Text Data Files with Low-Level I/O" on page 4-2
- "Import Binary Data with Low-Level I/O" on page 4-10

Import Images, Audio, and Video Interactively

Import data interactively into MATLAB workspace.

In this section...
"Viewing the Contents of a File" on page 1-9
"Specifying Variables" on page 1-10
"Generating Reusable MATLAB Code" on page 1-11

Note For information on importing text files, see "Read Text File Data Using Import Tool" on page 2-5. For information on importing spreadsheets, see "Read Spreadsheet Data Using Import Tool" on page 3-5. For information on importing HDF4 files, see "Import HDF4 Files Interactively" on page 7-63.

Viewing the Contents of a File

Start the Import Wizard by selecting Import Data
To view images or video, or to listen to audio, click the Back button on the first window that the Import Wizard displays.

The right pane of the new window includes a preview tab．Click the button in the preview tab to show an image or to play audio or video．

Specifying Variables

The Import Wizard generates default variable names based on the format and content of your data．You can change the variables in any of the following ways：
－＂Renaming or Deselecting Variables＂on page 1－10
－＂Importing to a Structure Array＂on page 1－11
The default variable name for data imported from the system clipboard is A＿pastespecial．

If the Import Wizard detects a single variable in a file，the default variable name is the file name．Otherwise，the Import Wizard uses default variable names that correspond to the output fields of the importdata function．For more information on the output fields，see the importdata function reference page．

Renaming or Deselecting Variables

To override the default variable name，select the name and type a new one．

Import	Name－	Size	Bytes	Class	
V	田ExpoMapFigurePos	1×4	32	double	，
V	田	43×43	14792	double	
V	田	60×3	1440	double	
V	目	43×43	14792	double	
V	田 axon	1×1	8	double	三
V	保	1×1	8	double	
V	田light	1×1	8	double	
V	田source	3×1	24	double	
V	田 \times b	7×1	56	double	
V	田×g	7×1	56	double	
V	\＃xh	7×1	56	double	－

To avoid importing a particular variable, clear the check box in the Import column.

Importing to a Structure Array

To import data into fields of a structure array rather than as individual variables, start the Import Wizard by calling uiimport with an output argument. For example, the sample file durer.mat contains three variables: X , caption, and map. If you issue the command

```
durerStruct = uiimport('durer.mat')
```

and click the Finish button, the Import Wizard returns a scalar structure with three fields:

```
durerStruct =
            X: [648x509 double]
        map: [128x3 double]
    caption: [2x28 char]
```

To access a particular field, use dot notation. For example, view the caption field:

```
disp(durerStruct.caption)
```

MATLAB returns:
Albrecht Durer's Melancolia.
Can you find the matrix?
For more information, see "Access Data in Structure Array".

Generating Reusable MATLAB Code

To create a function that reads similar files without restarting the Import Wizard, select the Generate MATLAB code check box. When you click Finish to complete the initial import operation, MATLAB opens an Editor window that contains an unsaved function. The default function name is importfile.m or importfileN.m, where N is an integer.

The function in the generated code includes the following features:

- For text files, if you request vectors from rows or columns, the generated code also returns vectors.
- When importing from files, the function includes an input argument for the name of the file to import, fileToRead1.
- When importing into a structure array, the function includes an output argument for the name of the structure, newDatal.

However, the generated code has the following limitations:

- If you rename or deselect any variables in the Import Wizard, the generated code does not reflect those changes.
- If you do not import into a structure array, the generated function creates variables in the base workspace. If you plan to call the generated function from within your own function, your function cannot access these variables. To allow your function to access the data, start the Import Wizard by calling uiimport with an output argument. Call the generated function with an output argument to create a structure array in the workspace of your function.

MATLAB does not automatically save the function. To save the file, select Save. For best results, use the function name with a .m extension for the file name.

See Also

VideoReader | audioread | imread

More About

- "Read Video Files" on page 8-10
- "Read and Write Audio Files" on page 8-2
- "Importing Images" on page 6-2

Import or Export a Sequence of Files

To import or export multiple files, create a control loop to process one file at a time. When constructing the loop:

- To build sequential file names, use sprintf.
- To find files that match a pattern, use dir.
- Use function syntax to pass the name of the file to the import or export function. (For more information, see "Command vs. Function Syntax".)

For example, to read files named file1.txt through file20.txt with importdata:

```
numfiles = 20;
mydata = cell(1, numfiles);
for k = l:numfiles
    myfilename = sprintf('file%d.txt', k);
    mydata{k} = importdata(myfilename);
end
```

To read all files that match *.jpg with imread:

```
jpegFiles = dir('*.jpg');
numfiles = length(jpegFiles);
mydata = cell(1, numfiles);
for k = 1:numfiles
    mydata{k} = imread(jpegFiles(k).name);
end
```


Save and Load Parts of Variables in MAT-Files

In this section...
"Save and Load Using the matfile Function" on page 1-14
"Load Parts of Variables Dynamically" on page 1-16
"Avoid Inadvertently Loading Entire Variables" on page 1-17
"Partial Loading and Saving Requires Version 7.3 MAT-Files" on page 1-17

You can save and load parts of variables directly in MAT-files without loading them into memory using the matfile function. The primary advantage of using the matfile function over the load or save functions is that you can process parts of very large data sets that are otherwise too large to fit in memory. When working with these large variables, read and write as much data into memory as possible at a time. Otherwise, repeated file access can negatively impact the performance of your code.

Save and Load Using the matfile Function

This example shows how to load, modify, and save part of a variable in an existing MATfile using the matfile function.

Create a Version 7.3 MAT-file with two variables, A and B.

```
A = rand(5);
B = magic(10);
save example.mat A B -v7.3;
clear A B
```

Construct a MatFile object from the MAT-file, example.mat. The matfile function creates a MatFile object that corresponds to the MAT-file and contains the properties of the MatFile object. By default, matfile only permits loading from existing MAT-files.

```
exampleObject = matfile('example.mat');
```

To enable saving, call matfile with the Writable parameter.

```
exampleObject = matfile('example.mat','Writable',true);
```

Alternatively, construct the object and set Properties. Writable in separate steps.

```
exampleObject = matfile('example.mat');
```

example0bject.Properties.Writable = true;

Load the first row of B from example.mat into variable firstRowB and modify the data. When you index into objects associated with Version 7.3 MAT-files, MATLAB® loads only the part of the variable that you specify.

```
firstRowB = exampleObject.B(1,:);
firstRowB = 2 * firstRowB;
```

Update the values in the first row of variable B in example.mat using the values stored in firstRowB.

```
exampleObject.B(1,:) = firstRowB;
```

For very large files, the best practice is to read and write as much data into memory as possible at a time. Otherwise, repeated file access negatively impacts the performance of your code. For example, suppose that your file contains many rows and columns, and that loading a single row requires most of the available memory. Rather than updating one element at a time, update each row.

```
[nrowsB,ncolsB] = size(exampleObject,'B');
for row = 1:nrowsB
    exampleObject.B(row,:) = row * exampleObject.B(row,:);
end
```

If memory is not a concern, you can update the entire contents of a variable at a time.

```
exampleObject.B = 10 * exampleObject.B;
```

Alternatively, update a variable by calling the save function with the - append option. The - append option requests that the save function replace only the specified variable, B, and leave other variables in the file intact. This method always requires that you load and save the entire variable.

```
load('example.mat','B');
B(1,:) = 2 * B(1,:);
save('example.mat','-append','B');
```

Add a variable to the file using the matlab.io. MatFile object.
exampleObject.C = magic(8);
You also can add the variable by calling the save function with the -append option.

```
C = magic(8);
save('example.mat','-append','C');
clear C
```


Load Parts of Variables Dynamically

This example shows how to access parts of variables from a MAT-file dynamically. This is useful when working with MAT-files whose variables names are not always known.

Consider the example MAT-file, topography. mat, that contains one or more arrays with unknown names. Construct a MatFile object that corresponds to the file, topography.mat. Call who to get the variable names in the file.

```
example0bject = matfile('topography.mat');
varlist = who(exampleObject)
varlist = 4xl cell array
    {'topo' }
    {'topolegend'}
    {'topomap1' }
    {'topomap2' }
```

varlist is a cell array containing the names of the four variables in topography. mat.
The third and fourth variables, topomap1 and topomap2, are both arrays containing topography data. Load the elevation data from the third column of each variable into a field of the structure array, S. For each field, specify a field name that is the original variable name prefixed by elevation0f_. Then, access the data in each variable as properties of exampleObject. Because varName is a variable, enclose it in parentheses.

```
for index = 3:4
    varName = varlist{index};
    S(1).(['elevationOf_',varName]) = exampleObject.(varName)(:,3);
end
```

View the contents of the structure array, S.

```
S
S = struct with fields:
    elevationOf_topomap1: [64\times1 double]
    elevationOf_topomap2: [128x1 double]
```

S has two fields, elevation0f_topomap1 and elevation0f_topomap2, each containing a column vector.

Avoid Inadvertently Loading Entire Variables

When you do not know the size of a large variable in a MAT-file and want to load only parts of that variable at a time, avoid using the end keyword. Using the end keyword temporarily loads the entire contents of the variable in question into memory. For very large variables, loading takes a long time or generates Out of Memory errors. Instead, call the size method for MatFile objects.

For example, this code temporarily loads the entire contents of B in memory:
lastColB = exampleObject.B(:,end);
Use this code instead to improve performance:

```
[nrows,ncols] = size(exampleObject,'B');
lastColB = exampleObject.B(:,ncols);
```

Similarly, any time you refer to a variable with syntax of the form matObj .varName, such as example0bject. B, MATLAB temporarily loads the entire variable into memory. Therefore, make sure to call the size method for MatFile objects with syntax such as:
[nrows,ncols] = size(exampleObject,'B');
rather than passing the entire contents of example0bject. B to the size function, [nrows,ncols] = size(exampleObject.B);

The difference in syntax is subtle, but significant.

Partial Loading and Saving Requires Version 7.3 MAT-Files

Any load or save operation that uses a MatFile object associated with a Version 7 or earlier MAT-file temporarily loads the entire variable into memory.

Use the matfile function to create files in Version 7.3 format. For example, this code newfile = matfile('newfile.mat');
creates a MAT-file that supports partial loading and saving.
However, by default, the save function creates Version 7 MAT-files. Convert existing MATfiles to Version 7.3 by calling the save function with the -v7.3 option, such as:

```
load('durer.mat');
save('mycopy_durer.mat','-v7.3');
```

To change your preferences to save new files in Version 7.3 format, access the Environment section on the Home tab, and click Preferences. Select MATLAB > General > MAT-Files. This preference is not available in MATLAB Online ${ }^{\mathrm{TM}}$.

See Also

load|matfile|save

More About

- "Save and Load Workspace Variables"
- "Growing Arrays Using matfile Function" on page 1-23
- "MAT-File Versions" on page 1-19

MAT-File Versions

In this section...

"Overview of MAT-File Versions" on page 1-19
"Save to Nondefault MAT-File Version" on page 1-21
"Data Compression" on page 1-21
"Accelerate Save and Load Operations for Version 7.3 MAT-Files" on page 1-22

Overview of MAT-File Versions

MAT-files are binary MATLAB files that store workspace variables. Starting with MAT-file Version 4, there are several subsequent versions of MAT-files that support an increasing set of features. MATLAB releases R2006b and later all support all MAT-file versions.

By default, all save operations create Version 7 MAT-files. The only exception to this is when you create new MAT-files using the matfile function. In this case, the default MATfile version is 7.3.

To identify or change the default MAT-file version, access the MAT-Files Preferences.

- On the Home tab, in the Environment section, click Preferences.
- Select MATLAB > General > MAT-Files.

The preferences apply to both the save function and the Save menu options.
The maximum size of a MAT-file is imposed only by your native file system.
This table lists and compares all MAT-file versions.

MAT-File Version	Support ed MATLAB Releases	Supported Features	Compres sion	Maximum Size of Each Variable	Value of version argument in save function	Preferenc e Option
Version 7.3	R2006b (Version 7.3) or later	Saving and loading parts of variables, and all Version 7 features	Yes	$\begin{aligned} & \geq 2 \text { GB on } \\ & 64 \text {-bit } \\ & \text { computers } \end{aligned}$	'-v7.3'	MATLAB Version 7.3 or later (save v7.3)
Version 7	R14 (Version 7.0) or later	Unicode ${ }^{\circledR}$ character encoding, which enables file sharing between systems that use different default character encoding schemes, and all Version 6 features.	Yes	2^31 bytes per variable	'-v7'	MATLAB Version 7 or later (save -v7)
Version 6	R8 (Version 5) or later	N -dimensional arrays, cell arrays, structure arrays, variable names longer than 19 characters, and all Version 4 features.	No	2^31 bytes per variable	'-v6'	MATLAB Version 5 or later (save -v6)
Version 4	All	Two-dimensional double, character, and sparse arrays	No	100,000,00 0 elements per array, and $2^{\wedge} 31$ bytes per variable	'-v4'	n/a

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead storage to describe the contents of the file. For cell arrays, structure arrays, or other
containers that can store heterogeneous data types, Version 7.3 MAT-files are sometimes larger than Version 7 MAT-files.

Save to Nondefault MAT-File Version

Save to a MAT-file version other than the default version when you want to:

- Allow access to the file using earlier versions of MATLAB.
- Take advantage of Version 7.3 MAT-file features.
- Reduce the time required to load and save some files by storing uncompressed data.
- Reduce the size of some files by storing compressed data.

To save to a MAT-file version other than the default version, specify a version as the last input to the save function. For example, to create a Version 6 MAT-file named myfile.mat, type:

```
save('myfile.mat','-v6')
```


Data Compression

Beginning with Version 7, MATLAB compresses data when writing to MAT-files to save storage space. Data compression and decompression slow down all save operations and some load operations. In most cases, the reduction in file size is worth the additional time spent.

In some cases, loading compressed data actually can be faster than loading uncompressed data. For example, consider a block of data in a numeric array saved to both a 10 MB compressed file and a 100 MB uncompressed file. Loading the first 10 MB takes the same amount of time for each file. Loading the remaining 90 MB from the uncompressed file takes nine times as long as loading the first 10 MB . Completing the load of the compressed file requires only the relatively short time to decompress the data.

The benefits of data compression are negligible in the following cases:

- The amount of data in each item is small relative to the complexity of its container. For example, simple numeric arrays take less time to compress and uncompress than cell or structure arrays of the same size. Compressing arrays that result in an uncompressed file size of less than 3 MB offers limited benefit, unless you are transferring data over a network.
- The data is random, with no repeated patterns or consistent values.

Accelerate Save and Load Operations for Version 7.3 MATFiles

Version 7.3 MAT-files use an HDF5-based format that stores data in compressed chunks. The time required to load part of a variable from a Version 7.3 MAT-file depends on how that data is stored across one or more chunks. Each chunk that contains any portion of the data you want to load must be fully uncompressed to access the data. Rechunking your data can improve the performance of the load operation. To rechunk data, use the HDF5 command-line tools, which are part of the HDF5 distribution.

See Also

matfile|save

More About

- "Save and Load Workspace Variables"

Growing Arrays Using matfile Function

When writing a large number of large values to a MAT-file, the size of the file increases in a nonincremental way. This method of increase is expected. To minimize the number of times the file must grow and ensure optimal performance though, assign initial values to the array prior to populating it with data.

For example, suppose that you have a writable MatFile object.

```
fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;
```

Define parameters of the values to write. In this case, write one million values, fifty thousand at a time. The values should have a mean of 123.4, and a standard deviation of 56.7.

```
size = 1000000;
chunk = 50000;
mean = 123.4;
std = 56.7;
```

Assign an initial value of zero to the last element in the array prior to populating it with data.

```
matObj.data(1,size) = 0;
```

View the size of the file.

- On Windows systems, use dir.
system('dir matFile0fDoubles.mat');
- On UNIX ${ }^{\circledR}$ systems, use ls -ls:

```
system('ls -ls matFileOfDoubles.mat');
```

In this case, matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value to the last element of the array does not create a large file. It does, however, prepare your system for the potentially large size increase of matFile0fDoubles.mat.

Write data to the array, one chunk at a time.

```
nout = 0;
while(nout < size)
```

```
    fprintf('Writing %d of %d\n',nout,size);
    chunkSize = min(chunk,size-nout);
    data = mean + std * randn(1,chunkSize);
    matObj.data(1,(nout+1):(nout+chunkSize)) = data;
    nout = nout + chunkSize;
end
```

View the size of the file.
system('dir matFileOfDoubles.mat');

The file size is now larger because the array is populated with data.

See Also

matfile

More About

- "Save and Load Parts of Variables in MAT-Files" on page 1-14

Unexpected Results When Loading Variables Within a Function

If you have a function that loads data from a MAT-file and find that MATLAB does not return the expected results, check whether any variables in the MAT-file share the same name as a MATLAB function. Common variable names that conflict with function names include i, j, mode, char, size, and path.

These unexpected results occur because when you execute a function, MATLAB preprocesses all the code in the function before running it. However, calls to load are not preprocessed, meaning MATLAB has no knowledge of the variables in your MAT-file. Variables that share the same name as MATLAB functions are, therefore, preprocessed as MATLAB functions, causing the unexpected results. This is different from scripts, which MATLAB preprocesses and executes line by line, similar to the Command Window.

For example, consider a MAT-file with variables height, width, and length. If you load these variables in a function such as findVolume, MATLAB interprets the reference to length as a call to the MATLAB length function, and returns an error.

```
function vol = findVolume(myfile)
    load(myfile);
    vol = height * width * length;
end
Error using length
Not enough input arguments.
```

To avoid confusion, when defining your function, choose one (or more) of these approaches:

- Load the variables into a structure array. For example:

```
function vol = findVolume(myfile)
    dims = load(myfile);
    vol = dims.height * dims.width * dims.length;
end
```

- Explicitly include the names of variables in the call to the load function. For example:

```
function vol = findVolume(myfile)
    load(myfile,'height','width','length')
    vol = height * width * length;
end
```

- Initialize the variables within the function before calling load. To initialize a variable, assign it to an empty matrix or an empty character vector. For example:

```
function vol = findVolume(myfile)
    height = [];
    width = [];
    length = [];
    load(myfile);
    vol = height * width * length;
```

To determine whether a particular variable name is associated with a MATLAB function, use the exist function. A return value of 5 determines that the name is a built-in MATLAB function.

See Also

load

More About

- "Save and Load Workspace Variables"

Create Temporary Files

Use the tempdir function to return the name of the folder designated to hold temporary files on your system. For example, issuing tempdir on The Open Group UNIX systems returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder. The returned file name is a suitable destination for temporary data. For example, if you need to store some data in a temporary file, then you might issue the following command first:

```
fileID = fopen(tempname,'w');
```

In most cases, tempname generates a universally unique identifier (UUID). However, if you run MATLAB without $\mathrm{JVM}^{\mathrm{TM}}$, then tempname generates a random name using the CPU counter and time, and this name is not guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On other systems, designating a file as temporary means only that the file is not backed up.

Text Files

- "Import Text Files" on page 2-2
- "Read Text File Data Using Import Tool" on page 2-5
- "Import Dates and Times from Text Files" on page 2-10
- "Import Numeric Data from Text Files into Matrix" on page 2-15
- "Import Mixed Data from Text File into Table" on page 2-18
- "Import Block of Mixed Data from Text File into Table or Cell Array" on page 2-22
- "Write Data to Text Files" on page 2-27
- "Write to a Diary File" on page 2-31
- "Read Collection or Sequence of Text Files" on page 2-32
- "Import Block of Numeric Data from Text File" on page 2-35

Import Text Files

Text files often contains a mix of numeric and text data as well as variable and row names, which is best represented in MATLAB as a table. You can import tabular data from text files into a table using the Import Tool or the readtable function.

Import Text Files Using the Import Tool

The Import Tool allows you to import into a table or other data type. For example, read a subset of data from the sample file airlinesmall. csv. Open the file using the Import Tool and select options such as the range of data to import and the output type. Then,
click on the Import Selection button to import the data into the MATLAB workspace.

Import Text Files Using readtable

Alternatively, you can read tabular data from a text file into a table using the readtable function with the file name, for example:

```
T = readtable('airlinesmall.csv');
```

Display the first five rows and columns from the table.

```
T(1:5,1:5)
ans =
    5*5 table
    Year Month DayofMonth DayOfWeek DepTime
\begin{tabular}{|c|c|c|c|c|}
\hline 1987 & 10 & 21 & 3 & \{'642' \} \\
\hline 1987 & 10 & 26 & 1 & \{'1021'\} \\
\hline 1987 & 10 & 23 & 5 & \{'2055'\} \\
\hline 1987 & 10 & 23 & 5 & \{'1332'\} \\
\hline 1987 & 10 & 22 & 4 & \{'629' \\
\hline
\end{tabular}
```


Import Data from Text Files as Other Data Types

In addition to tables, you can import tabular data from a text file into the MATLAB workspace as a timetable, a numeric matrix, a cell array, or separate column vectors. Based on the data type you need, use one of these functions.

Data Type of Output	Function
Timetable	readtimetable
Numeric Matrix	readmatrix
Cell Array	readcell
Separate Column Vectors	readvars

See Also
Import Tool | readtable

More About

- "Read Text File Data Using Import Tool" on page 2-5
- "Import Mixed Data from Text File into Table" on page 2-18
- "Access Data in Tables"

Read Text File Data Using Import Tool

```
In this section...
"Select Data Interactively" on page 2-5
"Import Data from Multiple Text Files" on page 2-8
```

Import data from a text file by selecting data interactively. You also can repeat this import operation on multiple text files by using the generate code feature of the import tool.

Select Data Interactively

This example shows how to import data from a text file with column headers and numeric data using the Import Tool. The file in the example, grades. txt, contains this data:

John	Ann	Mark	Rob
88.4	91.5	89.2	77.3
83.2	88.0	67.8	91.0
77.8	76.3		92.5
92.1	96.4	81.2	84.6

To create the file, copy and paste the data using any text editor.
On the Home tab, in the Variable section, click Import Data . Alternatively, rightclick the name of the file in the Current Folder browser and select Import Data. The Import Tool opens.

The Import Tool recognizes that grades.txt is a fixed width file. In the Imported Data section, select how you want the data to be imported. The following table indicates how data is imported depending on the option you select.

Option Selected	How Data is Imported
Table	Import selected data as a table.
Column vectors	Import each column of the selected data as an individual m-by-1 vector.
Numeric Matrix	Import selected data as an m-by-n numeric array.
String Array	Import selected data as a string array that contains text.
Cell Array	Import selected data as a cell array that can contain multiple data types, such as numeric data and text.

Under Delimiter Options, you can specify whether the Import Tool should use a period or a comma as the decimal separator for numeric values.

Double-click a variable name to rename it.

You also can use the Variable Names Row box in the Selection section to select the row in the text file that you want the Import Tool to use for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are cells that contain data that cannot be imported in the format specified for that column. In this example, the cell at row 3, column C, is considered unimportable because a blank cell is not numeric. Highlight colors correspond to proposed rules to make the data fit into a numeric array.

You can add, remove, reorder, or edit rules, such as changing the replacement value from NaN to another value.

All rules apply to the imported data only and do not change the data in the file. Any time you are importing into a matrix or into numeric column vectors and the range includes non-numeric data, then you must specify the rules.

To see how your data is imported, place the cursor over individual cells.

When you click the Import Selection button , the Import Tool creates variables in your workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files

To perform the same import operation on multiple files, use the code generation feature of the Import Tool. If you import a file one time and generate code from the Import Tool, you can use this code to make it easier to repeat the operation. The Import Tool generates
a program script that you can edit and run to import the files, or a function that you can call for each file.

Suppose you have a set of text files in the current folder. The files are named myfile01.txt through myfile25.txt, and you want to import the data from each file, starting from the second row. Generate code to import the entire set of files as follows:

1 Open one of the files in the Import Tool.
2 Click Import Selection * , and then select Generate Function. The Import Tool generates code similar to the following excerpt, and opens the code in the Editor.

```
function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.
...
```

3 Save the function.
4 In a separate program file or at the command line, create a for loop to import data from each text file into a cell array named myData:

```
numFiles = 25;
startRow = 2;
endRow = inf;
myData = cell(1,numFiles);
for fileNum = 1:numFiles
    fileName = sprintf('myfile%02d.txt',fileNum);
    myData{fileNum} = importfile(fileName,startRow,endRow);
end
```

Each cell in myData contains an array of data from the corresponding text file. For example, myData\{1\} contains the data from the first file, myfile01.txt.

See Also

readcell|readmatrix|readtable|readtimetable|readvars|textscan

More About

- "Import Text Files" on page 2-2

Import Dates and Times from Text Files

Import formatted dates and times (such as ' $01 / 01 / 01^{\prime}$ or ' $12: 30: 45$ ') from column oriented tabular data in three ways.

- Import Tool - Interactively select and import dates and times.
- readtable function - Automatically detect variables with dates and times and import them into a table.
- Import Options - Use readtable with detectImportOptions function for more control over importing date and time variables. For example, you can specify properties such as FillValue and DatetimeFormat.

This example shows you how to import dates and times from text files using each of these methods.

Import Tool

Open the file outages.csv using the Import Tool. Specify the formats of dates and times using the drop-down menu for each column. You can select from a predefined date format, or enter a custom format. To import the OutageTime column, specify the custom format yyyy-MM-dd HH:mm. Then, click the Import Selection button to import the data into the workspace.

readtable Function

Use the readtable function and display 10 rows of the OutageTime variable. readtable automatically detects the date time variables and formats.

```
filename = 'outages.csv';
T = readtable(filename);
T.OutageTime(1:10)
ans = 10x1 datetime array
    2002-02-01 12:18
    2003-01-23 00:49
    2003-02-07 21:15
    2004-04-06 05:44
    2002-03-16 06:18
    2003-06-18 02:49
    2004-06-20 14:39
    2002-06-06 19:28
    2003-07-16 16:23
    2004-09-27 11:09
```


Import Options

Use an import options object for more control over importing date and time variables. For example, change the date-time display format or specify a fill value for missing dates.

Create an import options object for the outages.csv file and display the variable import options for the variable RestorationTime. The detectImportOptions function automatically detects the data types of the variables.

```
opts = detectImportOptions(filename);
getvaropts(opts,'RestorationTime')
ans =
    DatetimeVariableImportOptions with properties:
        Variable Properties:
            Name: 'RestorationTime'
            Type: 'datetime'
            FillValue: NaT
        TreatAsMissing: {}
            QuoteRule: 'remove'
            Prefixes: {}
            Suffixes: {}
```

```
    EmptyFieldRule: 'missing'
Datetime Options:
    DatetimeFormat: 'default'
    DatetimeLocale: 'en_US'
        InputFormat:
            TimeZone: ''
```

Import the data and display the first 10 rows of the variable RestorationTime. The second row contains a NaT , indicating a missing date and time value.

```
T = readtable(filename,opts);
T.RestorationTime(1:10)
ans = 10x1 datetime array
    07-Feb-2002 16:50:00
    NaT
    17-Feb-2003 08:14:00
    06-Apr-2004 06:10:00
    18-Mar-2002 23:23:00
    18-Jun-2003 10:54:00
    20-Jun-2004 19:16:00
    07-Jun-2002 00:51:00
    17-Jul-2003 01:12:00
    27-Sep-2004 16:37:00
```

To use a different date-time display format, update the DatetimeFormat property, and then replace missing values with the current date and time by using the FillValue property. Display the updated variable options.

```
opts = setvaropts(opts,'RestorationTime', ...
    'DatetimeFormat','MMMM d, yyyy HH:mm:ss Z',...
    'FillValue','now');
getvaropts(opts,'RestorationTime')
ans =
    DatetimeVariableImportOptions with properties:
        Variable Properties:
                            Name: 'RestorationTime'
                            Type: 'datetime'
            FillValue: 27-Aug-2019 02:18:56
        TreatAsMissing: {}
```

```
    QuoteRule: 'remove'
    Prefixes: {}
    Suffixes: {}
EmptyFieldRule: 'missing
Datetime Options:
    DatetimeFormat: 'MMMM d, yyyy HH:mm:ss Z'
    DatetimeLocale: 'en US'
    InputFormat:
            TimeZone:
```

Read the data with the updated import options and display the first 10 rows of the variable.

```
T = readtable(filename,opts);
T.RestorationTime(1:10)
ans = 10x1 datetime array
    February 7, 2002 16:50:00
    August 27, 2019 02:18:56 *
    February 17, 2003 08:14:00 *
    April 6, 2004 06:10:00
    March 18, 2002 23:23:00 *
    June 18, 2003 10:54:00 *
    June 20, 2004 19:16:00 *
    June 7, 2002 00:51:00 *
    July 17, 2003 01:12:00 *
    September 27, 2004 16:37:00 *
```

For more information on the datetime variable options, see the setvaropts reference page.

See Also

Import Tool|detectImport0ptions| readcell| readmatrix| readtable | readtimetable|readvars|setvaropts

More About

- "Import Mixed Data from Text File into Table" on page 2-18

Import Numeric Data from Text Files into Matrix

Import numeric data as MATLAB arrays from files stored as comma-separated or delimited text files.

Import Comma-Separated Data

This example shows how to import comma-separated numeric data from a text file. Create a sample file, read all the data in the file, and then read only a subset starting from a specified location.

Create a sample file named ph.dat that contains comma-separated data and display the contents of the file.

```
A = 0.9*gallery('integerdata',99,[3 4],1);
writematrix(A,'ph.dat','Delimiter',',')
type('ph.dat')
85.5,54,74.7,34.2
63,75.6,46.8,80.1
85.5,39.6,2.7,38.7
```

Read the file using the readmatrix function. The function returns a 3-by-4 double array containing the data from the file.

```
M = readmatrix('ph.dat')
M = 3\times4
```

85.5000	54.0000	74.7000	34.2000
63.0000	75.6000	46.8000	80.1000
85.5000	39.6000	2.7000	38.7000

Import only the rectangular portion of data starting from the first row and third column in the file. Create an import options object and specify the columns and rows to import using the SelectedVariableNames and DataLines properties. Then, import the selected portion of the data from the file.

```
opts = detectImportOptions('ph.dat');
opts.SelectedVariableNames = {'Var3','Var4'};
opts.DataLines = [1 3];
readmatrix('ph.dat',opts)
```

```
ans = 3\times2
```

$74.7000 \quad 34.2000$
$46.8000 \quad 80.1000$
2.700038 .7000

Import Delimited Numeric Data

This example shows how to import numeric data delimited by any single character using the writematrix function. Create a sample file, read the entire file, and then read a subset of the file starting at the specified location.

Create a tab-delimited file named num. txt that contains a 4-by-4 numeric array and display the contents of the file.

```
A = gallery('integerdata',99,[4,4],0);
writematrix(A,'num.txt','Delimiter','\t')
type('num.txt')
\begin{tabular}{rccc}
95 & 89 & 82 & 92 \\
23 & 76 & 45 & 74 \\
61 & 46 & 61 & 18 \\
49 & 2 & 79 & 41
\end{tabular}
```

Read the entire file. The readmatrix function determines the delimiter automatically and returns a 4 -by- 4 double array.

```
M = readmatrix('num.txt')
M = 4\times4
\begin{tabular}{rrrr}
95 & 89 & 82 & 92 \\
23 & 76 & 45 & 74 \\
61 & 46 & 61 & 18 \\
49 & 2 & 79 & 41
\end{tabular}
```

Read only the rectangular block of data beginning from the second row, third column, in the file. Create an import options object and specify the columns and rows to import using the SelectedVariableNames and DataLines properties. Then, import the selected portion of the data from the file.

```
opts = detectImport0ptions('num.txt');
opts.SelectedVariableNames = {'Var3','Var4'};
opts.DataLines = [2 4];
readmatrix('num.txt',opts)
ans = 3\times2
    45 74
    61 18
    79 41
```


See Also

readcell|readmatrix|readtimetable|readvars

More About

- "Import Text Files" on page 2-2

Import Mixed Data from Text File into Table

This example shows how to use the readtable function to import mixed text and numeric data into a table, specify the data types for the variables, and then append a new variable to the table.

Sample File Overview

The sample file, outages. csv, contains data representing electric utility outages in the US. The first few lines of the file are:

Region, OutageTime, Loss,Customers,RestorationTime, Cause
SouthWest,2002-01-20 11:49,672,2902379,2002-01-24 21:58, winter storm SouthEast,2002-01-30 01:18,796,336436,2002-02-04 11:20,winter storm SouthEast,2004-02-03 21:17,264.9,107083,2004-02-20 03:37,winter storm West,2002-06-19 13:39,391.4,378990,2002-06-19 14:27,equipment fault

Read Text File

Import the data using readtable and display the first five rows. The readtable function automatically detects the delimiter and the variable types.

```
T = readtable('outages.csv');
head(T,5) % show first 5 rows of table
\begin{tabular}{|c|c|c|c|c|c|}
\hline Region & OutageTime & Loss & Customers & \multicolumn{2}{|l|}{RestorationTime} \\
\hline \{'SouthWest'\} & 2002-02-01 12:18 & 458.98 & \(1.8202 \mathrm{e}+06\) & 2002-02-07 & 16:50 \\
\hline \{'SouthEast'\} & 2003-01-23 00:49 & 530.14 & \(2.1204 \mathrm{e}+05\) & & NaT \\
\hline \{'SouthEast'\} & 2003-02-07 21:15 & 289.4 & \(1.4294 \mathrm{e}+05\) & 2003-02-17 & 08:14 \\
\hline \{'West' \} & 2004-04-06 05:44 & 434.81 & \(3.4037 \mathrm{e}+05\) & 2004-04-06 & 06:10 \\
\hline \{'MidWest' & 2002-03-16 06:18 & 186.44 & \(2.1275 \mathrm{e}+05\) & 2002-03-18 & 23:23 \\
\hline
\end{tabular}
```


Specify Variable Data Types Before Import

Updating the variable data types to the appropriate MATLAB data types can benefit your data, based on the type of variables in your file. For example, the first and sixth columns in outages.csv are categorical. By designating these two columns as categorical arrays you can leverage MATLAB functions for processing categorical data.

Designate and specify the data types of the variables in one of these ways:

- Specify the Format name-value pair in readtable
- Set the VariableTypes property of the import options for the file

Use the Format name-value pair to specify the variable data types, read the data, and display the first five rows. In the \%\{yyyy-MM-dd HH:mm\}D part of the formatSpec specifier, the text between the curly braces describes the format of the date and time data. The values specified in Format designate the:

- First and last columns in the file as categorical data
- Second and fifth columns as formatted date and time data
- Third and fourth columns as floating-point values

```
formatSpec = '%C%{yyyy-MM-dd HH:mm}D%f%f%{yyyy-MM-dd HH:mm}D%C';
T = readtable('outages.csv','Format',formatSpec);
head(T,5)
\begin{tabular}{lclllll}
\begin{tabular}{c} 
ans \(=5 \times 6\) table \\
Region
\end{tabular} & OutageTime & & Loss & & Customers &
\end{tabular}

Alternatively, specify the data types for the variables by using the setvartype function of the import options. First, create an import options object for the file. The data file contains different types of variables. Designate the first and last variables as categorical arrays, the second and fifth variables as datetime arrays, and the remaining variables as double.
```

opts = detectImportOptions('outages.csv');
varNames = opts.VariableNames ; % variable names
varTypes = {'categorical','datetime','double',...

```
```

 'double','datetime','categorical'};
 opts = setvartype(opts,varNames,varTypes);

```

Import the data using readtable with opts, and then display the first five rows.
```

T = readtable('outages.csv',opts);
head(T,5)

```
```

ans=5\times6 table
Region

```

OutageTime

SouthWest
SouthEast
SouthEast
West
MidWest
OutageTime

01-Feb-2002 12:18:00
23-Jan-2003 00:49:00
07-Feb-2003 21:15:00
06-Apr-2004 05:44:00
16-Mar-2002 06:18:00

Loss
458.98
530.14
289.4
434.81
186.44

Customers
\(1.8202 \mathrm{e}+06\)
\(2.1204 \mathrm{e}+05\)
1. \(4294 \mathrm{e}+05\)
\(3.4037 e+05\)
\(2.1275 e+05\)

RestorationTime

07-Feb-2002 16:50:00
NaT
17-Feb-2003 08:14:00
06-Apr-2004 06:10:00
18-Mar-2002 23:23:00

\section*{Append New Variable to Table}

Table T contains OutageTime and RestorationTime. Calculate the duration of each electrical outage and append this data to the table.
```

T.Duration = T.RestorationTime - T.OutageTime;
head(T,5)

Region	OutageTime	Loss	Customers	Restoratio	nTime
SouthWest	01-Feb-2002 12:18:00	458.98	$1.8202 e+06$	07-Feb-2002	16:50:00
SouthEast	23-Jan-2003 00:49:00	530.14	$2.1204 \mathrm{e}+05$		NaT
SouthEast	07-Feb-2003 21:15:00	289.4	$1.4294 \mathrm{e}+05$	17-Feb-2003	08:14:00
West	06-Apr-2004 05:44:00	434.81	$3.4037 e+05$	06-Apr-2004	06:10:00
MidWest	16-Mar-2002 06:18:00	186.44	$2.1275 \mathrm{e}+05$	18-Mar-2002	23:23:00

```

\section*{See Also}
detectImport0ptions| head| preview| readtable|readtimetable| setvaropts|setvartype

\section*{More About}
- "Create and Work with Tables"
- "Import Dates and Times from Text Files" on page 2-10
- "Access Data in Tables"

\title{
Import Block of Mixed Data from Text File into Table or Cell Array
}

This example reads a block of mixed text and numeric data from a text file, and then imports the block of data into a table or a cell array.

\section*{Data File Overview}

The sample file bigfile.txt contains commented lines beginning with \#\#. The data is arranged in five columns: The first column contains text indicating timestamps. The second, third, and fourth columns contain numeric data indicating temperature, humidity and wind speed. The last column contains descriptive text. Display the contents of the file bigfile.txt.
```

type('bigfile.txt')

A ID = 02476

YKZ Timestamp Temp Humidity Wind Weather

06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear

B ID = 02477

YVR Timestamp Temp Humidity Wind Weather

09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19.1 94 7 n/a
09-Sep-2013 09:00:00 18.5 94 4 fog
09-Sep-2013 13:00:00 20.1 81 15 mainly clear
09-Sep-2013 17:00:00 20.1 77 17 n/a
09-Sep-2013 18:00:00 20.0 75 17 n/a
09-Sep-2013 21:00:00 16.8 90 25 mainly clear

C ID = 02478

YYZ Timestamp Temp Humidity Wind Weather

```

\section*{Import Block of Data as Table}

To import the data as a table, use readtable with import options.
Create an import options object for the file using the detectImport0ptions function. Specify the location of the data using the DataLines property. For example, lines 3 through 8 contain the first block of data. Optionally, you can specify the names of the
variables using the VariableNames property. Finally import the first block of data using readtable with the opts object.
```

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8];
opts.VariableNames = {'Timestamp','Temp',...
'Humidity','Wind','Weather'};
T_first = readtable('bigfile.txt',opts)
T_first=6\times5 table

Timestamp		Temp		Humidity	Wind	

```

Read the second block by updating the DataLines property to the location of the second block.
```

opts.DataLines = [11 17];
T_second = readtable('bigfile.txt',opts)
T_second=7\times5 table

Timestamp	Temp	Humidity	Wind	Weather
09-Sep-2013 01:00:00	15.2	91	8	\{'clear' \}
09-Sep-2013 05:00:00	19.1	94	7	\{'n/a'
09-Sep-2013 09:00:00	18.5	94	4	\{'fog' \}
09-Sep-2013 13:00:00	20.1	81	15	\{'mainly clear'\}
09-Sep-2013 17:00:00	20.1	77	17	\{'n/a' \}
09-Sep-2013 18:00:00	20	75	17	\{'n/a' \}
09-Sep-2013 21:00:00	16.8	90	25	\{'mainly clear'\}

```

\section*{Import Block of Data as Cell Array}

You can import the data as cell array using the readcell function with detectImport0ptions, or by using the textscan function. First import the block of data using the readcell function and then perform the same import by using textscan.

To perform the import using the readcell function, create an import options object for the file using the detectImport0ptions function. Specify the location of the data using the DataLines property. Then, perform the import operation using the readcell function and import options object opts.
```

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8]; % fist block of data
C = readcell('bigfile.txt',opts)
C=6\times5 cell
Columns 1 through 4

```
\begin{tabular}{llll}
\(\{[06-\) Sep-2013 01:00:00] \(\}\) & \(\{[6.6000]\}\) & \(\{[89]\}\) & \(\{[4]\}\) \\
\(\{[06-\) Sep-2013 05:00:00]\} & \(\{[5.9000]\}\) & \(\{[95]\}\) & \(\{[1]\}\) \\
\(\{[06-\) Sep-2013 09:00:00]\} & \(\{[15.6000]\}\) & \(\{[51]\}\) & \(\{[5]\}\) \\
\(\{[06-\) Sep-2013 13:00:00]\} & \(\{[19.6000]\}\) & \(\{[37]\}\) & \(\{[10]\}\) \\
\(\{[06-\) Sep-2013 17:00:00]\} & \(\{[22.4000]\}\) & \(\{[41]\}\) & \(\{[9]\}\) \\
\(\{[06-\) Sep-2013 21:00:00]\} & \(\{[17.3000]\}\) & \(\{[67]\}\) & \(\{[7]\}\)
\end{tabular}

Column 5
```

{'clear' }
{'clear' }
{'mainly clear' }
{'mainly clear' }
{'mostly cloudy'}
{'mainly clear' }

```

To perform the import using the textscan function, specify the size of block using N and the format of the data fields using formatSpec. For example, use ' \(\%\) s' for text variables, ' \(\%\) D' for date and time variables, or \({ }^{\prime} \%\) c' for categorical variables. Use fopen to open the file. The function then returns a file identifier, fileID. Next, read from the file by using the textscan function.
```

N = 6;
formatSpec = '%D %f %f %f %c';
fileID = fopen('bigfile.txt');

```

Read the first block and display the contents of the variable Humidity.
```

C_first = textscan(fileID,formatSpec,N,'CommentStyle','\#\#','Delimiter','\t')
C first=1\times5 cell
Columns 1 through 4

```
```

 {6x1 datetime} {6x1 double} {6x1 double} {6x1 double}
 Column 5
 {6x1 char}
 C_first{3}
ans = 6x1
89
NaN
95
NaN
51
NaN
Update the block size N, and read the second block. Display the contents of the fifth variable Weather.
$\mathrm{N}=7 ;$
C_second = textscan(fileID,formatSpec,N,'CommentStyle','\#\#','Delimiter','\t')
C second=1 $\times 5$ cell
Columns 1 through 4
\{7x1 datetime\} \{7x1 double\} \{7x1 double\} \{7x1 double\}
Column 5
\{7x1 char\}
C_second $\{5\}$

```
```

ans = 7x1 char array

```
ans = 7x1 char array
    'm'
    'm'
    '...'
    '...'
    'm'
    'm'
    '...
    '...
    'm'
    'm'
    '...'
```

 '...'
    ```
```

'c'
Close the file.
fclose(fileID);

```

\section*{See Also}
```

detectImport0ptions|fopen|readcell|readtable|textscan

```

\section*{More About}
- "Access Data in Cell Array"
- "Moving within a File" on page 4-14

\section*{Write Data to Text Files}
```

In this section...
"Export Table to Text File" on page 2-27
"Export Cell Array to Text File" on page 2-28
"Export Numeric Array to Text File" on page 2-30

```

Export tabular data contained in tables, cell arrays, or numeric arrays from the MATLAB workspace to text files.

\section*{Export Table to Text File}

You can export tabular data from MATLAB® workspace into a text file using the writetable function. Create a sample table, write the table to text file, and then write the table to text file with additional options.

Create a sample table, T, containing the variables Pitch, Shape, Price and Stock.
```

Pitch = [0.7;0.8;1;1.25;1.5];
Shape = {'Pan';'Round';'Button';'Pan';'Round'};
Price = [10.0;13.59;10.50;12.00;16.69];
Stock = [376;502;465;1091;562];
T = table(Pitch,Shape,Price,Stock)
T=5\times4 table
Pitch Shape Price Stock

| 0.7 | \{'Pan' $\}$ | 10 | 376 |
| ---: | :--- | ---: | ---: |
| 0.8 | \{'Round' $\}$ | 13.59 | 502 |
| 1 | \{'Button'\} | 10.5 | 465 |
| 1.25 | \{'Pan' $\}$ | 12 | 1091 |
| 1.5 | \{'Round' \} | 16.69 | 562 |

```

Export the table, T , to a text file named tabledata. txt. View the contents of the file. By default, writetable writes comma-separated data, includes table variable names as column headings.
```

writetable(T,'tabledata.txt');

```
type tabledata.txt

Pitch, Shape, Price, Stock
0.7, Pan, 10, 376
0.8,Round,13.59,502

1, Button,10.5,465
1.25, Pan, 12, 1091
1.5,Round,16.69,562

Create a table T2 which includes row names using the RowNames name-value pair argument.
```

rowNames = {'M4';'M5';'M6';'M8';'M10'};
T2 = table(Pitch,Shape,Price,Stock,'RowNames',rowNames)

```

T2 \(=5 \times 4\) table
\begin{tabular}{rlrrr} 
Pitch & \multicolumn{2}{c}{ Shape } & & Price
\end{tabular} Stock

Export T2 to a tab-delimited text file named tabledata2.txt. Use the Delimiter name-value pair argument to specify a tab delimiter, and the WriteRowNames name-value pair argument to include row names. View the contents of the file.
```

writetable(T2,'tabledata2.txt','Delimiter','\t','WriteRowNames',true);
type tabledata2.txt

```
\begin{tabular}{llcccr} 
Row & \multicolumn{2}{c}{ Pitch } & \multicolumn{2}{c}{ Shape } & Price
\end{tabular} Stock

\section*{Export Cell Array to Text File}

You can export a cell array from MATLAB® \({ }^{\circledR}\) workspace into a text file in one of these ways:
- Use the writecell function to export the cell array to a text file.
- Use fprintf to export the cell array by specifying the format of the output data.

Create a sample cell array C.
```

C = {'Atkins',32,77.3,'M';'Cheng',30,99.8,'F';'Lam',31,80.2,'M'}
C = 3\times4 cell array
{'Atkins'} {[32]} {[77.3000]} {'M'}
{'Cheng' }

```

Export the cell array using writecell.
```

writecell(C,'data.dat')

```

View the contents of the file.
```

type data.dat

```
Atkins,32,77.3,M
Cheng, 30, 99.8,F
Lam,31,80.2,M

Alternatively, import the cell array using fprintf. Open a file that you can write to named celldata.dat. Define formatSpec using the format specifiers to describe the pattern of the data in the file. Typical format specifiers include ' \(\%\) s' for a character vector, ' \(\%\) d ' for an integer, or ' \(\% f\) ' for a floating-point number. Separate each format specifier with a space to indicate a space delimiter for the output file. Include a newline character at the end of each row of data (' \(\backslash \mathrm{n}\) ').
```

fileID = fopen('celldata.dat','w');
formatSpec = '%s %d %2.1f %s\n';

```

Determine the size of \(C\) and export one row of data at a time using the fprintf function. Then close the file. fprintf writes a space-delimited file.
```

[nrows,ncols] = size(C);
for row = 1:nrows
fprintf(fileID,formatSpec,C{row,:});
end
fclose(fileID);

```

View the contents of the file.

\section*{type celldata.dat}

Atkins 32 77.3 M
Cheng 30 99.8 F
Lam 31 80.2 M

\section*{Export Numeric Array to Text File}

You can export a numerical array to a text file using writematrix.
Create a numeric array A.
A = magic(5)/10
\(A=5 \times 5\)
\begin{tabular}{lllll}
1.7000 & 2.4000 & 0.1000 & 0.8000 & 1.5000 \\
2.3000 & 0.5000 & 0.7000 & 1.4000 & 1.6000 \\
0.4000 & 0.6000 & 1.3000 & 2.0000 & 2.2000 \\
1.0000 & 1.2000 & 1.9000 & 2.1000 & 0.3000 \\
1.1000 & 1.8000 & 2.5000 & 0.2000 & 0.9000
\end{tabular}

Write the numeric array to myData.dat and specify the delimiter to be ' ; '. Then, view the contents of the file.
```

writematrix(A,'myData.dat','Delimiter',';')
type myData.dat
1.7;2.4;0.1;0.8;1.5
2.3;0.5;0.7;1.4;1.6
0.4;0.6;1.3;2;2.2
1;1.2;1.9;2.1;0.3
1.1;1.8;2.5;0.2;0.9

```

\section*{See Also}
fprintf|type|writecell|writematrix|writetable|writetimetable

\section*{Write to a Diary File}

To keep an activity log of your MATLAB session, use the diary function. diary creates a verbatim copy of your MATLAB session in a disk file (excluding graphics).

For example, if you have the array A in your workspace,
\(\mathrm{A}=[\mathrm{l} 234 ; 5678\) ];
execute these commands at the MATLAB prompt to export this array using diary:
1 Turn on the diary function. Optionally, you can name the output file diary creates:
diary my_data.out
2 Display the contents of the array you want to export. This example displays the array A. You could also display a cell array or other MATLAB class:
```

A =
1

```

3 Turn off the diary function:
diary off
diary creates the file my_data. out and records all the commands executed in the MATLAB session until you turn it off:
\[
A=
\]
\begin{tabular}{llll}
1 & 2 & 3 & 4
\end{tabular}
\begin{tabular}{llll}
5 & 6 & 7 & 8
\end{tabular}
diary off
4 Open the diary file my_data. out in a text editor and remove the extraneous text, if desired.

\section*{Read Collection or Sequence of Text Files}

When your data is stored across multiple text files, you can use tabularTextDatastore to manage and import the data. This example shows how to use tabularTextDatastore to read the data from the collection of text files all together, or to read one file at a time.

\section*{Data}

For this example, the folder C: \DataTxt contains a collection of text files. Capture this location in the variable location. The data contains 10 text files, where each file contains 10 rows of data. The results differ based on your files and data.
```

location = 'C:\DataTxt';
dir(location)

```
```

File01.csv File03.csv File05.csv File07.csv File09.csv
File02.csv File04.csv File06.csv File08.csv File10.csv

```

\section*{Create Datastore}

Create a datastore using the location of the files.
```

ds = tabularTextDatastore(location)
ds =
TabularTextDatastore with properties:
Files: {
'C:\DataTxt\File01.csv';
'C:\DataTxt\File02.csv';
'C:\DataTxt\File03.csv'
... and 7 more
}
FileEncoding: 'UTF-8'
AlternateFileSystemRoots:
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
DatetimeLocale: en_US

```
    Text Format Properties:
            NumHeaderLines: 0
                    Delimiter:
                    RowDelimiter: '\r\n'
```

 TreatAsMissing:
 MissingValue: NaN
 Advanced Text Format Properties:
TextscanFormats: {'%q', '%q', '%f' ... and 7 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle:
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false
Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
SelectedFormats: {'%q', '%q', '%f' ... and 7 more}
ReadSize: 20000 rows

```

\section*{Read Data from Datastore}

Use the read or readall functions to import the data from the datastore. If the data from the collection fits in the memory, you can import it all at once using the readall function.
```

allData = readall(ds);
size(allData)
ans = 1\times2
100 10

```

Alternatively, import the data one file at a time using the read function. To control the amount of data imported, before you call read, adjust the ReadSize property of the datastore. Set the ReadSize to 'file' or a positive integer.
- If ReadSize is 'file', then each call to read reads all the data one file at a time.
- If ReadSize is a positive integer, then each call to read reads the number of rows specified by ReadSize, or fewer, if it reaches the end of the data.
```

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file
firstFile=10\times10 table

```
    LastName Gender Location Height Weight
\begin{tabular}{llll} 
& & \\
'Smith' & & \\
'Johnson' & & \\
'Male' & 38 \\
'Williams' & 'Female' & 38 \\
'Jones' & & 33 \\
'Brown' & 'Female' & 40 \\
'Davis' & 'Female' & 49 \\
'Miller' & 'Female' & 46 \\
'Wilson' & 'Male' & 33 \\
'Moore' & 'Male' & 40 \\
'Taylor' & 'Female' & 28 \\
& & 31
\end{tabular}
'County General Hospital' 71
'VA Hospital' 69
64
'VA Hospital' 67
'County General Hospital' 64
'St. Mary's Medical Center' 68142
'VA Hospital' 64
142
'VA Hospital' 68
180
'St. Mary's Medical Center' 68183
'County General Hospital' 66
132
secondFile \(=\) read(ds) \% reads second file
secondFile=10×10 table
LastName
\begin{tabular}{lll} 
'Anderson' & 'Female' & 45 \\
'Thomas' & 'Female' & 42
\end{tabular}

Age Location Height Weight
'Thomas' 'Female' 42
'Jackson' 'Male' 25
25
'Male' 39
'White' 'Male 'Female' 36
'Martin' 'Male' 48
'Thompson' 'Male' 32
'Garcia' 'Female' 27
'Martinez' 'Male' 37
'Robinson' 'Male' 50

\section*{See Also}
readcell| readmatrix|readtable|readtimetable|readvars|
tabularTextDatastore

\section*{More About}
- "Read and Analyze Large Tabular Text File" on page 12-125

\section*{Import Block of Numeric Data from Text File}

This example shows how to read numeric data organized in blocks in a text file. Each block within the file can have a different format. You can read all the blocks as cell arrays, one block at a time, using textscan.

\section*{File Format Overview}

The information in the sample text file, test80211.txt, is the result from a wireless network communication quality test. The sample file consists of four lines of introduction followed by several blocks of data. Each block represents a different environment (for example, mobile, indoor, outdoor) and has the following format:
- Two header lines of description
- The text, Num SNR=, followed by a numeric value, \(m\)
- Numeric data organized in a table of \(m\) columns and an arbitrary number of rows (The data is comma-delimited.)
- The text, *EOB, denoting the end of the block

For example, a block of data is formatted like this:
* Indoor2
* SNR Vs test No

Num SNR=3
\(,-5.00 \mathrm{E}+00,-4.00 \mathrm{E}+00\),
\(1.00 \mathrm{E}+00,3.32 \mathrm{E}-07,9.12 \mathrm{E}-07\)
\(2.00 \mathrm{E}+00,1.49 \mathrm{E}-07,2.44 \mathrm{E}-07\)
\(3.00 \mathrm{E}+00,6.04 \mathrm{E}-07,2.53 \mathrm{E}-07\)
\(4.00 \mathrm{E}+00,1.53 \mathrm{E}-07,4.25 \mathrm{E}-07\)
\(5.00 \mathrm{E}+00,1.82 \mathrm{E}-07,1.83 \mathrm{E}-07\)
\(6.00 \mathrm{E}+00,6.27 \mathrm{E}-07,8.21 \mathrm{E}-07\)
\(7.00 \mathrm{E}+00,9.10 \mathrm{E}-08,1.53 \mathrm{E}-08\)
8.00E \(+00,8.73 \mathrm{E}-07,6.45 \mathrm{E}-07\)
\(9.00 \mathrm{E}+00,4.40 \mathrm{E}-07,1.33 \mathrm{E}-07\)
*EOB
The numeric data represents error rates over a range of noise levels for a number of independent tests. The first column indicates the test number. To view the entire sample file, type at the command line:
open test80211.txt
Open Text File for Reading
Open the file and create a file identifier.
```

fileID = fopen('test80211.txt','r');

```

\section*{Read Introduction Lines}

Read the four introductory lines, which contain text delimited by a newline character. textscan returns a 1-by-1 cell array containing a 4-by-1 cell array of character vectors.
```

Intro = textscan(fileID,'%s',4,'Delimiter','\n')
Intro = 1x1 cell array
{4x1 cell}

```

View the contents of the first cell.
```

disp(Intro{1})
'*CCX'
'*CCX WiFi conformance test'
'*CCX BER Results'
'*CCX'

```

\section*{Read Each Block}

For each block, we want to read a header, the numeric value \(m\), column headers for the data, then the data itself. First, initialize the block index.

Block = 1;

Read each block of data in a while loop. The loop executes until the end of the file is reached and \(\sim\) feof returns false. The textscan function returns the data in each block as a cell array named InputText. Convert each cell array to a numeric array using cell2mat and store the numeric array in a cell array named Data. A cell array allows the storage of different size blocks.
```

while (~feof(fileID)) % For each block:
fprintf('Block: %s\n', num2str(Block)) % Print block number to the screen
InputText = textscan(fileID,'%s',2,'delimiter','\n'); % Read 2 header lines
HeaderLines{Block,1} = InputText{1};
disp(HeaderLines{Block}); % Display header lines
InputText = textscan(fileID,'Num SNR = %f'); % Read the numeric value
NumCols = InputText{1}; % Specify that this is the
% number of data columns
FormatString = repmat('%f',1,NumCols); % Create format string
% based on the number
% of columns
InputText = textscan(fileID,FormatString, ... % Read data block
'delimiter',',');
Data{Block,1} = cell2mat(InputText);
[NumRows,NumCols] = size(Data{Block}); % Determine size of table
disp(cellstr(['Table data size: ' ...
num2str(NumRows) ' x ' num2str(NumCols)]));
disp(' '); % New line
eob = textscan(fileID,'%s',1,'delimiter','\n'); % Read and discard end-of-block ma
Block = Block+1; % Increment block index
end
Block: 1
'* Mobile1'
'* SNR Vs test No'
'Table data size: 30 x 19'
Block: 2
'* Mobile2'
'* SNR Vs test No'

```
Table data size: 30 x 9
Block: 3
* Mobile3
'* SNR Vs test No'
'Table data size: \(31 \times 15\)
Block: 4
'* Mobile4'
'* SNR Vs test No'
'Table data size: 28 x 19'
Block: 5
* Mobile5'
'* SNR Vs test No
'Table data size: 32 x 18 '
Block: 6'* Mobile6'SNR Vs test No'
'Table data size: 30 x ..... \(19^{\prime}\)
Block: 7
* Mobile7 \({ }^{\text { }}\)
'* SNR Vs test No'
'Table data size: 30 x ..... \(11^{\prime}\)
Block: 8 ..... '* Mobile8'
SNR Vs test No'
'Table data size: 20 x 18
```

Block: 9
'* Indoor0'
'* SNR Vs test No'
'Table data size: 9 x 3'
Block: 10
'* Indoor1'
SNR Vs test No'
'Table data size: 22 x 6'
Block: 11
'* Indoor2'
* SNR Vs test No'
'Table data size: 25 x 3'
Block: 12
'* Indoor3'
'* SNR Vs test No'
'Table data size: 21 x 18'
Block: 13
'* Outdoor1'
'* SNR Vs test No'
'Table data size: 20 x 18'
Block: 14
'* Outdoor2'
SNR Vs test No'
'Table data size: 23 x 3'

```
```

Block: 15
'* Outdoor3'
SNR Vs test No'
'Table data size: 22 x 18'
Block: 16
Outdoor4'
SNR Vs test No'
'Table data size: 21 x 18'
Block: 17
* Outdoor5'
'* SNR Vs test No'
'Table data size: 18 x 5'

```

\section*{Close Text File}
fclose(fileID);

\section*{Total Number of Blocks}

Determine the number of blocks in the file.
```

NumBlocks = Block-1
NumBlocks = 17

```

\section*{View Numeric Data}

Display the numeric data in one of the blocks using short scientific notation.
First, store the current Command Window output display format.
```

user_format = get(0, 'format');

```

Change the display format to short scientific notation.
format shortE

Display the header lines for the ninth block and the numeric data.
```

Block = 9;
disp(HeaderLines{Block});
'* Indoor0'
'* SNR Vs test No'
fprintf('SNR %d %d\n',Data{Block,1}(1,2:end))
SNR -7 -6
disp(Data{Block,1}(2:end,2:end));
9.0600e-07 6.7100e-07
3.1700e-07 3.5400e-07
2.8600e-07 1.9600e-07
1.4800e-07 7.3400e-07
3.9500e-08 9.6600e-07
7.9600e-07 7.8300e-07
4.0000e-07 8.8100e-07
3.0100e-07 2.9700e-07

```

Restore the original Command Window output display format.
set(0, 'format', user_format);

\section*{See Also}
textscan

\section*{More About}
- "Import Block of Mixed Data from Text File into Table or Cell Array" on page 2-22

\section*{Spreadsheets}
- "Import Spreadsheets" on page 3-2
- "Read Spreadsheet Data Using Import Tool" on page 3-5
- "Read Spreadsheet Data into Array or Individual Variables" on page 3-9
- "Read Spreadsheet Data into Table" on page 3-12
- "Read Collection or Sequence of Spreadsheet Files" on page 3-16
- "Write Data to Excel Spreadsheets" on page 3-19
- "Define Import Options for Tables" on page 3-22

\section*{Import Spreadsheets}

Spreadsheets often contain a mix of numeric and text data as well as variable and row names, which is best represented in MATLAB as a table. You can import data into a table using the Import Tool or the readtable function.

\section*{Import Spreadsheet Data Using the Import Tool}

The Import Tool allows you to import into a table or other data type. For example, read data from the sample spreadsheet file patients.xls as a table in MATLAB. Open the file using the Import Tool and select options such as the range of data and the output
type. Then, click the Import Selection button to import the data into the MATLAB workspace.


\section*{Import Spreadsheet Data Using readtable}

Alternatively, you can read spreadsheet data into a table using the readtable function with the file name, for example:

T = readtable('patients.xls');
You can also select the range of data to import by specifying the range parameter. For example, read the first five rows and columns of the spreadsheet. Specify the range in Excel notation as 'A1:E5'.

T = readtable('patients.xls','Range','A1:E5')


\section*{Import Spreadsheet Data as Other Data Types}

In addition to tables, you can import your spreadsheet data into the MATLAB workspace as a timetable, a numeric matrix, a cell array, or separate column vectors. Based on the data type you need, use one of these functions.
\begin{tabular}{|l|l|}
\hline Data Type of Output & Function \\
\hline Timetable & readtimetable \\
\hline Numeric Matrix & readmatrix \\
\hline Cell Array & readcell \\
\hline Separate Column Vectors & readvars \\
\hline
\end{tabular}

\section*{See Also}

Import Tool | readtable

\section*{More About}
- "Read Spreadsheet Data Using Import Tool" on page 3-5
- "Read Spreadsheet Data into Table" on page 3-12
- "Access Data in Tables"

\section*{Read Spreadsheet Data Using Import Tool}
```

In this section...
"Select Data Interactively" on page 3-5
"Import Data from Multiple Spreadsheets" on page 3-7
"Paste Data from Clipboard" on page 3-7

```

This example shows how to import data from a spreadsheet into the workspace using the Import Tool and also to import data from the clipboard.

\section*{Select Data Interactively}

On the Home tab, in the Variable section, click Import Data . Alternatively, in the Current Folder browser, double-click the name of a file with an extension of .xls, .xlsx, .xlsb, or .xlsm. The Import Tool opens.

Select the data you want to import. For example, the data in the following figure corresponds to data for three column vectors. You can edit the variable name within the tab, and you can select noncontiguous sections of data for the same variable.


On the Import tab, in the Output Type section, select how you want the data to be imported. The option you select dictates the data type of the imported data.
\begin{tabular}{|l|l|}
\hline Option Selected & How Data Is Imported \\
\hline Column vectors & \begin{tabular}{l} 
Import each column of the selected data as \\
an individual m-by-1 vector.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Option Selected & How Data Is Imported \\
\hline Numeric Matrix & \begin{tabular}{l} 
Import selected data as an m-by-n numeric \\
array.
\end{tabular} \\
\hline String Array & \begin{tabular}{l} 
Import selected data as an m-by-n string \\
array.
\end{tabular} \\
\hline Cell Array & \begin{tabular}{l} 
Import selected data as a cell array that can \\
contain multiple data types, such as \\
numeric data and text.
\end{tabular} \\
\hline Table & Import selected data as a table. \\
\hline
\end{tabular}

If you choose to import the data as a matrix or as numeric column vectors, the tool highlights any nonnumeric data in the worksheet. Each highlight color corresponds to a proposed rule to make the data fit into a numeric array. For example, you can replace nonnumeric values with NaN. Also, you can see how your data will be imported when you place the cursor over individual cells.


You can add, remove, reorder, or edit rules, such as changing the replacement value from NaN to another value. All rules apply to the imported data only and do not change the data in the file. Specify rules any time the range includes nonnumeric data and you are importing into a matrix or numeric column vectors.

Any cells that contain \#Error? correspond to formula errors in your spreadsheet file, such as division by zero. The Import Tool regards these cells as nonnumeric.

When you click the Import Selection button , the Import Tool creates variables in your workspace.

For more information on interacting with the Import Tool, watch this video.

\section*{Import Data from Multiple Spreadsheets}

If you plan to perform the same import operation on multiple files, you can generate code from the Import Tool to make it easier to repeat the operation. On all platforms, the Import Tool can generate a program script that you can edit and run to import the files. On Microsoft Windows systems with Excel software, the Import Tool can generate a function that you can call for each file.

For example, suppose that you have a set of spreadsheets in the current folder named myfile01.xlsx through myfile25.xlsx, and you want to import the same range of data, \(\mathrm{A} 2: \mathrm{G100}\), from the first worksheet in each file. Generate code to import the entire set of files as follows:

1 Open one of the files in the Import Tool.
2 From the Import Selection button, select Generate Function. The Import Tool generates code similar to the following excerpt, and opens the code in the Editor.
```

function data = importfile(workbookFile, sheetName, range)

```
\%IMPORTFILE Import numeric data from a spreadsheet
...
3 Save the function.
4 In a separate program file or at the command line, create a for loop to import data from each spreadsheet into a cell array named myData:
```

numFiles = 25;
range = 'A2:G100';
sheet = 1;
myData = cell(1,numFiles);
for fileNum = 1:numFiles
fileName = sprintf('myfile%02d.xlsx',fileNum);
myData{fileNum} = importfile(fileName,sheet,range);
end

```

Each cell in myData contains an array of data from the corresponding worksheet. For example, \(\operatorname{myData}\{1\}\) contains the data from the first file, myfile01.xlsx.

\section*{Paste Data from Clipboard}

In addition to importing data interactively, you can also paste spreadsheet data from the clipboard into MATLAB.

First, select and copy your spreadsheet data in Microsoft Excel, then use one of the following methods:
- On the Workspace browser title bar, click \(\odot\), and then select Paste.
- Open an existing variable in the Variables editor, right-click, and then select Paste Excel Data.
- Call uiimport -pastespecial.

\section*{See Also}
detectImport0ptions|readcell|readmatrix|readtable|readvars

\section*{More About}
- "Define Import Options for Tables" on page 3-22
- "Read Spreadsheet Data into Array or Individual Variables" on page 3-9

\section*{Read Spreadsheet Data into Array or Individual Variables}

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of numeric and text data. However, sometimes you need to import spreadsheet data as a matrix, a cell array, or separate variables. Based on your data and the data type you need in the MATLAB® workspace, use one of these functions:
- readmatrix - Import homogeneous numeric or text data as a matrix.
- readcell - Import mixed numeric and text data as a cell array.
- readvars - Import spreadsheet columns as separate variables.

\section*{Read Spreadsheet Data into Matrix}

Import numeric data from basic_matrix.xls into a matrix.
```

M = readmatrix('basic_matrix.xls')

```
\(M=5 \times 4\)
\begin{tabular}{rrrr}
6 & 8 & 3 & 1 \\
5 & 4 & 7 & 3 \\
1 & 6 & 7 & 10 \\
4 & 2 & 8 & 2 \\
2 & 7 & 5 & 9
\end{tabular}

You can also select the data to import from the spreadsheet by specifying the Sheet and Range parameters. For example, specify the Sheet parameter as 'Sheet1' and the Range parameter as 'B1:D3'. The readmatrix function reads a 3-by-3 subset of the data, starting at the element in the first row and second column of the sheet named 'Sheet1'.
```

M = readmatrix('basic_matrix.xls','Sheet','Sheet1','Range','B1:D3')

```
\(M=3 \times 3\)
\begin{tabular}{llr}
8 & 3 & 1 \\
4 & 7 & 3 \\
6 & 7 & 10
\end{tabular}

\section*{Read Spreadsheet Data into Cell Array}

Import the mixed tabular data from airlinesmall_subset.xlsx into a cell array.
C = readcell('airlinesmall subset.xlsx');
whos C
\begin{tabular}{lrrlr} 
Name & Size & Bytes & Class Attributes \\
C & \(1339 \times 29\) & 4587938 & cell &
\end{tabular}

You can also select the data to import from the spreadsheet by specifying the Sheet and Range parameters. For example, specify the Sheet parameter as ' 2007 ' and the Range parameter as 'G2:I11'. The readcell function imports ten rows of data for variables in columns 7, 8, and 9, from the worksheet named '2007'.
```

subC = readcell('airlinesmall_subset.xlsx','Sheet','2007','Range','G2:I11')
subC=10\times3 cell
{[935]} {[935]} {'WN'}
{[1041]} {[1040]} {'WN'}
{[1430]} {[1500]} {'WN'}
{[940]} {[950]} {'WN'}
{[1515]} {[1515]} {'WN'}
{[2042]} {[2035]} {'WN'}
{[2116]} {[2130]} {'WN'}
{[1604]} {[1605]} {'WN'}
{[1258]} {[1230]} {'WN'}
{[1134]} {[1145]} {'WN'}

```

\section*{Read Spreadsheet Data Columns as Separate Variables}

Import the first three columns from airlinesmall_subset.xlsx as separate workspace variables.
```

[Year,Month,DayOfMonth] = readvars('airlinesmall_subset.xlsx');
whos Year Month DayOfMonth

```
\begin{tabular}{lclll} 
Name & Size & Bytes & Class & Attributes \\
& & & & \\
DayOfMonth & \(1338 \times 1\) & 10704 & double & \\
Month & \(1338 \times 1\) & 10704 & double & \\
Year & \(1338 \times 1\) & 10704 & double
\end{tabular}

You can also select which subset to import from the spreadsheet by specifying the Sheet and Range parameters. For example, import ten rows of the column DayOfMonth from the worksheet named ' 2004 '. Specify the column and number of rows using the Range parameter.
```

Day0fMonth = readvars('airlinesmall_subset.xlsx','Sheet','2004','Range','C2:C11')
DayOfMonth = 10×1

```

26
10
21
24
20
20
1
2
30
11

\section*{See Also}
readcell|readmatrix|readtable|readvars

\section*{More About}
- "Read Spreadsheet Data Using Import Tool" on page 3-5
- "Read Spreadsheet Data into Table" on page 3-12
- "Read Collection or Sequence of Spreadsheet Files" on page 3-16

\section*{Read Spreadsheet Data into Table}

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of numeric and text data, as well as variable and row names. You can read data into tables interactively or programmatically. To interactively select data, click Import Data on the Home tab, in the Variable section. To programmatically import data, use one of these functions:
- readtable - Read a single worksheet.
- spreadsheetDatastore - Read multiple worksheets or files.

This example shows how to import spreadsheet data programmatically using both functions. The sample data, airlinesmall_subset.xlsx, contains one sheet for each year between 1996 and 2008. The sheet names correspond to the year, such as 2003.

\section*{Read All Data from Worksheet}

Call readtable to read all the data in the worksheet called 2008, and then display only the first 10 rows and columns. Specify the worksheet name using the Sheet name-value pair argument. If your data is on the first worksheet in the file, you do not need to specify Sheet.
```

T = readtable('airlinesmall_subset.xlsx','Sheet','2008');
T(1:10,1:10)

```


\section*{Read Selected Range from Specific Worksheet}

From the worksheet named 1996, read only 10 rows of data from the first 5 columns by specifying a range, 'A1:E11'. The readtable function returns a 10 -by- 5 table.
```

T_selected = readtable('airlinesmall_subset.xlsx','Sheet','1996','Range','A1:E11')
T selected=10\times5 table
Year Month DayofMonth DayOfWeek DepTime

1996 1 18 4 4 0
1996 1 12 5 5 1252
1996 1 16 2 1441
1996 1 1 1 1 2258
1996 1 4 4 4 1814
1996 1 31 1822
1996 1 18 4 4 0
1996 1 26 5 1704
1996 1 11
1996 1 7 7 0

```

\section*{Convert Variables to Datetimes, Durations, or Categoricals}

During the import process, readtable automatically detects the data types of the variables. However, if your data contains nonstandard dates, durations, or repeated labels, then you can convert those variable to their correct data types. Converting variables to their correct data types lets you perform efficient computations and comparisons and improves memory usage. For instance, represent the variables Year, Month, and DayofMonth as one datetime variable, the UniqueCarrier as categorical, and ArrDelay as duration in minutes.
```

data = T(:,{'Year','Month','DayofMonth','UniqueCarrier','ArrDelay'});
data.Date = datetime(data.Year,data.Month,data.DayofMonth);
data.UniqueCarrier = categorical(data.UniqueCarrier);
data.ArrDelay = minutes(data.ArrDelay);

```

Find the day of the year with the longest delay, and then display the date.
```

ind = find(data.ArrDelay == max(data.ArrDelay));
data.Date(ind)

```
```

ans = datetime

```

07-Apr-2008

\section*{Read All Worksheets from Spreadsheet File}

A datastore is useful for processing arbitrarily large amounts of data that are spread across multiple worksheets or multiple spreadsheet files. You can perform data import and data processing through the datastore.

Create a datastore from the collection of worksheets in airlinesmall_subset.xlsx, select the variables to import, and then preview the data.
```

ds = spreadsheetDatastore('airlinesmall_subset.xlsx');
ds.SelectedVariableNames = {'Year','Month','DayofMonth','UniqueCarrier','ArrDelay'};
preview(ds)
ans=8\times5 table
Year Month DayofMonth UniqueCarrier ArrDelay
1996 1 18
1996 1 12 {'HP'} 11
1996 1 16 {'HP'} -13
1996 1 1 {'HP'} 1
1996 1 4 {'US'} -9
1996 1 31 {'US'}
1996 1 18 {'US'} -2
1996 1 26 {'NW'} -10

```

Before importing data, you can specify what data types to use. For this example, import UniqueCarrier as a categorical variable.
```

ds.SelectedVariableTypes(4) = {'categorical'};

```

Import data using the readall or read functions. The readall function requires that all the data fit into memory, which is true for the sample data. After the import, compute the maximum arrival delay for this dataset.
```

alldata = readall(ds);
max(alldata.ArrDelay)/60
ans = 15.2333

```

For large data sets, import portions of the file using the read function. For more information, see Read Collection or Sequence of Spreadsheet Files.

\section*{See Also}
readtable|spreadsheetDatastore

\section*{More About}
- "Read Spreadsheet Data Using Import Tool" on page 3-5
- "Read Spreadsheet Data into Array or Individual Variables" on page 3-9
- "Read Collection or Sequence of Spreadsheet Files" on page 3-16

\section*{Read Collection or Sequence of Spreadsheet Files}

When you have data stored across multiple spreadsheet files, use spreadsheetDatastore to manage and import the data. After creating the datastore, you can read all the data from the collection simultaneously, or you can read one file at a time.

\section*{Data}

If the folder \(\mathrm{C}: \backslash\) Data contains a collection of spreadsheet files, then capture the location of the data in location. The data used in this example contains 10 spreadsheet files, where each file contains 10 rows of data. Your results will differ based on your files and data.
location = 'C:\Data'; dir(location)
```

File01.xls File02.xls File03.xls File04.xls File05.xls

```

\section*{Create Datastore}

Create a datastore using the location of the files.
```

ds = spreadsheetDatastore(location)
ds =
SpreadsheetDatastore with properties:
Files: {
'C:\Data\File01.xls';
'C:\Data\File02.xls';
'C:\Data\File03.xls'
and }7\mathrm{ more
}
AlternateFileSystemRoots: {}
Sheets:
Range:

```
    Sheet Format Properties:
            NumHeaderLines: 0
            ReadVariableNames: true
                    VariableNames: \{'LastName', 'Gender', 'Age' ... and 7 more\}
                    VariableTypes: \{'char', 'char', 'double' ... and 7 more\}
```

Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
SelectedVariableTypes: {'char', 'char', 'double' ... and 7 more}
ReadSize: 'file'

```

\section*{Read Data from Datastore}

Use the read or readall functions to import the data from the datastore. If the data from the collection fits in the memory, then you can import it all at once using the readall function.
```

allData = readall(ds);
size(allData)
ans = 1\times2

```
    10010

Alternatively, you can import the data one file at a time using the read function. To control the amount of data imported, before you call read, adjust the ReadSize property of the datastore. You can set the ReadSize to 'file', 'sheet', or a positive integer.
- If ReadSize is 'file', then each call to read returns data one file at a time.
- If ReadSize is 'sheet', then each call to read returns data one sheet at a time.
- If ReadSize is a positive integer, then each call to read returns the number of rows specified by ReadSize, or fewer if it reaches the end of the data.
```

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

```

\begin{tabular}{llllll} 
'Moore' & 'Male' & 28 & 'St. Mary's Medical Center' & 68 & 183 \\
'Taylor' & 'Female' & 31 & 'County General Hospital' & 66 & 132
\end{tabular}
secondFile \(=\) read(ds) \% reads second file
secondFile=10×10 table
\begin{tabular}{|c|c|c|c|c|c|}
\hline LastName & Gender & Age & Location & Height & Weight \\
\hline 'Anderson' & 'Female' & 45 & 'County General Hospital' & 68 & 128 \\
\hline 'Thomas' & 'Female' & 42 & 'St. Mary's Medical Center' & 66 & 137 \\
\hline 'Jackson' & 'Male' & 25 & 'VA Hospital' & 71 & 174 \\
\hline 'White' & 'Male' & 39 & 'VA Hospital' & 72 & 202 \\
\hline 'Harris' & 'Female' & 36 & 'St. Mary's Medical Center' & 65 & 129 \\
\hline 'Martin' & 'Male' & 48 & 'VA Hospital' & 71 & 181 \\
\hline 'Thompson' & 'Male' & 32 & 'St. Mary's Medical Center' & 69 & 191 \\
\hline 'Garcia' & 'Female' & 27 & 'VA Hospital' & 69 & 131 \\
\hline 'Martinez' & 'Male' & 37 & 'County General Hospital' & 70 & 179 \\
\hline 'Robinson' & 'Male' & 50 & 'County General Hospital' & 68 & 172 \\
\hline
\end{tabular}

\section*{See Also}
readtable|spreadsheetDatastore

\section*{More About}
- "Read Spreadsheet Data into Table" on page 3-12

\section*{Write Data to Excel Spreadsheets}

\section*{In this section...}
"Write Tabular Data to Spreadsheet File" on page 3-19
"Write Numeric and Text Data to Spreadsheet File" on page 3-20
"Disable Warning When Adding New Worksheet" on page 3-21
"Format Cells in Excel Files" on page 3-21

\section*{Write Tabular Data to Spreadsheet File}

To export a table in the workspace to a Microsofte \({ }^{\circledR}\) Excel® spreadsheet file, use the writetable function. You can export data from the workspace to any worksheet in the file, and to any location within that worksheet. By default, writetable writes your table data to the first worksheet in the file, starting at cell A1.

For example, create a sample table of column-oriented data and display the first five rows.
```

load patients.mat
T = table(LastName,Age,Weight,Smoker);
T(1:5,:)
ans=5\times4 table

| LastName | Age | Weight | Smoker |
| :---: | :---: | :---: | :---: |
| \{'Smith' \} | 38 | 176 | true |
| \{'Johnson' \} | 43 | 163 | false |
| \{'Williams'\} | 38 | 131 | false |
| \{'Jones' \} | 40 | 133 | false |
| \{'Brown' \} | 49 | 119 | false |

```

Write table T to the first sheet in a new spreadsheet file named patientdata.xlsx, starting at cell D1. To specify the portion of the worksheet you want to write to, use the Range name-value pair argument. By default, writetable writes the table variable names as column headings in the spreadsheet file.
filename = 'patientdata.xlsx';
writetable(T,filename,'Sheet',1,'Range','D1')

Write the table T without the variable names to a new sheet called 'MyNewSheet '. To write the data without the variable names, specify the name-value pair WriteVariableNames as false.
```

writetable(T,filename,'Sheet','MyNewSheet','WriteVariableNames',false);

```

\section*{Write Numeric and Text Data to Spreadsheet File}

To export a numeric array and a cell array to a Microsoft Excel spreadsheet file, use the writematrix or writecell functions. You can export data in individual numeric and text workspace variables to any worksheet in the file, and to any location within that worksheet. By default, the import functions write your matrix data to the first worksheet in the file, starting at cell A1.

For example, create a sample array of numeric data, A, and a sample cell array of text and numeric data, C .
```

A = magic(5)
C = {'Time', 'Temp'; 12 98; 13 'x'; 14 97}
A =

| 17 | 24 | 1 | 8 | 15 |
| ---: | ---: | ---: | ---: | ---: |
| 23 | 5 | 7 | 14 | 16 |
| 4 | 6 | 13 | 20 | 22 |
| 10 | 12 | 19 | 21 | 3 |
| 11 | 18 | 25 | 2 | 9 |

C =

| 'Time' | 'Temp' |
| :---: | :---: |
| $12]$ | [98] |
| $13]$ | 'x' |
| $14]$ | 97] |

```

Write array A to the 5-by-5 rectangular region, \(\mathrm{E} 1: \mathrm{I5}\), on the first sheet in a new spreadsheet file named testdata.xlsx.
filename = 'testdata.xlsx';
```

writematrix(A,filename,'Sheet',1,'Range','E1:I5')

```

Write cell array C to a rectangular region that starts at cell B2 on a worksheet named Temperatures. You can specify range using only the first cell.
```

writecell(C,filename,'Sheet','Temperatures','Range','B2');

```
writecell displays a warning because the worksheet, Temperatures, did not previously exist, but you can disable this warning.

\section*{Disable Warning When Adding New Worksheet}

If the target worksheet does not exist in the file, then the writetable and writecell functions display this warning:

\section*{Warning: Added specified worksheet.}

For information on how to suppress warning messages, see "Suppress Warnings".

\section*{Format Cells in Excel Files}

To write data to Excel files on Windows systems with custom formats (such as fonts or colors), access the COM server directly using actxserver rather than writetable, writetimetable, writematrix, or writecell. For example, Technical Solution 1QLD4K uses actxserver to establish a connection between MATLAB and Excel, write data to a worksheet, and specify the colors of the cells.

For more information, see "Get Started with COM".
```

See Also
writecell|writematrix|writetable

```

\section*{Define Import Options for Tables}

Typically, you can import tables using the readtable function. However, sometimes importing tabular data requires additional control over the import process. For example, you might want to select the variables to import or handle rows with missing or errorcausing data. To control the import process, you can create an import options object. The object has properties that you can adjust based on your import needs.

\section*{Create Import Options}

To create an import options object for a sample data set, airlinesmall.csv, use the detectImport0ptions function. The detectImport0ptions function creates a DelimitedTextImport0ptions object for this text file. For a full list of properties of the import options object, see the detectImport0ptions reference page.
```

opts = detectImportOptions('airlinesmall.csv');

```

\section*{Customize Table-Level Import Options}

The import options object has properties that you can adjust to control the import process. Some properties apply to the entire table while others apply to specific variables. Properties that affect the entire table include rules to manage error-causing or missing data. For example, remove rows with data that cause import errors by setting the ImportErrorRule to 'omitrow'. Replace missing values by setting the MissingRule to 'fill'. The FillValue property value determines what value replaces the missing values. For example, you can replace missing values with NaN .
```

opts.ImportErrorRule = 'omitrow';
opts.MissingRule = 'fill';

```

\section*{Customize Variable-Level Import Options}

To get and set options for specific variables use the getvaropts, setvartype, and setvaropts functions. For example, view the current options for the variables named FlightNum, Origin, Dest, and ArrDelay, using the getvaropts function.
getvaropts(opts,\{'FlightNum','Origin','Dest','ArrDelay'\});
Change the data types for the variables using the setvartype function:
- Since the values in the variable FlightNum are identifiers for the flight and not numerical values, change its data type to char.
- Since the variables Origin and Dest designate a finite set of repeating text values, change their data type to categorical.
```

opts = setvartype(opts,{'FlightNum','Origin','Dest','ArrDelay'},...
{'char','categorical','categorical','single'});

```

Change other properties using the setvaropts function:
- For the FlightNum variable, remove any leading white spaces from the text by setting the WhiteSpaceRule property to trimleading.
- For the ArrDelay variable, replace fields containing 0 or NA with the value specified in FillValue property by setting the TreatAsMissing property.
```

opts = setvaropts(opts,'FlightNum','WhitespaceRule','trimleading');
opts = setvaropts(opts,'ArrDelay','TreatAsMissing',{'0','NA'});

```

\section*{Import Table}

Specify the variables to get, import them using readtable, and display the first 8 rows of the table.
```

opts.SelectedVariableNames = {'FlightNum','Origin','Dest','ArrDelay'};
T = readtable('airlinesmall.csv',opts);
T(1:8,:)
ans=8\times4 table
FlightNum Origin Dest ArrDelay

| \{'1503'\} | LAX | SJC | 8 |
| :---: | :---: | :---: | :---: |
| \{'1550'\} | SJC | BUR | 8 |
| \{'1589'\} | SAN | SMF | 21 |
| \{'1655'\} | BUR | SJC | 13 |
| \{'1702'\} | SMF | LAX | 4 |
| \{'1729'\} | LAX | SJC | 59 |
| \{'1763'\} | SAN | SFO | 3 |
| \{'1800'\} | SEA | LAX | 11 |

```

\section*{See Also}

DelimitedTextImport0ptions|SpreadsheetImport0ptions | detectImport0ptions|getvaropts|readcell|readmatrix|readtable| readvars| setvaropts| setvartype

\section*{More About}
- "Read Spreadsheet Data Using Import Tool" on page 3-5
- "Read Spreadsheet Data into Table" on page 3-12

\section*{Low-Level File I/O}
- "Import Text Data Files with Low-Level I/O" on page 4-2
- "Import Binary Data with Low-Level I/O" on page 4-10
- "Export to Text Data Files with Low-Level I/O" on page 4-18
- "Export Binary Data with Low-Level I/O" on page 4-24

\section*{Import Text Data Files with Low-Level I/O}
\begin{tabular}{|l}
\hline In this section... \\
\hline "Overview" on page 4-2 \\
"Reading Data in a Formatted Pattern" on page 4-3 \\
"Reading Data Line-by-Line" on page 4-5 \\
"Testing for End of File (EOF)" on page 4-6 \\
"Opening Files with Different Character Encodings" on page 4-9 \\
\hline
\end{tabular}

\section*{Overview}

Low-level file I/O functions allow the most control over reading or writing data to a file. However, these functions require that you specify more detailed information about your file than the easier-to-use high-level functions, such as importdata. For more information on the high-level functions that read text files, see "Import Text Files" on page 2-2.

If the high-level functions cannot import your data, use one of the following:
- fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view in a text editor. For more information, see "Reading Data in a Formatted Pattern" on page 4-3.
- fgetl and fgets, which read one line of a file at a time, where a newline character separates each line. For more information, see "Reading Data Line-by-Line" on page 45.
- fread, which reads a stream of data at the byte or bit level. For more information, see "Import Binary Data with Low-Level I/O" on page 4-10.

For additional information, see:
- "Testing for End of File (EOF)" on page 4-6
- "Opening Files with Different Character Encodings" on page 4-9

Note The low-level file I/O functions are based on functions in the ANSI \({ }^{\circledR}\) Standard C Library. However, MATLAB includes vectorized versions of the functions, to read and write data in an array with minimal control loops.

\section*{Reading Data in a Formatted Pattern}

To import text files that importdata and textscan cannot read, consider using fscanf. The fscanf function requires that you describe the format of your file, but includes many options for this format description.

For example, create a text file mymeas.dat as shown. The data in mymeas.dat includes repeated sets of times, dates, and measurements. The header text includes the number of sets of measurements, N :
```

Measurement Data

```
\(\mathrm{N}=3\)
12:00:00
01-Jan-1977
\(4.21 \quad 6.55 \quad 6.78 \quad 6.55\)
\(9.15 \quad 0.35 \quad 7.57 \mathrm{NaN}\)
\(\begin{array}{llll}7.92 & 8.49 & 7.43 & 7.06\end{array}\)
\(9.59 \quad 9.33 \quad 3.92 \quad 0.31\)
09:10:02
23-Aug-1990
\(\begin{array}{llll}2.76 & 6.94 & 4.38 & 1.86\end{array}\)
\(\begin{array}{llll}0.46 & 3.17 & \mathrm{NaN} \quad 4.89\end{array}\)
\(\begin{array}{llll}0.97 & 9.50 & 7.65 & 4.45\end{array}\)
\(8.23 \quad 0.34 \quad 7.95 \quad 6.46\)
15:03:40
15-Apr-2003
\(\begin{array}{llll}7.09 & 6.55 & 9.59 & 7.51\end{array}\)
\(\begin{array}{llll}7.54 & 1.62 & 3.40 & 2.55\end{array}\)
\(\begin{array}{llll}\mathrm{NaN} & 1.19 & 5.85 & 5.05\end{array}\)
\(\begin{array}{llll}6.79 & 4.98 & 2.23 & 6.99\end{array}\)

\section*{Opening the File}

As with any of the low-level I/O functions, before reading, open the file with fopen, and obtain a file identifier. By default, fopen opens files for read access, with a permission of 'r'.

When you finish processing the file, close it with fclose(fid).

\section*{Describing the Data}

Describe the data in the file with format specifiers, such as '\%s' for text, ' \(\%\) d' for an integer, or '\%f' for a floating-point number. (For a complete list of specifiers, see the fscanf reference page.)

To skip literal characters in the file, include them in the format description. To skip a data field, use an asterisk ( \({ }^{*}\) ') in the specifier.

For example, consider the header lines of mymeas dat:
```

Measurement Data % skip the first 2 words, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n
% go to next line: \n
12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55

```

To read the headers and return the single value for N :
\(N=f s c a n f(f i d, ~ ' \% * s ~ \% * s \backslash n N=\% d \backslash n \backslash n ', 1) ;\)

\section*{Specifying the Number of Values to Read}

By default, fscanf reapplies your format description until it cannot match the description to the data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not attempt to read the entire file. For example, in mymeas. dat, each set of measurements includes a fixed number of rows and columns:
```

measrows = 4;
meascols = 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

```

\section*{Creating Variables in the Workspace}

There are several ways to store mymeas.dat in the MATLAB workspace. In this case, read the values into a structure. Each element of the structure has three fields: mtime, mdate, and meas.

Note fscanf fills arrays with numeric values in column order. To make the output array match the orientation of numeric data in a file, transpose the array.
```

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;
% open the file
fid = fopen(filename);
% read the file headers, find N (one value)
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);
% read each set of measurements
for n = 1:N
mystruct(n).mtime = fscanf(fid, '%s', 1);
mystruct(n).mdate = fscanf(fid, '%s', 1);
% fscanf fills the array in column order,
% so transpose the results
mystruct(n).meas = ...
fscanf(fid, '%f', [measrows, meascols])';
end
% close the file
fclose(fid);

```

\section*{Reading Data Line-by-Line}

MATLAB provides two functions that read lines from files and store them as character vectors: fgetl and fgets. The fgets function copies the line along with the newline character to the output, but fgetl does not.

The following example uses fgetl to read an entire file one line at a time. The function litcount determines whether a given character sequence (literal) appears in each line. If it does, the function prints the entire line preceded by the number of times the literal appears on the line.
```

function y = litcount(filename, literal)
% Count the number of times a given literal appears in each line.
fid = fopen(filename);

```
```

y = 0;
tline = fgetl(fid);
while ischar(tline)
matches = strfind(tline, literal);
num = length(matches);
if num > 0
y = y + num;
fprintf(1,'%d:%s\n',num,tline);
end
tline = fgetl(fid);
end
fclose(fid);

```

Create an input data file called badpoem:
Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times 'an' appears in this file, call litcount:
```

litcount('badpoem','an')

```

This returns:
2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,
ans \(=\)
6

\section*{Testing for End of File (EOF)}

When you read a portion of your data at a time, you can use feof to check whether you have reached the end of the file. feof returns a value of 1 when the file pointer is at the end of the file. Otherwise, it returns 0.

Note Opening an empty file does not move the file position indicator to the end of the file. Read operations, and the fseek and frewind functions, move the file position indicator.

\section*{Testing for EOF with feof}

When you use textscan, fscanf, or fread to read portions of data at a time, use feof to check whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas. dat has the following form, with no information about the number of measurement sets. Read the data into a structure with fields for mtime, mdate, and meas:
\begin{tabular}{llll}
\(12: 00: 00\) & & \\
01-Jan-1977 & & \\
4.21 & 6.55 & 6.78 & 6.55 \\
9.15 & 0.35 & 7.57 & NaN \\
7.92 & 8.49 & 7.43 & 7.06 \\
9.59 & 9.33 & 3.92 & 0.31 \\
\(09: 10: 02\) & & \\
\(23-\) Aug-1990 & & \\
2.76 & 6.94 & 4.38 & 1.86 \\
0.46 & 3.17 & NaN & 4.89 \\
0.97 & 9.50 & 7.65 & 4.45 \\
8.23 & 0.34 & 7.95 & 6.46
\end{tabular}

To read the file:
```

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;
% open the file
fid = fopen(filename);
% make sure the file is not empty
finfo = dir(filename);
fsize = finfo.bytes;
if fsize > 0
% read the file
block = 1;
while ~feof(fid)
mystruct(block).mtime = fscanf(fid, '%s', 1);
mystruct(block).mdate = fscanf(fid, '%s', 1);
% fscanf fills the array in column order,

```
```

 % so transpose the results
 mystruct(block).meas = ...
 fscanf(fid, '%f', [measrows, meascols])';
 block = block + 1;
 end
 end
% close the file
fclose(fid);

```

\section*{Testing for EOF with fgetl and fgets}

If you use fgetl or fgets in a control loop, feof is not always the best way to test for end of file. As an alternative, consider checking whether the value that fgetl or fgets returns is a character vector.

For example, the function litcount described in "Reading Data Line-by-Line" on page 45 includes the following while loop and fgetl calls :
```

y = 0;
tline = fgetl(fid);
while ischar(tline)
matches = strfind(tline, literal);
num = length(matches);
if num > 0
y = y + num;
fprintf(1,'%d:%s\n',num,tline);
end
tline = fgetl(fid);
end

```

This approach is more robust than testing \(\sim\) feof (fid) for two reasons:
- If fgetl or fgets find data, they return a character vector. Otherwise, they return a number (-1).
- After each read operation, fgetl and fgets check the next character in the file for the end-of-file marker. Therefore, these functions sometimes set the end-of-file indicator before they return a value of -1 . For example, consider the following threeline text file. Each of the first two lines ends with a newline character, and the third line contains only the end-of-file marker:

123
456
Three sequential calls to fgetl yield the following results:
```

t1 = fgetl(fid); % t1 = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof(fid) = true

```

This behavior does not conform to the ANSI specifications for the related C language functions.

\section*{Opening Files with Different Character Encodings}

Encoding schemes support the characters required for particular alphabets, such as those for Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing using the default encoding for your system. To determine the default, open a file, and call fopen again with the syntax:
[filename, permission, machineformat, encoding] = fopen(fid);
If you specify an encoding scheme when you open a file, the following functions apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see the fopen reference page.

\section*{Import Binary Data with Low-Level I/O}
```

In this section...
"Low-Level Functions for Importing Data" on page 4-10
"Reading Binary Data in a File" on page 4-10
"Reading Portions of a File" on page 4-13
"Reading Files Created on Other Systems" on page 4-15
"Opening Files with Different Character Encodings" on page 4-16

```

\section*{Low-Level Functions for Importing Data}

Low-level file I/O functions allow the most direct control over reading or writing data to a file. However, these functions require that you specify more detailed information about your file than the easier-to-use high-level functions. For a complete list of high-level functions and the file formats they support, see "Supported File Formats for Import and Export" on page 1-2.

If the high-level functions cannot import your data, use one of the following:
- fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view in a text editor. For more information, see "Reading Data in a Formatted Pattern" on page 4-3.
- fgetl and fgets, which read one line of a file at a time, where a newline character separates each line. For more information, see "Reading Data Line-by-Line" on page 45.
- fread, which reads a stream of data at the byte or bit level. For more information, see "Reading Binary Data in a File" on page 4-10.

Note The low-level file I/O functions are based on functions in the ANSI Standard C Library. However, MATLAB includes vectorized versions of the functions, to read and write data in an array with minimal control loops.

\section*{Reading Binary Data in a File}

As with any of the low-level I/O functions, before importing, open the file with fopen, and obtain a file identifier. When you finish processing a file, close it with fclose(fileID).

By default, fread reads a file 1 byte at a time, and interprets each byte as an 8 -bit unsigned integer (uint8). fread creates a column vector, with one element for each byte in the file. The values in the column vector are of class double.

For example, consider the file nine. bin, created as follows:
```

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

```

To read all data in the file into a 9-by-1 column vector of class double:
```

fid = fopen('nine.bin');
col9 = fread(fid);
fclose(fid);

```

\section*{Changing the Dimensions of the Array}

By default, fread reads all values in the file into a column vector. However, you can specify the number of values to read, or describe a two-dimensional output matrix.

For example, to read nine.bin, described in the previous example:
```

fid = fopen('nine.bin');
% Read only the first six values
col6 = fread(fid, 6);
% Return to the beginning of the file
frewind(fid);
% Read first four values into a 2-by-2 matrix
frewind(fid);
two_dim4 = fread(fid, [2, 2]);
% Read into a matrix with 3 rows and
% unspecified number of columns
frewind(fid);
two dim9 = fread(fid, [3, inf]);
% Close the file
fclose(fid);

```

\section*{Describing the Input Values}

If the values in your file are not 8 -bit unsigned integers, specify the size of the values.
For example, consider the file fpoint.bin, created with double-precision values as follows:
```

myvals = [pi, 42, 1/3];
fid = fopen('fpoint.bin','w');
fwrite(fid, myvals, 'double');
fclose(fid);

```

To read the file:
```

fid = fopen('fpoint.bin');
% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')';
fclose(fid);

```

For a complete list of precision descriptions, see the fread function reference page.

\section*{Saving Memory}

By default, fread creates an array of class double. Storing double-precision values in an array requires more memory than storing characters, integers, or single-precision values.

To reduce the amount of memory required to store your data, specify the class of the array using one of the following methods:
- Match the class of the input values with an asterisk ('*'). For example, to read singleprecision values into an array of class single, use the command:
```

mydata = fread(fid,'*single')

```
- Map the input values to a new class with the ' => ' symbol. For example, to read uint8 values into an uint16 array, use the command:
```

mydata = fread(fid,'uint8=>uint16')

```

For a complete list of precision descriptions, see the fread function reference page.

\section*{Reading Portions of a File}

MATLAB low-level functions include several options for reading portions of binary data in a file:
- Read a specified number of values at a time, as described in "Changing the Dimensions of the Array" on page 4-11. Consider combining this method with "Testing for End of File" on page 4-13.
- Move to a specific location in a file to begin reading. For more information, see "Moving within a File" on page 4-14.
- Skip a certain number of bytes or bits after each element read. For an example, see "Write and Read Complex Numbers" on page 4-28.

\section*{Testing for End of File}

When you open a file, MATLAB creates a pointer to indicate the current position within the file.

Note Opening an empty file does not move the file position indicator to the end of the file. Read operations, and the fseek and frewind functions, move the file position indicator.

Use the feof function to check whether you have reached the end of a file. feof returns a value of 1 when the file pointer is at the end of the file. Otherwise, it returns 0.

For example, read a large file in parts:
```

filename = 'largedata.dat'; % hypothetical file
segsize = 10000;
fid = fopen(filename);
while ~feof(fid)
currData = fread(fid, segsize);
if ~isempty(currData)
disp('Current Data:');
disp(currData);
end
end
fclose(fid);

```

\section*{Moving within a File}

To read or write selected portions of data, move the file position indicator to any location in the file. For example, call fseek with the syntax
fseek(fid,offset,origin);
where:
- fid is the file identifier obtained from fopen.
- offset is a positive or negative offset value, specified in bytes.
- origin specifies the location from which to calculate the position:
\begin{tabular}{ll} 
'bof' & Beginning of file \\
'cof' & Current position in file \\
'eof' & End of file
\end{tabular}

Alternatively, to move easily to the beginning of a file:
frewind(fid);
Use ftell to find the current position within a given file. ftell returns the number of bytes from the beginning of the file.

For example, create a file five. bin:
```

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
fclose(fid);

```

Because the call to fwrite specifies the short format, each element of A uses two storage bytes in five.bin.

Reopen five.bin for reading:
fid \(=\) fopen('five.bin','r');
Move the file position indicator forward 6 bytes from the beginning of the file:
```

status = fseek(fid,6,'bof');

```
\begin{tabular}{l|rrrrrrrrrlll}
\hline File Position & bof & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & e of \\
\hline File Contents & & 0 & 1 & 0 & 2 & 0 & 3 & \(\uparrow^{0}\) & 4 & 0 & 5 & \\
\hline File Position Indicator & \multicolumn{13}{l}{} \\
\hline
\end{tabular}

Read the next element:
```

four = fread(fid,1,'short');

```

The act of reading advances the file position indicator. To determine the current file position indicator, call ftell:
```

position = ftell(fid)
position =
8

```
\begin{tabular}{lcccccccccccc}
\hline File Position & bof & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & eof \\
\hline File Contents & 0 & 1 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 5 & \\
\hline File Position Indicator & & & & & & & & & & & &
\end{tabular}

To move the file position indicator back 4 bytes, call fseek again:
```

status = fseek(fid,-4,'cof');

```
\begin{tabular}{lllllllllllll}
\hline File Position & bof & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & eof \\
\hline File Contents & 0 & 1 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 5 & \\
\hline File Position Indicator & & & & & & & & & & & &
\end{tabular}

Read the next value:
```

three = fread(fid,1,'short');

```

\section*{Reading Files Created on Other Systems}

Different operating systems store information differently at the byte or bit level:
- Big-endian systems store bytes starting with the largest address in memory (that is, they start with the big end).
- Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte ordering.

To read a file created on an opposite-endian system, specify the byte ordering used to create the file. You can specify the ordering in the call to open the file, or in the call to read the file.

For example, consider a file with double-precision values named little.bin, created on a little-endian system. To read this file on a big-endian system, use one (or both) of the following commands:
- Open the file with
```

fid = fopen('little.bin', 'r', 'l')

```
- Read the file with
```

mydata = fread(fid, 'double', 'l')

```
where ' \(l\) ' indicates little-endian ordering.
If you are not sure which byte ordering your system uses, call the computer function:
[cinfo, maxsize, ordering] = computer
The returned ordering is ' L ' for little-endian systems, or ' B ' for big-endian systems.

\section*{Opening Files with Different Character Encodings}

Encoding schemes support the characters required for particular alphabets, such as those for Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

The encoding scheme determines the number of bytes required to read or write char values. For example, US-ASCII characters always use 1 byte, but UTF-8 characters use up to 4 bytes. MATLAB automatically processes the required number of bytes for each char value based on the specified encoding scheme. However, if you specify a uchar precision, MATLAB processes each byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing using the default encoding for your system. To determine the default, open a file, and call fopen again with the syntax:
```

[filename, permission, machineformat, encoding] = fopen(fid);

```

If you specify an encoding scheme when you open a file, the following functions apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see the fopen reference page.

\title{
Export to Text Data Files with Low-Level I/O
}

\section*{In this section...}
"Write to Text Files Using fprintf" on page 4-18
"Append To or Overwrite Existing Text Files" on page 4-20
"Open Files with Different Character Encodings" on page 4-23

\section*{Write to Text Files Using fprintf}

This example shows how to create text files, including combinations of numeric and character data and nonrectangular files, using the low-level fprintf function.
fprintf is based on its namesake in the ANSI® Standard C Library. However, MATLAB® uses a vectorized version of fprintf that writes data from an array with minimal control loops.

\section*{Open the File}

Create a sample matrix y with two rows.
```

x = 0:0.1:1;
y = [x; exp(x)];

```

Open a file for writing with fopen and obtain a file identifier, fileID. By default, fopen opens a file for read-only access, so you must specify the permission to write or append, such as 'w' or 'a'.
```

fileID = fopen('exptable.txt','w');

```

\section*{Write to the File}

Write a title, followed by a blank line using the fprintf function. To move to a new line in the file, use ' \(\backslash n\) '.
```

fprintf(fileID, 'Exponential Function\n\n');

```

Note: Some Windows \({ }^{\circledR}\) text editors, including Microsoft \({ }^{\circledR}\) Notepad, require a newline character sequence of ' \(\backslash r \backslash n\) ' instead of ' \(\backslash n\) '. However, ' \(\backslash n\) ' is sufficient for Microsoft Word or WordPad.

Write the values in \(y\) in column order so that two values appear in each row of the file. fprintf converts the numbers or characters in the array inputs to text according to your specifications. Specify '\%f' to print floating-point numbers.
```

fprintf(fileID,'%f %f\n',y);

```

Other common conversion specifiers include ' \(\%\) d' for integers or ' \(\%\) s' for characters. fprintf reapplies the conversion information to cycle through all values of the input arrays in column order.

Close the file using fclose when you finish writing.
```

fclose(fileID);

```

View the contents of the file using the type function.
```

type exptable.txt

```

\section*{Exponential Function}
0.0000001 .000000
0.1000001 .105171
0.2000001 .221403
0.3000001 .349859
0.4000001 .491825
0.5000001 .648721
0.6000001 .822119
0.7000002 .013753
0.8000002 .225541
0.9000002 .459603
1.0000002 .718282

\section*{Additional Formatting Options}

Optionally, include additional information in the call to fprintf to describe field width, precision, or the order of the output values. For example, specify the field width and number of digits to the right of the decimal point in the exponential table.
```

fileID = fopen('exptable_new.txt', 'w');
fprintf(fileID,'Exponential Function\n\n');
fprintf(fileID,'%6.2f %12.8f\n', y);
fclose(fileID);

```

View the contents of the file.
```

type exptable_new.txt
Exponential Function
0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

```

\section*{Append To or Overwrite Existing Text Files}

This example shows how to append values to an existing text file, rewrite the entire file, and overwrite only a portion of the file.

By default, fopen opens files with read access. To change the type of file access, use the permission specifier in the call to fopen. Possible permission specifiers include:
- ' \(r\) ' for reading
- ' \(w\) ' for writing, discarding any existing contents of the file
- 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the permission, such as ' \(w+\) ' or ' \(a+\) '. If you open a file for both reading and writing, you must call fseek or frewind between read and write operations.

\section*{Append to Existing Text File}

Create a file named changing.txt.
```

fileID = fopen('changing.txt','w');
fmt = '%5d %5d %5d %5d\n';
fprintf(fileID,fmt, magic(4));
fclose(fileID);

```

The current contents of changing. txt are:
16594
211714
310615
138121
Open the file with permission to append.
fileID \(=\) fopen('changing.txt','a');
Write the values [55 55 55 55] at the end of file:
fprintf(fileID,fmt,[55 5555 55]);
Close the file.
fclose(fileID);
View the contents of the file using the type function.
type changing.txt
\begin{tabular}{rrrr}
16 & 5 & 9 & 4 \\
2 & 11 & 7 & 14 \\
3 & 10 & 6 & 15 \\
13 & 8 & 12 & 1 \\
55 & 55 & 55 & 55
\end{tabular}

\section*{Overwrite Entire Text File}

A text file consists of a contiguous set of characters, including newline characters. To replace a line of the file with a different number of characters, you must rewrite the line that you want to change and all subsequent lines in the file.

Replace the first line of changing.txt with longer, descriptive text. Because the change applies to the first line, rewrite the entire file.
```

replaceLine = 1;
numLines = 5;
newText = 'This file originally contained a magic square';

```
```

fileID = fopen('changing.txt','r');
mydata = cell(1, numLines);
for k = 1:numLines
mydata{k} = fgetl(fileID);
end
fclose(fileID);
mydata{replaceLine} = newText;
fileID = fopen('changing.txt','w');
fprintf(fileID,'%s\n',mydata{:});
fclose(fileID);

```

View the contents of the file.
```

type changing.txt

```
This file originally contained a magic square
\begin{tabular}{rrrr}
2 & 11 & 7 & 14 \\
3 & 10 & 6 & 15 \\
13 & 8 & 12 & 1 \\
55 & 55 & 55 & 55
\end{tabular}

\section*{Overwrite Portion of Text File}

Replace the third line of changing.txt with [ \(\left.\begin{array}{llll}33 & 33 & 33 & 33\end{array}\right]\). If you want to replace a portion of a text file with exactly the same number of characters, you do not need to rewrite any other lines in the file.
```

replaceLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

```

Move the file position marker to the correct line.
```

fileID = fopen('changing.txt','r+');
for k=1:(replaceLine-1);
fgetl(fileID);
end

```

Call fseek between read and write operations.
```

fseek(fileID,0,'cof');
fprintf(fileID, myformat, newData);
fclose(fileID);

```

View the contents of the file.

\section*{type changing.txt}

This file originally contained a magic square
\begin{tabular}{rrrr}
2 & 11 & 7 & 14 \\
33 & 33 & 33 & 33 \\
13 & 8 & 12 & 1 \\
55 & 55 & 55 & 55
\end{tabular}

\section*{Open Files with Different Character Encodings}

Encoding schemes support the characters required for particular alphabets, such as those for Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing using the default encoding for your system. To determine the default, open a file, and call fopen again with the syntax:
[filename, permission, machineformat, encoding] = fopen(fid);
If you specify an encoding scheme when you open a file, the following functions apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see the fopen reference page.

\section*{See Also}
fopen|fprintf|fseek

\section*{More About}
- "Formatting Text"
- "Write Data to Text Files" on page 2-27

\section*{Export Binary Data with Low-Level I/O}
```

In this section...
"Low-Level Functions for Exporting Data" on page 4-24
"Write Binary Data to a File" on page 4-24
"Overwrite or Append to an Existing Binary File" on page 4-25
"Create a File for Use on a Different System" on page 4-27
"Open Files with Different Character Encodings" on page 4-28
"Write and Read Complex Numbers" on page 4-28

```

\section*{Low-Level Functions for Exporting Data}

Low-level file I/O functions allow the most direct control over reading or writing data to a file. However, these functions require that you specify more detailed information about your file than the easier-to-use high-level functions. For a complete list of high-level functions and the file formats they support, see "Supported File Formats for Import and Export" on page 1-2.

If the high-level functions cannot export your data, use one of the following:
- fprintf, which writes formatted data to a text or ASCII file; that is, a file you can view in a text editor or import into a spreadsheet. For more information, see "Export to Text Data Files with Low-Level I/O" on page 4-18.
- fwrite, which writes a stream of binary data to a file. For more information, see "Write Binary Data to a File" on page 4-24.

Note The low-level file I/O functions are based on functions in the ANSI Standard C Library. However, MATLAB includes vectorized versions of the functions, to read and write data in an array with minimal control loops.

\section*{Write Binary Data to a File}

This example shows how to use the fwrite function to export a stream of binary data to a file.

Create a file named nine. bin with the integers from 1 to 9 . As with any of the low-level I/O functions, before writing, open or create a file with fopen and obtain a file identifier.
```

fileID = fopen('nine.bin','w');
fwrite(fileID, [1:9]);

```

By default, fwrite writes values from an array in column order as 8-bit unsigned integers (uint8).

When you finish processing a file, close it with fclose.
```

fclose(fileID);

```

Create a file with double-precision values. You must specify the precision of the values if the values in your matrix are not 8-bit unsigned integers.
```

mydata = [pi 42 1/3];
fileID = fopen('double.bin','w');
fwrite(fileID,mydata,'double');
fclose(fileID);

```

\section*{Overwrite or Append to an Existing Binary File}

This example shows how to overwrite a portion of an existing binary file and append values to the file.

By default, fopen opens files with read access. To change the type of file access, use the permission specifier in the call to fopen. Possible permission specifiers include:
- ' \(r\) ' for reading
- ' \(w\) ' for writing, discarding any existing contents of the file
- 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the permission, such as ' \(w+\) ' or ' \(a+\) '. If you open a file for both reading and writing, you must call fseek or frewind between read and write operations.

\section*{Overwrite a Portion of an Existing File}

Create a file named magic4.bin, specifying permission to write and read.
```

fileID = fopen('magic4.bin','w+');
fwrite(fileID,magic(4));

```

The original magic(4) matrix is:
162313
511108
97612
\(\begin{array}{lll}4 & 14151\end{array}\)
The file contains 16 bytes, 1 for each value in the matrix.
Replace the values in the second column of the matrix with the vector, [ \(\begin{array}{lll}44 & 44 & 44\end{array} 44\) ]. To do this, first seek to the fourth byte from the beginning of the file using fseek.
```

fseek(fileID,4,'bof');

```

Write the vector [44 4444 44] using fwrite.
```

fwrite(fileID,[44 44 44 44]);

```

Read the results from the file into a 4-by-4 matrix.
```

frewind(fileID);
newdata = fread(fileID,[4,4])
newdata = 4×4

| 16 | 44 | 3 | 13 |
| ---: | ---: | ---: | ---: |
| 5 | 44 | 10 | 8 |
| 9 | 44 | 6 | 12 |
| 4 | 44 | 15 | 1 |

```

Close the file.
fclose(fileID);

\section*{Append Binary Data to Existing File}

Append the values [55 55 55 55] to magic4.bin. First. open the file with permission to append and read.
```

fileID = fopen('magic4.bin','a+');

```

Write values at end of file.
```

fwrite(fileID,[55 55 55 55]);

```

Read the results from the file into a 4-by-5 matrix.
```

frewind(fileID);
appended = fread(fileID, [4,5])
appended = 4×5

| 16 | 44 | 3 | 13 | 55 |
| ---: | ---: | ---: | ---: | ---: |
| 5 | 44 | 10 | 8 | 55 |
| 9 | 44 | 6 | 12 | 55 |
| 4 | 44 | 15 | 1 | 55 |

```

Close the file.
fclose(fileID);

\section*{Create a File for Use on a Different System}

Different operating systems store information differently at the byte or bit level:
- Big-endian systems store bytes starting with the largest address in memory (that is, they start with the big end).
- Little-endian systems store bytes starting with the smallest address (the little end).

Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte ordering.

To create a file for use on an opposite-endian system, specify the byte ordering for the target system. You can specify the ordering in the call to open the file, or in the call to write the file.

For example, to create a file named myfile. bin on a big-endian system for use on a little-endian system, use one (or both) of the following commands:
- Open the file with
```

fid = fopen('myfile.bin', 'w', 'l')

```
- Write the file with
```

fwrite(fid, mydata, precision, 'l')

```
where ' l ' indicates little-endian ordering.
If you are not sure which byte ordering your system uses, call the computer function:
[cinfo, maxsize, ordering] = computer
The returned ordering is ' L ' for little-endian systems, or ' B ' for big-endian systems.

\section*{Open Files with Different Character Encodings}

Encoding schemes support the characters required for particular alphabets, such as those for Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

The encoding scheme determines the number of bytes required to read or write char values. For example, US-ASCII characters always use 1 byte, but UTF-8 characters use up to 4 bytes. MATLAB automatically processes the required number of bytes for each char value based on the specified encoding scheme. However, if you specify a uchar precision, MATLAB processes each byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing using the default encoding for your system. To determine the default, open a file, and call fopen again with the syntax:
[filename, permission, machineformat, encoding] = fopen(fid);
If you specify an encoding scheme when you open a file, the following functions apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see the fopen reference page.

\section*{Write and Read Complex Numbers}

This example shows how to write and read complex numbers in binary files.

The available precision values for fwrite do not explicitly support complex numbers. To store complex numbers in a file, separate the real and imaginary components and write them separately to the file. There are two ways to do this:
- Write all real components followed by all imaginary components
- Interleave the components

Use the approach that allows you to read the data in your target application.

\section*{Separate Real and Imaginary Components}

Create an array that contains complex values.
```

nrows = 5;
ncols = 5;
z = complex(rand(nrows, ncols), rand(nrows, ncols))
z = 5×5 complex

```
\begin{tabular}{llllll}
\(0.8147+0.7577 i\) & \(0.0975+0.7060 i\) & \(0.1576+0.8235 i\) & \(0.1419+0.4387 i\) & 0.6557 \\
\(0.9058+0.7431 i\) & \(0.2785+0.0318 i\) & \(0.9706+0.6948 i\) & \(0.4218+0.3816 i\) & 0.0357 \\
\(0.1270+0.3922 i\) & \(0.5469+0.2769 i\) & \(0.9572+0.3171 i\) & \(0.9157+0.7655 i\) & 0.8491 \\
\(0.9134+0.6555 i\) & \(0.9575+0.0462 i\) & \(0.4854+0.9502 i\) & \(0.7922+0.7952 i\) & 0.9340 \\
\(0.6324+0.1712 i\) & \(0.9649+0.0971 i\) & \(0.8003+0.0344 i\) & \(0.9595+0.1869 i\) & 0.6787
\end{tabular}

Separate the complex values into real and imaginary components.
```

z real = real(z);
z_imag = imag(z);

```

Write All Real Components Followed By Imaginary Components
Write all the real components, z real, followed by all the imaginary components, z_imag, to a file named complex_adj.bin.
```

adjacent = [z_real z_imag];

```
fileID = fopen('complex_adj.bin', 'w');
fwrite(fileID, adjacent,' 'double');
fclose(fileID);

Read the values from the file using fread.
```

fileID = fopen('complex adj.bin');
same_real = fread(fileI\overline{D, [nrows, ncols], 'double');}

```
```

same_imag = fread(fileID, [nrows, ncols], 'double');
fclose(fileID);
same_z = complex(same_real, same_imag);

```

\section*{Interleave Real and Imaginary Components}

An alternative approach is to interleave the real and imaginary components for each value. fwrite writes values in column order, so build an array that combines the real and imaginary parts by alternating rows.

First, preallocate the interleaved array.
```

interleaved = zeros(nrows*2, ncols);

```

Alternate real and imaginary data.
```

newrow = 1;
for row = 1:nrows
interleaved(newrow,:) = z_real(row,:);
interleaved(newrow + 1,:) = z_imag(row,:);
newrow = newrow + 2;
end

```

Write the interleaved values to a file named complex_int.bin.
```

fileID = fopen('complex_int.bin','w');
fwrite(fileID, interleaved, 'double');
fclose(fileID);

```

Open the file for reading and read the real values from the file. The fourth input to fread tells the function to skip the specified number of bytes after reading each value.
```

fileID = fopen('complex_int.bin');
same_real = fread(fileI\overline{D}, [nrows, ncols], 'double', 8);

```

Return to the first imaginary value in the file. Then, read all the imaginary data.
```

fseek(fileID, 8, 'bof');
same_imag = fread(fileID, [nrows, ncols], 'double', 8);
fclose(fileID);

```
same_z = complex(same_real, same_imag);

\section*{See Also}
fopen | fread | fseek | fwrite

\section*{More About}
- "Moving within a File" on page 4-14

\section*{Internet of Things (IoT) Data}
- "Aggregate Data in ThingSpeak Channel" on page 5-2
- "Regularize Irregularly Sampled Data" on page 5-4
- "Plot Data Read from ThingSpeak Channel" on page 5-6
- "Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit" on page 5-8

\section*{Aggregate Data in ThingSpeak Channel}

This example shows how to aggregate data to a lower time resolution in a ThingSpeak \({ }^{\text {TM }}\) channel to remove irregularity. Irregularity in a data can be caused due to several factors such as event driven sensing, malfunctioning of sensors, or network latencies.

\section*{Read Data}

ThingSpeak channel 22641 contains tide and weather data measured once a minute at Ockway Bay, Cape Cod. Field 2 of the channel contains air temperature data. Read the air temperature data for the past 3 hours from channel 22641 using the thingSpeakRead function.
```

datetimeStop = dateshift(datetime('now'),'start','hour');
datetimeStart = dateshift(datetime('now'),'start','hour') - hours(3);
data = thingSpeakRead(22641,'DateRange',[datetimeStart,datetimeStop],...
'Fields',2,'outputFormat','timetable');

```

\section*{Aggregate the Data}

Data is measured once every minute. However, due to network latency associated with the measurement system, the actual timestamps can be greater than or less than a minute apart. Further, for the application of interest, the frequency of data measured every minute is high. Data at an hourly time resolution is sufficient. You can use the retime function to aggregate the data for each hour to a single value. You can use the maximum value for each hour to aggregate the data. Preview the first four values of the data with head.
```

dataHourly = retime(data,'hourly','max');

```
head (dataHourly,4)
```

ans =
3x1 timetable
Timestamps AirTemperatureC
03-Jan-2019 14:00:00 7.5
03-Jan-2019 15:00:00 6.9
03-Jan-2019 16:00:00 6.4

```

\section*{Send Data to ThingSpeak}

Change the channelID and the writeAPIKey to send data to your channel
channelID=17504;
writeAPIKey='23ZLG0BBU9TWHG2H';
thingSpeakWrite(channelID,data,'writeKey',writeAPIKey);

\section*{See Also}
retime|thingSpeakRead|thingSpeakWrite

\section*{Regularize Irregularly Sampled Data}

This example shows how to regularize irregularly sampled data to have a constant time period between measurements. You update timestamps of data read from a ThingSpeak \({ }^{\text {TM }}\) channel to remove irregularity, then write the data to a channel. Timestamp variations in measured data introduced due to network latencies or hardware resets can affect data preprocessing and data analytics algorithms. Many algorithms require regularly sampled data to work correctly.

\section*{Read Data from the Weather Station Channel}

ThingSpeak channel 12397 contains data from the MathWorks \({ }^{\circledR}\) weather station, located in Natick, Massachusetts. The data is collected once every minute. Field 4 of the channel contains air temperature data. To check for irregularly sampled data, read the air temperature data from channel 12397 using the thingSpeakRead function.
data \(=\) thingSpeakRead(12397,'NumMin',60,'Fields',4,'outputFormat','timetable');

\section*{Check for Irregularly Sampled Data}

The data for the last 60 minutes read from channel 12397 is stored in as a timetable. Use is regular function to check if the channel data is regularly sampled. If data is irregularly sampled, generate a regularly spaced time vector for the time period of interest. Generate a new time vector using linspace with the startTime, stopTime, and the number of measurements.
```

regularFlag = isregular(data,'Time');
if ~regularFlag
startTime = data.Timestamps(1);
stopTime = data.Timestamps(end);
newTimeVector = linspace(startTime,stopTime,height(data));
data.Timestamps = newTimeVector;
end

```

\section*{Send Data to ThingSpeak}

Send the processed data to a ThingSpeak channel using the thingSpeakWrite function.
```

% Change the channelID and the writeAPIKey to send data to your channel.

```
channelID=17504;
writeAPIKey='23ZLGOBBU9TWHG2H';
thingSpeakWrite(channelID, data,'WriteKey',writeAPIKey);

\section*{See Also}
linspace|thingSpeakRead|thingSpeakWrite

\section*{Plot Data Read from ThingSpeak Channel}

This example shows how to read data from a public ThingSpeak \({ }^{\mathrm{TM}}\) channel and create a simple plot visualization from the results.

\section*{Read Data from ThingSpeak Channel}

ThingSpeak channel 102698 contains air quality data from a parking garage in Natick Massachusetts. Field 5 is a measure of dust concentration.
```

[dustData,Timestamps]=thingSpeakRead(102698,'Fields',5,'NumPoints',3000);

```

\section*{Plot the Dust Concentration Over Time}

Use plot to visualize the data. Use ylabel and title to add labels to your plot.
plot(Timestamps,dustData);
ylabel('Dust Concentration (ppm)');
title('MathWorks Air Quality Station, East Parking Garage');


During business days, you can see spikes in the dust concentration at times when cars arrive or depart.

\section*{See Also}
plot|thingSpeakRead|thingSpeakWrite|title|ylabel

\section*{Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit}

This example shows how to read battery data from a ThingSpeak \({ }^{\mathrm{TM}}\) channel and analyze the data to determine the remaining battery life. Use a linear fit to predict the date that the battery will fail, and then write the remaining time in days to another ThingSpeak Channel. You read data for a 12 V battery connected to a microprocessor reporting its voltage to ThingSpeak every half hour. Then use regression to predict the day and time when the battery will fail.

\section*{Read Data from ThingSpeak Channel}

Start by storing channel and date information in variables, and then use thingSpeakRead to read the data. Channel 592680 shows the scaled measurement of voltage from a 12 V battery. Use the DateRange name-value pair to use a specific selection of data.
```

batteryChannelID = 592680;
startDate = datetime('0ct 20, 2018');
endDate = datetime('0ct 23, 2018');
batteryData = thingSpeakRead(batteryChannelID,'DateRange',[startDate endDate],'Outputfc

```

\section*{Convert the Data for Fitting and Plot}

The channel stores raw data from the device. Convert the analog-to-digital converter (ADC) measurement to voltage using the experimentally determined conversion factor 14.6324. Then use scatter to generate a plot.
```

myVoltage = 14.6324 * batteryData.Voltage;
scatter(batteryData.Timestamps,myVoltage,'b');
ylabel('Voltage (V)');
hold on

```


\section*{Fit the Data}

The timetable datetime format is useful for reading and plotting. To fit the data, the datetime needs to be in numeric format. Use datenum to convert the timestamps into a number of days, and subtract the starting number to keep the values low. Use polyfit to perform linear regression on the data, and polyval to evaluate the fit at the existing time values. Add the fit line to the previous plot.
```

battTimes = datenum(batteryData.Timestamps);
battTimes= battTimes-battTimes(1);
myFit=polyfit(battTimes,myVoltage,1);
fitLine=polyval(myFit,battTimes);
plot(batteryData.Timestamps,fitLine,'r--');

```


\section*{Predict Discharge Time}

The battery should not be discharged below 10.4 V. Find the number of days until the fit line will intersect with this voltage.
```

endDays = (10.4-myFit(2))/myFit(1)
endDays = 13.1573

```

There are just over 13 days until the battery dies.

\section*{Write Prediction to ThingSpeak}

The thingSpeakWrite function writes the result to a ThingSpeak channel. Return the output from thingSpeakWrite to ensure a successful write operation. Change the writeChannelID and writeAPIKey to write to your own channel.
```

writeChannelID = 17504;
writeAPIKey='23ZLG0BBU9TWHG2H';
result = thingSpeakWrite(writeChannelID,round(endDays,4),'WriteKey',writeAPIKey)
result = struct with fields:
Field1: '13.1573'
Field2: []
Field3: []
Field4: []
Field5: []
Field6: []
Field7: []
Field8: []
Latitude: []
Longitude: []
ChannelID: 17504
Created: 03-Jun-2019 15:24:43
LastEntryID: 50018
Altitude: []

```

The result shows the successful write operation and reports the data that was written.

\section*{See Also}
datetime|datnum|polyfit|polyval| scatter|thingSpeakRead| thingSpeakWrite

\section*{Images}
- "Importing Images" on page 6-2
- "Exporting to Images" on page 6-6

\section*{Importing Images}

To import data into the MATLAB workspace from a graphics file, use the imread function. Using this function, you can import data from files in many standard file formats, including the Tagged Image File Format (TIFF), Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG), and Portable Network Graphics (PNG) formats. For a complete list of supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the MATLAB workspace as the array I:
```

I = imread('ngc6543a.jpg');

```
imread represents the image in the workspace as a multidimensional array of class uint8. The dimensions of the array depend on the format of the data. For example, imread uses three dimensions to represent RGB color images:
\begin{tabular}{ccrl} 
whos I & Size & Bytes & Class \\
Name & & 1170000 & uint8 array
\end{tabular}

Grand total is 1170000 elements using 1170000 bytes
For more control over reading TIFF files, use the Tiff object-see "Reading Image Data and Metadata from TIFF Files" on page 6-3 for more information.

\section*{Getting Information About Image Files}

If you have a file in a standard graphics format, use the imfinfo function to get information about its contents. The imfinfo function returns a structure containing information about the file. The fields in the structure vary with the file format, but imfinfo always returns some basic information including the file name, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts Group (JPEG) format:
```

info = imfinfo('ngc6543a.jpg')
info =

```
```

 Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg'
 FileModDate: '01-Oct-1996 16:19:44'
 FileSize: 27387
 Format: 'jpg'
 FormatVersion:
 Width: 600
 Height: 650
 BitDepth: 2
 ColorType: 'truecolor'
 FormatSignature:
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential
Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =...'}

```

\section*{Reading Image Data and Metadata from TIFF Files}

While you can use imread to import image data and metadata from TIFF files, the function does have some limitations. For example, a TIFF file can contain multiple images and each images can have multiple subimages. While you can read all the images from a multi-image TIFF file with imread, you cannot access the subimages. Using the Tiff object, you can read image data, metadata, and subimages from a TIFF file. When you construct a Tiff object, it represents your connection with a TIFF file and provides access to many of the routines in the LibTIFF library.

A step-by-step example of using Tiff object methods and properties to read subimages from a TIFF file follows. To get the most out of the Tiff object, familiarize yourself with the TIFF specification and technical notes. See LibTIFF - TIFF Library and Utilities.

\section*{Reading Subimages from a TIFF File}

A TIFF file can contain one or more image file directories (IFD). Each IFD contains image data and the metadata (tags) associated with the image. Each IFD can contain one or more subIFDs, which also can contain image data and metadata. These subimages are typically reduced-resolution (thumbnail) versions of the image data in the IFD containing the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage from the SubIFD tag. The SubIFD tag contains an array of byte offsets that point to the subimages. You then can pass the address of the subIFD to the setSubDirectory
method to make the subIFD the current IFD. Most Tiff object methods operate on the current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff object constructor. This example uses the TIFF file created in "Creating TIFF File Subdirectories" on page 6-10, which contains one IFD directory with two subIFDs. The Tiff constructor opens the TIFF file, and makes the first subIFD in the file the current IFD:
t = Tiff('my_subimage_file.tif','r');
2 Retrieve the locations of subIFDs associated with the current IFD. Use the getTag method to get the value of the SubIFD tag. This method returns an array of byte offsets that specify the location of subIFDs:
offsets = getTag(t,'SubIFD')
3 Navigate to the first subimage. First, set the currentIFD to the directory containing the first subimage:
```

dirNum = 1;

```
setDirectory(t,dirNum);

4 Then, navigate to the first subIFD using the setSubDirectory method. Specify the byte offset of the subIFD as an argument. This call makes the subIFD the current IFD:
setSubDirectory(t,offsets(1));
5 Read the image data from the current IFD (the first subIFD) the same way you read any other IFD in the file:
subimage_one = read(t);
6 View the first subimage:
imagesc(subimage_one)
7 Navigate to the second subimage. First, reset the currentIFD to the directory containing the second subimage:
setDirectory(t,dirNum);
8 Then, navigate to the second subIFD using the setSubDirectory method. Specify the byte offset of the second subIFD:
setSubDirectory(t,offsets(2));
9 Read the image data from the current IFD (the second subIFD) as you would with any other IFD in the file:
subimage_two = read(t);

\section*{10 View the second subimage: \\ imagesc(subimage_two) \\ 11 Close the Tiff object: \\ close(t);}

\section*{See Also}

Tiff

\section*{External Websites}
- "Exporting to Images" on page 6-6

\section*{Exporting to Images}

To export data from the MATLAB workspace using one of the standard graphics file formats, use the imwrite function. Using this function, you can export data in formats such as the Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), and Portable Network Graphics (PNG). For a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from the MATLAB workspace into a file in TIFF format. The class of the output image written to the file depends on the format specified. For most formats, if the input array is of class uint8, imwrite outputs the data as 8 -bit values. See the imwrite reference page for details.
\begin{tabular}{ll}
\begin{tabular}{l} 
whos I \\
Name
\end{tabular} Size & Bytes Class \\
I \(\quad 650 \times 600 \times 3\) & 1170000 uint8 array \\
Grand total is 1170000 elements using 1170000 bytes \\
imwrite(I, 'my_graphics_file.tif','tif');
\end{tabular}

Note imwrite supports different syntaxes for several of the standard formats. For example, with TIFF file format, you can specify the type of compression MATLAB uses to store the image. See the imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object-see "Exporting Image Data and Metadata to TIFF Files" on page 6-6 for more information.

\section*{Exporting Image Data and Metadata to TIFF Files}

While you can use imwrite to export image data and metadata (tags) to Tagged Image File Format (TIFF) files, the function does have some limitations. For example, when you want to modify image data or metadata in the file, you must write the all the data to the file. You cannot write only the updated portion. Using the Tiff object, you can write portions of the image data and modify or add individual tags to a TIFF file. When you construct a Tiff object, it represents your connection with a TIFF file and provides access to many of the routines in the LibTIFF library.

The following sections provide step-by-step examples of using Tiff object methods and properties to perform some common tasks with TIFF files. To get the most out of the Tiff
object, you must be familiar with the TIFF specification and technical notes. View this documentation at LibTIFF - TIFF Library and Utilities.

\section*{Creating a New TIFF File}

1 Create some image data. This example reads image data from a JPEG file included with MATLAB:
imgdata = imread('ngc6543a.jpg');
2 Create a new TIFF file by constructing a Tiff object, specifying the name of the new file as an argument. To create a file you must specify either write mode ('w') or append mode ('a'):
t = Tiff('myfile.tif','w');
When you create a new TIFF file, the Tiff constructor creates a file containing an image file directory (IFD). A TIFF file uses this IFD to organize all the data and metadata associated with a particular image. A TIFF file can contain multiple IFDs. The Tiff object makes the IFD it creates the current IFD. Tiff object methods operate on the current IFD. You can navigate among IFDs in a TIFF file and specify which IFD is the current IFD using Tiff object methods.
3 Set required TIFF tags using the setTag method of the Tiff object. These required tags specify information about the image, such as its length and width. To break the image data into strips, specify a value for the RowsPerStrip tag. To break the image data into tiles, specify values for the TileWidth and TileLength tags. The example creates a structure that contains tag names and values and passes that to setTag. You also can set each tag individually.
```

tagstruct.ImageLength = size(imgdata,1);
tagstruct.ImageWidth = size(imgdata,2);
tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;
tagstruct.SamplesPerPixel = 3;
tagstruct.RowsPerStrip = 16;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';
tagstruct % display tagstruct
setTag(t,tagstruct)

```

For information about supported TIFF tags and how to set their values, see "Setting Tag Values" on page 6-12. For example, the Tiff object supports properties that you can use to set the values of certain properties. This example uses the Tiff object

PlanarConfiguration property to specify the correct value for the chunky configuration: Tiff. PlanarConfiguration. Chunky.
4 Write the image data and metadata to the current directory using the write method of the Tiff object.
write(t,imgdata);
If you wanted to put multiple images into your file, call the writeDirectory method right after performing this write operation. The writeDirectory method sets up a new image file directory in the file and makes this new directory the current directory.
5 Close your connection to the file by closing the Tiff object:
close(t);
6 Test that you created a valid TIFF file by using the imread function to read the file, and then display the image:
imagesc(imread('myfile.tif'));

\section*{Writing a Strip or Tile of Image Data}

Note You can only modify a strip or a tile of image data if the data is not compressed.

1 Open an existing TIFF file for modification by creating a Tiff object. This example uses the file created in "Creating a New TIFF File" on page 6-7. The Tiff constructor returns a handle to a Tiff object.
t = Tiff('myfile.tif','r+');
2 Generate some data to write to a strip in the image. This example creates a threedimensional array of zeros that is the size of a strip. The code uses the number of rows in a strip, the width of the image, and the number of samples per pixel as dimensions. The array is an array of uint8 values.
```

width = getTag(t,'ImageWidth');
height = getTag(t,'RowsPerStrip');
numSamples = getTag(t,'SamplesPerPixel');
stripData = zeros(height,width,numSamples,'uint8');

```

If the image data had a tiled layout, you would use the TileWidth and TileLength tags to specify the dimensions.

3 Write the data to a strip in the file using the writeEncodedStrip method. Specify the index number that identifies the strip you want to modify. The example picks strip 18 because it is easier to see the change in the image.
```

writeEncodedStrip(t,18,stripData);

```

If the image had a tiled layout, you would use the writeEncodedTile method to modify the tile.
4 Close your connection to the file by closing the Tiff object.
close(t);
5 Test that you modified a strip of the image in the TIFF file by using the imread function to read the file, and then display the image.
```

modified_imgdata = imread('myfile.tif');
imagesc(modified_imgdata)

```

Note the black strip across the middle of the image.

\section*{Modifying TIFF File Metadata (Tags)}

1 Open an existing TIFF file for modification using the Tiff object. This example uses the file created in "Creating a New TIFF File" on page 6-7. The Tiff constructor returns a handle to a Tiff object.
```

t = Tiff('myfile.tif','r+');

```

2 Verify that the file does not contain the Artist tag, using the getTag method. This code should issue an error message saying that it was unable to retrieve the tag.
artist_value = getTag(t,'Artist');
3 Add the Artist tag using the setTag method.
setTag(t,'Artist','Pablo Picasso');
4 Write the new tag data to the TIFF file using the rewriteDirectory method. Use the rewriteDirectory method when modifying existing metadata in a file or adding new metadata to a file.
```

rewriteDirectory(t);

```

5 Close your connection to the file by closing the Tiff object.
close(t);
6 Test your work by reopening the TIFF file and getting the value of the Artist tag, using the getTag method.
```

t = Tiff('myfile.tif', 'r');
getTag(t,'Artist')
ans =
Pablo Picasso
close(t);

```

\section*{Creating TIFF File Subdirectories}

1 Create some image data. This example reads image data from a JPEG file included with MATLAB. The example then creates two reduced-resolution (thumbnail) versions of the image data.
```

imgdata = imread('ngc6543a.jpg');
%
% Reduce number of pixels by a half.
img_half = imgdata(1:2:end,1:2:end,:);
%
% Reduce number of pixels by a third.
img_third = imgdata(1:3:end,1:3:end,:);

```

2 Create a new TIFF file by constructing a Tiff object and specifying the name of the new file as an argument. To create a file you must specify either write mode ('w') or append mode ('a'). The Tiff constructor returns a handle to a Tiff object. t = Tiff('my_subimage_file.tif','w');
3 Set required TIFF tags using the setTag method of the Tiff object. These required tags specify information about the image, such as its length and width. To break the image data into strips, specify a value for the RowsPerStrip tag. To break the image data into tiles, use the TileWidth and TileLength tags. The example creates a structure that contains tag names and values and passes that to setTag. You can also set each tag individually.

To create subdirectories, you must set the SubIFD tag, specifying the number of subdirectories you want to create. Note that the number you specify isn't the value of the SubIFD tag. The number tells the Tiff software to create a SubIFD that points to two subdirectories. The actual value of the SubIFD tag will be the byte offsets of the two subdirectories.
tagstruct.ImageLength = size(imgdata, 1 );
tagstruct.ImageWidth = size(imgdata, 2 );
```

tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;
tagstruct.SamplesPerPixel = 3;
tagstruct.RowsPerStrip = 16;
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';
tagstruct.SubIFD = 2 ; % required to create subdirectories
tagstruct % display tagstruct
setTag(t,tagstruct)

```

For information about supported TIFF tags and how to set their values, see "Setting Tag Values" on page 6-12. For example, the Tiff object supports properties that you can use to set the values of certain properties. This example uses the Tiff object PlanarConfiguration property to specify the correct value for the chunky configuration: Tiff.PlanarConfiguration. Chunky.
4 Write the image data and metadata to the current directory using the write method of the Tiff object.
write(t,imgdata);
5 Set up the first subdirectory by calling the writeDirectory method. The writeDirectory method sets up the subdirectory and make the new directory the current directory. Because you specified that you wanted to create two subdirectories, writeDirectory sets up a subdirectory.
```

writeDirectory(t);

```

6 Set required tags, just as you did for the regular directory. According to the LibTIFF API, a subdirectory cannot contain a SubIFD tag.
```

tagstruct2.ImageLength = size(img_half,1);
tagstruct2.ImageWidth = size(img_half,2);
tagstruct2.Photometric = Tiff.Photometric.RGB;
tagstruct2.BitsPerSample = 8;
tagstruct2.SamplesPerPixel = 3;
tagstruct2.RowsPerStrip = 16;
tagstruct2.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct2.Software = 'MATLAB';
tagstruct2 % display tagstruct2
setTag(t,tagstruct2)

```

7 Write the image data and metadata to the subdirectory using the write method of the Tiff object.
```

write(t,img_half);

```

8 Set up the second subdirectory by calling the writeDirectory method. The writeDirectory method sets up the subdirectory and makes it the current directory.
```

writeDirectory(t);

```

9 Set required tags, just as you would for any directory. According to the LibTIFF API, a subdirectory cannot contain a SubIFD tag.
```

tagstruct3.ImageLength = size(img_third,1);
tagstruct3.ImageWidth = size(img_third,2);
tagstruct3.Photometric = Tiff.Photometric.RGB;
tagstruct3.BitsPerSample = 8;
tagstruct3.SamplesPerPixel = 3;
tagstruct3.RowsPerStrip = 16;
tagstruct3.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct3.Software = 'MATLAB';
tagstruct3 % display tagstruct3
setTag(t,tagstruct3)

```

10 Write the image data and metadata to the subdirectory using the write method of the Tiff object:
write(t,img_third);
11 Close your connection to the file by closing the Tiff object:
close(t);

\section*{Setting Tag Values}

The following table lists all the TIFF tags that the Tiff object supports and includes information about their MATLAB class and size. For certain tags, the table also indicates the set of values that the Tiff object supports, which is a subset of all the possible values defined by the TIFF specification. You can use the Tiff properties structure to specify the supported values for these tags. For example, use Tiff. Compression.JPEG to specify JPEG compression. See the Tiff reference page for a full list of properties.

Table 1: Supported TIFF Tags
\begin{tabular}{|c|c|c|c|c|}
\hline TIFF Tag & Class & Size & Supported Values & Notes \\
\hline Artist & char & 1xN & & \\
\hline BitsPerSample & double & \(1 \times 1\) & 1,8,16,32,64 & See Table 2 on page 6-18 \\
\hline ColorMap & double & 256x3 & Values should be normalized between 0-1. Stored internally as uint16 values. & Photometric must be Palette \\
\hline Compression & double & \(1 \times 1\) & None: 1 CCITTRLE: 2 CCITTFax3: 3 CCITTFax4: 4 LZW: 5 JPEG: 7 CCITTRLEW: 32771 PackBits: 32773 Deflate: 32946 AdobeDeflate: 8 & See Table 3 on page 6-19. \\
\hline Copyright & char & 1xN & & \\
\hline DateTime & char & 1x19 & Return value is padded to 19 chars if required. & \\
\hline DocumentName & char & \(1 \times N\) & & \\
\hline DotRange & double & \(1 \times 2\) & & Photometric must be Separated \\
\hline ExtraSamples & double & \(1 \times N\) & Unspecified: 0 AssociatedAlpha : 1 UnassociatedAlp ha: 2 & See Table 4 on page 6-20. \\
\hline FillOrder & double & 1x1 & & \\
\hline GeoAsciiParamsTag & char & \(1 \times N\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline TIFF Tag & Class & Size & Supported Values & Notes \\
\hline GeoDoubleParamsTag & double & \(1 \times N\) & & \\
\hline GeoKeyDirectoryTag & double & Nx 4 & & \\
\hline Group30ptions & double & \(1 \times 1\) & & Compression must be CCITTFax3 \\
\hline Group40ptions & double & \(1 \times 1\) & & Compression must be CCITTFax4 \\
\hline HalfToneHints & double & \(1 \times 2\) & & \\
\hline HostComputer & char & \(1 \times n\) & & \\
\hline ICCProfile & uint8 & \(1 \times n\) & & \\
\hline ImageDescription & char & \(1 \times n\) & & \\
\hline ImageLength & double & \(1 \times 1\) & & \\
\hline ImageWidth & double & \(1 \times 1\) & & \\
\hline InkNames & char cell array & \[
\begin{array}{|l|}
\hline 1 \mathrm{x} \\
\text { NumInk }
\end{array}
\]
\[
\mathrm{s}
\] & & Photometric must be Separated \\
\hline InkSet & double & \(1 \times 1\) & \begin{tabular}{l}
CMYK: 1 \\
MultiInk: 2
\end{tabular} & Photometric must be Separated \\
\hline JPEGQuality & double & \(1 \times 1\) & A value between 1 and 100 & \\
\hline Make & char & \(1 \times n\) & & \\
\hline MaxSampleValue & double & \(1 \times 1\) & 0-65,535 & \\
\hline MinSampleValue & double & \(1 \times 1\) & 0-65,535 & \\
\hline Model & char & 1xN & & \\
\hline ModelPixelScaleTag & double & \(1 \times 3\) & & \\
\hline ModelTiepointTag & double & Nx6 & & \\
\hline  & double & \(1 \times 16\) & & \\
\hline NumberOfInks & double & \(1 \times 1\) & & Must be equal to SamplesPerPixel \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline TIFF Tag & Class & Size & Supported Values & Notes \\
\hline Orientation & double & 1x1 & \begin{tabular}{l}
TopLeft: 1 \\
TopRight: 2 \\
BottomRight: 3 \\
BottomLeft: 4 \\
LeftTop: 5 \\
RightTop: 6 \\
RightBottom: 7 \\
LeftBottom: 8
\end{tabular} & \\
\hline PageName & char & 1xN & & \\
\hline PageNumber & double & 1x2 & & \\
\hline Photometric & double & \(1 \times 1\) & \begin{tabular}{l}
MinIsWhite: 0 MinIsBlack: 1 RGB: 2 \\
Palette: 3 \\
Mask: 4 \\
Separated: 5 \\
YCbCr: 6 \\
CIELab: 8 \\
ICCLab: 9 \\
ITULab: 10
\end{tabular} & See Table 2 on page 6-18. \\
\hline Photoshop & uint8 & 1xN & & \\
\hline PlanarConfiguration & double & \(1 \times 1\) & Chunky: 1 Separate: 2 & \\
\hline PrimaryChromaticities & double & \(1 \times 6\) & & \\
\hline ReferenceBlackWhite & double & \(1 \times 6\) & & \\
\hline ResolutionUnit & double & 1x1 & & \\
\hline RICHTIFFIPTC & uint8 & 1xN & & \\
\hline RowsPerStrip & double & 1x1 & & \\
\hline SampleFormat & double & 1x1 & \begin{tabular}{l}
Uint: 1 \\
Int: 2 \\
IEEEFP: 3
\end{tabular} & See Table 2 on page 6-17 \\
\hline SamplesPerPixel & double & 1x1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline TIFF Tag & Class & Size & Supported Values & Notes \\
\hline SMaxSampleValue & double & \(1 \times 1\) & Range of MATLAB data type specified for Image data & \\
\hline SMinSampleValue & double & \(1 \times 1\) & Range of MATLAB data type specified for Image data & \\
\hline Software & char & \(1 \times N\) & & \\
\hline StripByteCounts & double & \(1 \times N\) & & Read-only \\
\hline Strip0ffsets & double & \(1 \times N\) & & Read-only \\
\hline SubFileType & double & \(1 \times 1\) & \begin{tabular}{l}
Default: 0 \\
ReducedImage: 1 \\
Page: 2 \\
Mask: 4
\end{tabular} & \\
\hline SubIFD & double & \(1 \times 1\) & & \\
\hline TargetPrinter & char & \(1 \times N\) & & \\
\hline Thresholding & double & \(1 \times 1\) & \begin{tabular}{l}
BiLevel: 1 \\
HalfTone: 2 \\
ErrorDiffuse: 3
\end{tabular} & Photometric can be either: MinIsWhite MinIsBlack \\
\hline TileByteCounts & double & \(1 \times N\) & & Read-only \\
\hline TileLength & double & \(1 \times 1\) & Must be a multiple of 16 & \\
\hline Tile0ffsets & double & \(1 \times N\) & & Read-only \\
\hline TileWidth & double & \(1 \times 1\) & Must be a multiple of 16 & \\
\hline TransferFunction & double & See note \({ }^{1}\) & Each value should be within 0-2^16-1 & SamplePerPixel can be either 1 or 3 \\
\hline WhitePoint & double & \(1 \times 2\) & & Photometric can be: RGB Palette YCbCr CIELab ICCLab ITULab \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline TIFF Tag & Class & Size & Supported Values & Notes \\
\hline XMP & char & \(1 \times n\) & & N>5 \\
\hline XPostion & double & \(1 \times 1\) & & \\
\hline XResolution & double & \(1 \times 1\) & & \begin{tabular}{l} 
Photometric must \\
be YCbCr
\end{tabular} \\
\hline YCbCrCoefficents & double & \(1 \times 3\) & & \begin{tabular}{l} 
Photometric must \\
be YCbCr
\end{tabular} \\
\hline YCbCrPositioning & double & \(1 \times 1\) & \begin{tabular}{l} 
Centered: 1 \\
Cosited: 2
\end{tabular} \\
\hline YCbCrSubSampling & double & \(1 \times 2\) & & \begin{tabular}{l} 
Photometric must \\
be YCbCr
\end{tabular} \\
\hline YPosition & double & \(1 \times 1\) & & \\
\hline YResolution & double & \(1 \times 1\) & & \\
\hline ZipQuality & double & \(1 \times 1\) & \begin{tabular}{l} 
Value between 1 \\
and 9
\end{tabular} & \\
\hline
\end{tabular}
\({ }^{1}\) Size is \(1 \times 2 \wedge\) BitsPerSample or3×2^BitsPerSample.
Table 2: Valid SampleFormat Values for BitsPerSample Settings
\begin{tabular}{|l|l|l|}
\hline BitsPerSample & SampleFormat & MATLAB Data Type \\
\hline 1 & Uint & logical \\
\hline 8 & Uint, Int & uint8, int8 \\
\hline 16 & Uint, Int & uint16, int16 \\
\hline 32 & Uint, Int, IEEEFP & uint32, int32, single \\
\hline 64 & IEEEFP & double \\
\hline
\end{tabular}

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|c|}{ BitsPerSample Values } \\
\hline \begin{tabular}{l} 
Photometric \\
Values
\end{tabular} & \(\mathbf{1}\) & \(\mathbf{8}\) & \(\mathbf{1 6}\) & \(\mathbf{3 2}\) \\
\hline MinIsWhite & Uint & Uint/Int & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} & IEEEFP \\
\hline MinIsBlack & Uint & Uint/Int & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} & IEEEFP \\
\hline RGB & & Uint & Uint & \begin{tabular}{l} 
Uint \\
IEEEFP
\end{tabular} & IEEEFP \\
\hline Pallette & Uint & Uint & Uint & Uint & \begin{tabular}{l} 
Uint \\
IEEEFP
\end{tabular} \\
\hline Mask & & Uint & Uint & \begin{tabular}{l} 
Uint \\
IEEEFP
\end{tabular} & IEEEFP \\
\hline Separated & & Uint & Uint & & \\
\hline YCbCr & & Uint & Uint & & \\
\hline CIELab & & Uint & & \\
\hline ICCLab & & & & & \\
\hline ITULab & & & & & \\
\hline
\end{tabular}

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations
\begin{tabular}{|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|c|}{ BitsPerSample Values } \\
\hline \begin{tabular}{l} 
Compression \\
Values
\end{tabular} & \(\mathbf{1}\) & \(\mathbf{8}\) & \(\mathbf{1 6}\) & \(\mathbf{3 2}\) \\
\hline None & Uint & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} \\
\hline CCITTRLE & Uint & & & IEEEFP \\
\hline CCITTFax3 & Uint & & & & \\
\hline CCITTFax4 & Uint & Uint & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} \\
\hline LZW & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & Uint & Uint & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} \\
\hline JPEG & Uint & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} \\
\hline PackBits & Uint & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int
\end{tabular} & \begin{tabular}{l} 
Uint \\
Int \\
IEEEFP
\end{tabular} & IEEEFPP \\
\hline Adoflate & & & & IEEEFP \\
\hline
\end{tabular}

Table 5: Valid SamplesPerPixel Values for Photometric Settings
\begin{tabular}{|l|l|}
\hline Photometric Values & SamplesPerPixel \({ }^{\mathbf{1}}\) \\
\hline MinIsWhite & \(1+\) \\
\hline MinIsBlack & \(1+\) \\
\hline RGB & \(3+\) \\
\hline Pallette & 1 \\
\hline Mask & 1 \\
\hline Separated & \(1+\) \\
\hline YCbCr & 3 \\
\hline CIELab & \(3+\) \\
\hline ICCLab & \(3+\) \\
\hline ITULab & \(3+\) \\
\hline
\end{tabular}
\({ }^{1}\) When you specify more than the expected number of samples per pixel ( \(n+\) ), you must set the ExtraSamples tag accordingly.

\section*{See Also}

Tiff

\section*{External Websites}
- "Importing Images" on page 6-2

\section*{Scientific Data}
- "Import CDF Files Using Low-Level Functions" on page 7-2
- "Represent CDF Time Values" on page 7-5
- "Import CDF Files Using High-Level Functions" on page 7-6
- "Export to CDF Files" on page 7-10
- "Map NetCDF API Syntax to MATLAB Syntax" on page 7-13
- "Import NetCDF Files and OPeNDAP Data" on page 7-15
- "Resolve Errors Reading OPeNDAP Data" on page 7-23
- "Export to NetCDF Files" on page 7-24
- "Importing Flexible Image Transport System (FITS) Files" on page 7-31
- "Importing HDF5 Files" on page 7-33
- "Exporting to HDF5 Files" on page 7-41
- "Working with Non-ASCII Characters in HDF5 Files" on page 7-50
- "Import HDF4 Files Programatically" on page 7-54
- "Map HDF4 to MATLAB Syntax" on page 7-58
- "Import HDF4 Files Using Low-Level Functions" on page 7-60
- "Import HDF4 Files Interactively" on page 7-63
- "About HDF4 and HDF-EOS" on page 7-80
- "Export to HDF4 Files" on page 7-81

\section*{Import CDF Files Using Low-Level Functions}

This example shows how to use low-level functions to read data from a CDF file. The MATLAB® low-level CDF functions correspond to routines in the CDF C API library. To use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF C interface.

\section*{Open CDF File}

Open the sample CDF File, example.cdf.
```

cdfid = cdflib.open('example.cdf');

```

\section*{Get Information About File Contents}

Use cdflib.inquire to get information about the number of variables in the file, the number of global attributes, and the number of attributes with variable scope.
```

info = cdflib.inquire(cdfid)
info = struct with fields:
encoding: 'IBMPC_ENCODING'
majority: 'ROW_MĀJOR'
maxRec: 23
numVars: }
numvAttrs: 1
numgAttrs: 3

```

\section*{Get Information About Variables}

Use cdflib.inqurieVar to get information about the individual variables in the file. Variable ID numbers start at zero.
```

info = cdflib.inquireVar(cdfid,0)
info = struct with fields:
name: 'Time'
datatype: 'cdf_epoch'
numElements: 1
dims: []
recVariance: 1
dimVariance: []

```
```

info = cdflib.inquireVar(cdfid,1)
info = struct with fields:
name: 'Longitude'
datatype: 'cdf_int1'
numElements: 1
dims: [2 2]
recVariance: 0
dimVariance: [1 0]

```

\section*{Read Variable Data Into Workspace}

Read the data in a variable into the MATLAB workspace. The first variable contains CDF Epoch time values. The low-level interface returns these as double values.
```

data_time = cdflib.getVarRecordData(cdfid,0,0)
data_time = 6.3146e+13

```

Convert the time value to a date vector.
```

timeVec = cdflib.epochBreakdown(data_time)
timeVec = 7×1

```
    2001
    1
    1
    0
    0
    0
    0

\section*{Read Global Attribute From File}

Determine which attributes in the CDF file are global.
```

info = cdflib.inquireAttr(cdfid,0)
info = struct with fields:
name: 'SampleAttribute'
scope: 'GLOBAL SCOPE'
maxgEntry: 4

```
```

maxEntry:
-1

```

Read the value of the attribute. You must use the cdflib.getAttrgEntry function for global attributes.
```

value = cdflib.getAttrgEntry(cdfid,0,0)
value =
'This is a sample entry.

```

\section*{Close CDF File}

Use cdflib. close to close the CDF file.
cdflib.close(cdfid);

\section*{See Also}
cdflib|cdfread

\section*{External Websites}
- CDF website

\section*{Represent CDF Time Values}

This example shows how to extract date information from a CDF epoch object. CDF represents time differently than MATLAB®. CDF represents date and time as the number of milliseconds since 1 -Jan-0000. This is called an epoch in CDF terminology. To represent CDF dates, MATLAB uses an object called a CDF epoch object. MATLAB also can represent a date and time as a datetime value or as a serial date number, which is the number of days since \(0-\mathrm{Jan}-0000\). To access the time information in a CDF object, convert to one of these other representations.

Read the sample CDF file, example.cdf.
```

data = cdfread('example.cdf');
whos

```
\begin{tabular}{lcll} 
Name & Size & Bytes Class Attributes \\
data & \(24 \times 6\) & 25248 cell
\end{tabular}
cdfread returns a cell array.
Extract the date information from the first CDF epoch object returned in the cell array, data, using the todatenum function.
```

m_datenum = todatenum(data{1})
m_datenum = 730852

```

Convert the MATLAB serial date number to a datetime value.
```

m datetime = datetime(m datenum,'ConvertFrom','datenum')
m_datetime = datetime
01-Jan-2001 00:00:00

```

\section*{See Also \\ cdfread | datetime | todatenum}

\section*{Import CDF Files Using High-Level Functions}

This example shows how to use high-level MATLAB® functions to import the sample CDF file, example.cdf. High-level functions provide a simpler interface to accessing CDF files.

\section*{Get Information About Contents of CDF File}

Get information about the contents of a CDF file using the cdfinfo function. Because cdfinfo creates temporary files, ensure that your current folder is writable before using the function.
```

info = cdfinfo('example.cdf')
info = struct with fields:
Filename: 'example.cdf'
FileModDate: '10-May-2010 21:35:01'
FileSize: 1310
Format: 'CDF'
FormatVersion: '2.7.0'
FileSettings: [1x1 struct]
Subfiles: {}
Variables: {6x6 cell}
GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

```
cdfinfo returns a structure containing general information about the file and detailed information about the variables and attributes in the file. In this example, the Variables field indicates the number of variables in the file.

View the contents of the Variables field.
```

vars = info.Variables
vars=6\times6 cell
Columns 1 through 5

| Time' | \{1x2 double\} | \{[24]\} | \{'epoch' | \{'T/' |
| :---: | :---: | :---: | :---: | :---: |
| \{'Longitude' | \{1x2 double\} | \{[1]\} | \{'int8' | \{'F/FT' |
| \{'Latitude' | \{1x2 double\} | \{[1]\} | \{'int8' | \{'F/TF' |
| \{'Data' \} | \{1x3 double\} | \{[1]\} | \{'double'\} | \{'T/TTT' |
| \{'multidimensional'\} | \{1x4 double\} | \{[1]\} | \{'uint8' | \{'T/TTTT |
| \{'Temperature' | \{1x2 double\} | \{[10]\} | \{'int16' | \{'T/TT' |

```

Column 6
```

{'Full'}
{'Full'}
{'Full'}
{'Full'}
{'Full'}
{'Full'}

```

The first variable, Time, consists of 24 records containing CDF epoch data. The next two variables, Longitude and Latitude, each have only one associated record containing int8 data.

\section*{Read All Data from CDF File}

Use the cdfread function to read all of the data in the CDF file.
```

data = cdfread('example.cdf');
whos data

| Name | Size | Bytes | Class | Attributes |
| :--- | :---: | :--- | :--- | :--- |
| data | 24×6 | 25248 | cell | |

```
cdfread returns the data in a cell array. The columns of data correspond to the variables. The rows correspond to the records associated with a variable.

\section*{Read Data from Specific Variables}

Read only the Longitude and Latitude variables from the CDF file. To read the data associated with particular variables, use the 'Variable' parameter. Specify the names of the variables in a cell array of character vectors. Variable names are case sensitive.
```

var_long_lat = cdfread('example.cdf','Variable',{'Longitude','Latitude'});
whos var_long_lat

| Name | Size | Bytes | Class Attributes |
| :--- | :--- | ---: | :--- |
| var_long_lat | 1×2 | 232 | cell |

```

\section*{Combine Records to Speed Up Read Operations}

By default, cdfread creates a cell array with a separate element for every variable and every record in each variable, padding the records dimension to create a rectangular cell
array. When working with large data sets, you can speed up read operations by specifying the 'CombineRecords ' parameter to reduce the number of elements in the cell array that cdfread returns. When you set the 'CombineRecords ' parameter to true, the cdfread function creates a separate element for each variable but saves time by putting all the records associated with a variable in a single cell array element.
```

data_combined = cdfread('example.cdf','CombineRecords',true);

```

Compare the sizes of the cell arrays returned by cdfread.
whos data*
\begin{tabular}{lcrll} 
Name & Size & Bytes & Class & Attributes \\
data & \(24 \times 6\) & 25248 & cell & \\
data combined & \(1 \times 6\) & 8320 & cell &
\end{tabular}

Reading all the data from the example file without the CombineRecords parameter returns a 24 -by- 6 cell array, where the columns represent variables and the rows represent the records for each variable. Reading the data from the same file with ' CombineRecords ' set to true returns a 1-by-6 cell array.

When combining records, the dimensions of the data in the cell change. In this example, the Time variable has 24 records, each of which is a scalar value. In the data_combined cell array, the combined element contains a 24 -by- 1 vector of values.

\section*{Read CDF Epoch Values as Serial Date Numbers}

By default, cdfread creates a MATLAB cdfepoch object for each CDF epoch value in the file. Speed up read operations by setting the 'ConvertEpochToDatenum' name-value pair argument to true, to return CDF epoch values as MATLAB serial date numbers.
```

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);
whos data*

```
\begin{tabular}{lcrll} 
Name & Size & Bytes & Class & Attributes \\
& & & & \\
data & \(24 \times 6\) & 25248 & cell & \\
data_combined & \(1 \times 6\) & 8320 & cell & \\
data_datenums & \(24 \times 6\) & 21024 & cell
\end{tabular}

\section*{See Also}
cdfinfo|cdfread

\section*{External Websites}
- CDF website

\section*{Export to CDF Files}

This example shows how to export data to a CDF file using MATLAB® CDF low-level functions. The MATLAB functions correspond to routines in the CDF C API library.

To use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF C interface. Also, CDF files do not support non-ASCII encoded inputs. Therefore, variable names, attributes names, variable values, and attribute values must have 7-bit ASCII encoding.

\section*{Create New CDF File}

Create a new CDF file named my_file.cdf using cdflib. create. This function corresponds to the CDF library C API routine, CDFcreateCDF.
cdfid \(=\) cdflib.create('my_file.cdf');
cdflib. create returns a file identifier, cdfid.

\section*{Create Variables in CDF File}

Create variables named Time and Latitude using cdflib. createVar. This function corresponds to the CDF library C API routine, CDFcreatezVar.
```

time_id = cdflib.createVar(cdfid,'Time','cdf_int4',1,[],true,[]);
lat_id = cdflib.createVar(cdfid,'Latitude','cdf_int2',1,181,true,true);

```
cdflib. createVar returns a numeric identifier for each variable.
Create a variable named Image.
```

dimSizes = [20 10];
image_id = cdflib.createVar(cdfid,'Image','cdf_int4',1,...
dimSizes,true,[true true]);

```

\section*{Write to Variables}

Write data to the first and second records of the Time variable. Record numbers are zerobased. The cdflib. putVarRecordData function corresponds to the CDF library C API routine, CDFputzVarRecordData.
cdflib. putVarRecordData(cdfid,time_id,0,int32(23));
cdflib.putVarRecordData(cdfid,time_id,1,int32(24));

Write data to the Latitude variable.
```

data = int16([-90:90]);
recspec = [0 1 1];
dimspec = { 0 181 1 };
cdflib.hyperPutVarData(cdfid,lat_id,recspec,dimspec,data);

```

Write data to the Image variable.
```

recspec = [0 0 3 1];
dimspec = { [0 0], [20 10], [1 1] };
data = reshape(int32([0:599]), [20 10 3]);
cdflib.hyperPutVarData(cdfid,image_id,recspec,dimspec,data);

```

\section*{Write to Global Attribute}

Create a global attribute named TITLE using cdflib. createAttr. This function corresponds to the CDF library C API routine, CDFcreateAttr.
```

titleAttrNum = cdflib.createAttr(cdfid,'TITLE','global_scope');

```
cdflib.createAttr returns a numeric identifier for the attribute. Attribute numbers are zero-based.

Write values to entries in the global attribute.
```

cdflib.putAttrEntry(cdfid,titleAttrNum,0,'CDF_CHAR','cdf Title');
cdflib.putAttrEntry(cdfid,titleAttrNum,1,'CDF_CHAR','Author');

```

\section*{Write to Attributes Associated with Variables}

Create attributes associated with variables in the CDF file.
```

fieldAttrNum = cdflib.createAttr(cdfid,'FIELDNAM','variable_scope');
unitsAttrNum = cdflib.createAttr(cdfid,'UNITS','variable_scope');

```

Write to attributes of the Time variable.
```

cdflib.putAttrEntry(cdfid,fieldAttrNum,time_id,...

```
    'CDF CHAR','Time of observation');
cdflib. putAttrEntry(cdfid, unitsAttrNum,time_id,...
    'CDF CHAR','Hours');

\section*{Get Information About CDF File}

Get information about the file using cdflib.inquire. This function corresponds to the CDF library C API routines, CDFinquireCDF and CDFgetNumgAttributes.
```

info = cdflib.inquire(cdfid)
info = struct with fields:
encoding: 'IBMPC ENCODING'
majority: 'ROW MĀJOR'
maxRec: 2
numVars: 3
numvAttrs: 2
numgAttrs: 1

```
cdflib.inquire returns a structure array that includes information about the data encoding and the number of variables and attributes in the file.

\section*{Close CDF File}

Close the CDF File using cdflib. close. This function corresponds to the CDF library C API routine, CDFcloseCDF. You must close a CDF to guarantee that all modifications you made since opening the CDF are written to the file.
```

cdflib.close(cdfid);

```

\section*{See Also}
cdflib

\section*{External Websites}
- CDF website

\section*{Map NetCDF API Syntax to MATLAB Syntax}

MATLAB netcdf package of low-level functions and its correspondence with the NetCDF C library.

MATLAB provides access to the routines in the NetCDF C library through a set of lowlevel functions that are grouped into a package called netcdf. Use the functions in this package to read and write data to and from NetCDF files. To use the MATLAB NetCDF functions effectively, you should be familiar with the NetCDF C interface.

Usually, the MATLAB functions in the netcdf package correspond directly to routines in the NetCDF C library. For example, the MATLAB function netcdf. open corresponds to the NetCDF library routine nc_open. In some cases, one MATLAB function corresponds to a group of NetCDF library functions. For example, instead of creating MATLAB versions of every NetCDF library nc_put_att_type function, where type represents a data type, MATLAB uses one function, netcdf.putAtt, to handle all supported data types.

To call one of the functions in the netcdf package, you must prefix the function name with the package name. The syntax of the MATLAB functions is similar to the NetCDF library routines. However, the NetCDF C library routines use input parameters to return data, while their MATLAB counterparts use one or more return values. For example, this is the function signature of the nc_open routine in the NetCDF library:
```

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */

```

The NetCDF file identifier is returned in the ncidp argument.
This is the signature of the corresponding MATLAB function, netcdf.open:
```

ncid = netcdf.open(filename, mode)

```

Like its NetCDF C library counterpart, the MATLAB NetCDF function accepts a file name and a constant that specifies the access mode. However, that the MATLAB netcdf. open function returns the file identifier, ncid, as a return value.

The MATLAB NetCDF functions automatically choose the MATLAB class that best matches the NetCDF data type. This table shows the default mapping.
\begin{tabular}{|l|l|}
\hline NetCDF Data Type & MATLAB Class \\
\hline 'NC_BYTE' & int8 or uint8 \({ }^{\text {a }}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline NetCDF Data Type & MATLAB Class \\
\hline 'NC_CHAR' & char \\
\hline 'NC_SHORT' & int16 \\
\hline 'NC_INT' & int32 \\
\hline 'NC_FLOAT' & single \\
\hline 'NC_DOUBLE' & double \\
\hline
\end{tabular}
a. NetCDF interprets byte data as either signed or unsigned.

You can override the default and specify the class of the return data by using an optional argument to the netcdf.getVar function.

\section*{See Also}

\section*{More About}
- "Import NetCDF Files and OPeNDAP Data" on page 7-15
- "Export to NetCDF Files" on page 7-24

\section*{External Websites}
- NetCDF website

\section*{Import NetCDF Files and OPeNDAP Data}

Read data from a NetCDF file using the high-level functions, and then read the file by using the netcdf package low-level functions.
```

In this section...
"MATLAB NetCDF Capabilities" on page 7-15
"Read from NetCDF File Using High-Level Functions" on page 7-15
"Find All Unlimited Dimensions in NetCDF File" on page 7-18
"Read from NetCDF File Using Low-Level Functions" on page 7-19

```

\section*{MATLAB NetCDF Capabilities}

Network Common Data Form (NetCDF) is a set of software libraries and machineindependent data formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF is used by a wide range of engineering and scientific fields that want a standard way to store data so that it can be shared.

MATLAB high-level functions simplify the process of importing data from a NetCDF file or an OPeNDAP NetCDF data source. MATLAB low-level functions enable more control over the importing process, by providing access to the routines in the NetCDF C library. To use the low-level functions effectively, you should be familiar with the NetCDF C Interface. The NetCDF documentation is available at the Unidata website.

Note For information about importing Common Data Format (CDF) files, which have a separate, incompatible format, see "Import CDF Files Using Low-Level Functions" on page 7-2.

\section*{Read from NetCDF File Using High-Level Functions}

This example shows how to display and read the contents of a NetCDF file, using highlevel functions.

Display the contents of the sample NetCDF file, example.nc.
```

ncdisp('example.nc')

```

\section*{Source:}
\\matlabroot\toolbox\matlab\demos\example.nc
Format:
netcdf4
Global Attributes:
creation_date = '29-Mar-2010'
Dimensions:
\(x=50\)
\(y=50\)
\(z=5\)
Variables:
avagadros_number
Size: 1x1
Dimensions:
Datatype: double
Attributes:
description = 'this variable has no dimensions'
temperature
Size: 50x1
Dimensions: x
Datatype: int16
Attributes:
scale_factor \(=1.8\)
add_offset = 32
units = 'degrees_fahrenheight'
peaks
Size: \(\quad 50 \times 50\)
Dimensions: x,y
Datatype: int16
Attributes:
description = 'z = peaks(50);
Groups:
/gridl/
Attributes: description = 'This is a group attribute.'
Dimensions:
\(x=360\)
\(y=180\)
time \(=0 \quad\) (UNLIMITED)
Variables:
temp
Size: []
Dimensions: \(x, y\), time Datatype: int16
```

/grid2/
Attributes:
description = 'This is another group attribute.'
Dimensions:
x = 360
y = 180
time = 0 (UNLIMITED)
Variables:
temp
Size: []
Dimensions: x,y,time
Datatype: int16

```
ncdisp displays all the groups, dimensions, and variable definitions in the file. Unlimited dimensions are identified with the label, UNLIMITED.

Read data from the peaks variable.
```

peaksData = ncread('example.nc','peaks');

```

Display information about the peaksData output.
```

whos peaksData

```
\begin{tabular}{lrrl} 
Name & Size & Bytes Class Attributes \\
peaksData & \(50 \times 50\) & 5000 int16
\end{tabular}

Read the description attribute associated with the variable.
```

peaksDesc = ncreadatt('example.nc','peaks','description')
peaksDesc =
z = peaks(50);

```

Create a three-dimensional surface plot of the variable data. Use the value of the description attribute as the title of the figure.
```

surf(double(peaksData))
title(peaksDesc);

```

Read the description attribute associated with the /grid1/ group. Specify the group name as the second input to the ncreadatt function.
```

g = ncreadatt('example.nc','/gridl/','description')
g =
This is a group attribute.

```

Read the global attribute, creation_date. For global attributes, specify the second input argument to ncreadatt as '/'.
```

creation date = ncreadatt('example.nc','/','creation date')

```
creation_date =
29-Mar-2010

\section*{Find All Unlimited Dimensions in NetCDF File}

This example shows how to find all unlimited dimensions in a group in a NetCDF file, using high-level functions.

Get information about the /grid2/ group in the sample file, example.nc, using the ncinfo function.
```

ginfo = ncinfo('example.nc','/grid2/')
ginfo =
Filename: '
matlabroot\toolbox\matlab\demos\example.nc'
Name: 'grid2'
Dimensions: [1x3 struct]
Variables: [1x1 struct]
Attributes: [1x1 struct]
Groups: []
Format: 'netcdf4'

```
ncinfo returns a structure array containing information about the group.
Get a vector of the Boolean values that indicate the unlimited dimensions for this group.
```

unlimDims = [ginfo.Dimensions.Unlimited]
unlimDims =

```
    \(0 \quad 0 \quad 1\)

Use the unlimDims vector to display the unlimited dimension.
```

disp(ginfo.Dimensions(unlimDims))
Name: 'time'
Length: 0
Unlimited: 1

```

\section*{Read from NetCDF File Using Low-Level Functions}

This example shows how to get information about the dimensions, variables, and attributes in a NetCDF file using MATLAB low-level functions in the netcdf package. To use these functions effectively, you should be familiar with the NetCDF C Interface.

\section*{Open NetCDF File}

Open the sample NetCDF file, example.nc, using the netcdf. open function, with readonly access.
```

ncid = netcdf.open('example.nc','NC_NOWRITE')
ncid = 65536

```
netcdf. open returns a file identifier.

\section*{Get Information About NetCDF File}

Get information about the contents of the file using the netcdf.inq function. This function corresponds to the nc_inq function in the NetCDF library C API.
```

[ndims,nvars,natts,unlimdimID] = netcdf.inq(ncid)
ndims = 3
nvars = 3
natts = 1
unlimdimID = -1

```
netcdf.inq returns the number of dimensions, variables, and global attributes in the file, and returns the identifier of the unlimited dimension in the file. An unlimited dimension can grow.

Get the name of the global attribute in the file using the netcdf.inqAttName function. This function corresponds to the nc_inq_at tname function in the NetCDF library C API. To get the name of an attribute, you must specify the ID of the variable the attribute is associated with and the attribute number. To access a global attribute, which is not associated with a particular variable, use the constant 'NC_GLOBAL' as the variable ID.
```

global_att_name = netcdf.inqAttName(ncid,...
ne\overline{tcdf.getConstant('NC_GLOBAL'),0)}
global_att_name =
'creation_date'

```

Get information about the data type and length of the attribute using the netcdf.inqAtt function. This function corresponds to the nc_inq_att function in the NetCDF library C API. Again, specify the variable ID using netcdf.getConstant('NC_GLOBAL').
[xtype,attlen] = netcdf.inqAtt(ncid,... netcdf.getConstant('NC_GLOBAL'), global_att_name)
```

xtype = 2

```
attlen = 11

Get the value of the attribute, using the netcdf.getAtt function.
```

global_att_value = netcdf.getAtt(ncid,...
ne\overline{tcdf.getConstant('NC_GLOBAL'),global_att_name)}
global_att_value =
'29-Mar-2010'

```

Get information about the first dimension in the file, using the netcdf.inqDim function. This function corresponds to the nc_inq_dim function in the NetCDF library C API. The second input to netcdf.inqDim is the dimension ID, which is a zero-based index that identifies the dimension. The first dimension has the index value 0 .
```

[dimname,dimlen] = netcdf.inqDim(ncid,0)
dimname =
'x'
dimlen = 50

```
netcdf.inqDim returns the name and length of the dimension.

Get information about the first variable in the file using the netcdf.inqVar function. This function corresponds to the nc_inq_var function in the NetCDF library C API. The second input to netcdf.inqVar is the variable ID, which is a zero-based index that identifies the variable. The first variable has the index value 0.
```

[varname,vartype,dimids,natts] = netcdf.inqVar(ncid,0)
varname =
'avagadros_number'
vartype = 6
dimids =

```
    []
natts = 1
netcdf.inqVar returns the name, data type, dimension ID, and the number of attributes associated with the variable. The data type information returned in vartype is the numeric value of the NetCDF data type constants, such as, NC_INT and NC_BYTE. See the NetCDF documentation for information about these constants.

\section*{Read Data from NetCDF File}

Read the data associated with the variable, avagadros_number, in the example file, using the netcdf.getVar function. The second input to netcdf.getVar is the variable ID, which is a zero-based index that identifies the variable. The avagadros_number variable has the index value 0 .
```

A_number = netcdf.getVar(ncid,0)
A_number = 6.0221e+23

```

View the data type of \(A \_n u m b e r\).
```

whos A_number

```
\begin{tabular}{llrlr} 
Name & Size & Bytes & Class & Attributes \\
A_number & \(1 \times 1\) & 8 & double &
\end{tabular}

The functions in the netcdf package automatically choose the MATLAB class that best matches the NetCDF data type, but you can also specify the class of the return data by using an optional argument to netcdf.getVar.

Read the data associated with avagadros_number and return the data as class single.
A_number = netcdf.getVar(ncid,0,'single');
whos A_number
\begin{tabular}{llrlr} 
Name & Size & Bytes & Class & Attributes \\
A_number & \(1 \times 1\) & 4 & single
\end{tabular}

\section*{Close NetCDF File}

Close the NetCDF file, example.nc.
netcdf.close(ncid)

\section*{See Also}
ncdisp|ncinfo | ncread | ncreadatt

\section*{More About}
- "Map NetCDF API Syntax to MATLAB Syntax" on page 7-13

\section*{External Websites}

\section*{- NetCDF C Interface}

\section*{Resolve Errors Reading OPeNDAP Data}

When you have trouble reading OPeNDAP data, consider these factors.
- OPeNDAP data is being pulled over the network from a server on the Internet. Pulling large data could be slow. Speed and reliability depends on their network connection
- OPeNDAP capability does not support proxy servers or any authentication
- Failure to open an OPeNDAP link could have multiple causes:
- Invalid URL
- Local machine firewall/network firewall does not allow any external connections.
- Local machine firewall/network firewall does not allow external connections on the OPeNDAP protocol.
- Remote server is down.
- Remote server will not serve the amount of data being requested. In this case, you can read data in subsets or chunks.
- Remote server is incorrectly configured.

\section*{Export to NetCDF Files}

Create, merge, and write NetCDF files using high-level functions and the netcdf package low-level functions.

\section*{In this section...}
"MATLAB NetCDF Capabilities" on page 7-24
"Create New NetCDF File From Existing File or Template" on page 7-24
"Merge Two NetCDF Files" on page 7-26
"Write Data to NetCDF File Using Low-Level Functions" on page 7-28

\section*{MATLAB NetCDF Capabilities}

Network Common Data Form (NetCDF) is a set of software libraries and machineindependent data formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF is used by a wide range of engineering and scientific fields that want a standard way to store data so that it can be shared.

MATLAB high-level functions make it easy to export data to a netCDF file. MATLAB lowlevel functions provide access to the routines in the NetCDF C library. To use the low-level functions effectively, you should be familiar with the NetCDF C Interface. The NetCDF documentation is available at the Unidata website.

Note For information about exporting to Common Data Format (CDF) files, which have a separate and incompatible format, see "Export to CDF Files" on page 7-10.

\section*{Create New NetCDF File From Existing File or Template}

This example shows how to create a new NetCDF file that contains the variable, dimension, and group definitions of an existing file, but uses a different format.

Create a file containing one variable, using the nccreate function.
nccreate('myfile.nc','myvar')
Write data to the file.
```

A = 99;
ncwrite('myfile.nc','myvar',A)

```

Read the variable, dimension, and group definitions from the file using ncinfo. This information defines the file's schema.
```

S = ncinfo('myfile.nc');

```

Get the format of the file.
```

file fmt = S.Format
file fmt =
'netcdf4_classic'

```

Change the value of the Format field in the structure, S , to another supported NetCDF format.
```

S.Format = 'netcdf4';

```

Create a new version of the file that uses the new format, using the ncwriteschema function. A schema defines the structure of the file but does not contain any of the data that was in the original file.
```

ncwriteschema('newfile.nc',S)
S = ncinfo('newfile.nc');

```

Note: When you convert a file's format using ncwriteschema, you might get a warning message if the original file format includes fields that are not supported by the new format. For example, the netcdf4 format supports fill values but the NetCDF classic format does not. In these cases, ncwriteschema still creates the file, but omits the field that is undefined in the new format.

View the format of the new file.
```

new_fmt = S.Format
new fmt =
'netcdf4'

```

The new file, newfile.nc, contains the variable and dimension definitions of myfile.nc, but does not contain the data.

Write data to the new file.
```

ncwrite('newfile.nc','myvar',A)

```

\section*{Merge Two NetCDF Files}

This example shows how to merge two NetCDF files using high-level functions. The combined file contains the variable and dimension definitions of the files that are combined, but does not contain the data in these original files.

Create a NetCDF file named ex1.nc and define a variable named myvar. Then, write data to the variable and display the file contents.
```

nccreate('ex1.nc','myvar');
ncwrite('ex1.nc','myvar',55)
ncdisp('ex1.nc')
Source:
pwd\ex1.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:
Datatype: double

```

Create a second file and define a variable named myvar2. Then, write data to the variable and display the file contents.
```

nccreate('ex2.nc','myvar2');
ncwrite('ex2.nc','myvar2',99)
ncdisp('ex2.nc')
Source:
pwd\ex2.nc
Format:
netcdf4_classic
Variables:
myvar2
Size: 1x1
Dimensions:
Datatype: double

```

Get the schema of each of the files, using the ncinfo function.
```

infol = ncinfo('ex1.nc')
infol =
Filename: 'pwd\ex1.nc'
Name: '/'
Dimensions: []
Variables: [1x1 struct]
Attributes: []
Groups: []
Format: 'netcdf4_classic'
info2 = ncinfo('ex2.nc')
info2 =
Filename: 'pwd\ex2.nc'
Name: '/'
Dimensions: []
Variables: [1x1 struct]
Attributes: []
Groups: []
Format: 'netcdf4 classic'

```

Create a new NetCDF file that uses the schema of the first example file, using the ncwriteschema function. Then, display the file contents.
```

ncwriteschema('combined.nc',info1)
ncdisp('combined.nc')
Source:
pwd\combined.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:
Datatype: double
Attributes:
FillValue = 9.969209968386869e+36

```

Add the schema from ex2.nc to combined.nc, using ncwriteschema.
ncwriteschema('combined.nc',info2)

View the contents of the combined file.
```

ncdisp('combined.nc')
Source:
pwd\combined.nc
Format:
netcdf4_classic
Variables:
myvar
Size: 1x1
Dimensions:
Datatype: double
Attributes:
FillValue = 9.969209968386869e+36
myvar2
Size: 1x1
Dimensions:
Datatype: double
Attributes:
FillValue = 9.969209968386869e+36

```

The file contains the myvar variable defined in the first example file and the myvar2 variable defined in the second file.

\section*{Write Data to NetCDF File Using Low-Level Functions}

This example shows how to use low-level functions to write data to a NetCDF file. The MATLAB \({ }^{\circledR}\) low-level functions provide access to the routines in the NetCDF C library. MATLAB groups the functions into a package, called netcdf. To call one of the functions in the package, you must prefix the function name with the package name.

To use the MATLAB NetCDF functions effectively, you should be familiar with the information about the NetCDF C Interface.

To run this example, you must have write permission in your current folder.
Create a 1-by-50 variable of numeric values named my_data in the MATLAB workspace. The vector is of class double.
```

my_data = linspace(0,49,50);

```

Create a NetCDF file named my_file.nc, using the netcdf.create function. The NOCLOBBER parameter is a Net \(\bar{C} D F\) file access constant that indicates that you do not want to overwrite an existing file with the same name.
```

ncid = netcdf.create('my_file.nc','NOCLOBBER');

```
netcdf.create returns a file identifier, ncid. When you create a NetCDF file, the file opens in define mode. You must be in define mode to define dimensions and variables.

Define a dimension in the file, using the netcdf. defDim function. This function corresponds to the nc_def_dim function in the NetCDF library C API. You must define dimensions in the file before you can define variables and write data to the file. In this case, define a dimension named my_dim with length 50.
```

dimid = netcdf.defDim(ncid,'my_dim',50)

```
dimid \(=0\)
netcdf. defDim returns a dimension identifier that corresponds to the new dimension. Identifiers are zero-based indexes.

Define a variable named my_var on the dimension, using the netcdf. defVar function. This function corresponds to the nc_def_var function in the NetCDF library C API. Specify the NetCDF data type of the variable, in this case, NC_BYTE.
varid = netcdf.defVar(ncid,'my_var','NC_BYTE',dimid)
varid \(=0\)
netcdf.defVar returns a variable identifier that corresponds to my_var.
Take the NetCDF file out of define mode. To write data to a file, you must be in data mode.
```

netcdf.endDef(ncid)

```

Write the data from the MATLAB workspace into the variable in the NetCDF file, using the netcdf. putVar function. The data in the workspace is of class double but the variable in the NetCDF file is of type NC_BYTE. The MATLAB NetCDF functions automatically do the conversion.
netcdf.putVar(ncid,varid,my_data)
Close the file, using the netcdf. close function.
```

netcdf.close(ncid)

```

Verify that the data was written to the file by opening the file and reading the data from the variable into a new variable in the MATLAB workspace.
```

ncid2 = netcdf.open('my file.nc','NC NOWRITE');
x = netcdf.getVar(ncid2,0);

```

View the data type of \(x\).
whos \(x\)
\begin{tabular}{ccccc} 
Name & Size & Bytes Class Attributes \\
\(\times\) & \(50 \times 1\) & 50 & int8
\end{tabular}

MATLAB stores data in column-major order while the NetCDF C API uses row-major order. x represents the data stored in the NetCDF file and is therefore 50-by-1 even though the original vector in the MATLAB workspace, my_data, is 1-by-50. Because you stored the data in the NetCDF file as NC_BYTE, MATLAB reads the data from the variable into the workspace as class int8.

Close the file.
netcdf.close(ncid2)

\section*{See Also}

\section*{More About}
- "Map NetCDF API Syntax to MATLAB Syntax" on page 7-13

\section*{External Websites}
- NetCDF C Interface

\section*{Importing Flexible Image Transport System (FITS) Files}

The FITS file format is the standard data format used in astronomy, endorsed by both NASA and the International Astronomical Union (IAU). For more information about the FITS standard, go to the FITS Web site, https://fits.gsfc. nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of multidimensional arrays (1-D spectra, 2-D images, or 3-D data cubes) and twodimensional tables containing rows and columns of data. A data file in FITS format can contain multiple components, each marked by an ASCII text header followed by binary data. The first component in a FITS file is known as the primary, which can be followed by any number of other components, called extensions, in FITS terminology. For a complete list of extensions, see fitsread.

To get information about the contents of a Flexible Image Transport System (FITS) file, use the fitsinfo function. The fitsinfo function returns a structure containing the information about the file and detailed information about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport System (FITS) file, use the fits read function. Using this function, you can import the primary data in the file or you can import the data in any of the extensions in the file, such as the Image extension, as shown in this example.

1 Determine which extensions the FITS file contains, using the fitsinfo function.
```

info = fitsinfo('tst0012.fits')
info =
Filename: 'matlabroot\tst0012.fits'
FileModDate: '12-Mar-2001 19:37:46'
FileSize: 109440
Contents: {'Primary' 'Binary Table' 'Unknown' 'Image' 'ASCII Table'}
PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]
Unknown: [1x1 struct]
Image: [1x1 struct]
AsciiTable: [1x1 struct]

```

The info structure shows that the file contains several extensions including the Binary Table, ASCII Table, and Image extensions.
2 Read data from the file.
To read the Primary data in the file, specify the filename as the only argument:
```

pdata = fitsread('tst0012.fits');

```

To read any of the extensions in the file, you must specify the name of the extension as an optional parameter. This example reads the Binary Table extension from the FITS file:
bindata = fitsread('tst0012.fits','binarytable');

\section*{Importing HDF5 Files}
```

In this section...
"Overview" on page 7-33
"Using the High-Level HDF5 Functions to Import Data" on page 7-33
"Using the Low-Level HDF5 Functions to Import Data" on page 7-40

```

\section*{Overview}

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent standard for storing scientific data in files, developed by the National Center for Supercomputing Applications (NCSA). HDF5 is used by a wide range of engineering and scientific fields that want a standard way to store data so that it can be shared. For more information about the HDF5 file format, read the HDF5 documentation available at the HDF Web site (https://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:
- High-level functions that make it easy to import data, when working with numeric datasets
- Low-level functions that enable more complete control over the importing process, by providing access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a separate, incompatible format, see "Import HDF4 Files Programatically" on page 7-54.

\section*{Using the High-Level HDF5 Functions to Import Data}

MATLAB includes several functions that you can use to examine the contents of an HDF5 file and import data from the file into the MATLAB workspace.

Note You can only use the high-level functions to read numeric datasets or attributes. To read non-numeric datasets or attributes, you must use the low-level interface on page 740.
- h5disp - View the contents of an HDF5 file
- h5info - Create a structure that contains all the metadata defining an HDF5 file
- h5read - Read data from a variable in an HDF5 file
- h5readatt - Read data from an attribute associated with a variable in an HDF5 file or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which include examples. The following sections illustrate some common usage scenarios.

\section*{Determining the Contents of an HDF5 File}

HDF5 files can contain data and metadata, called attributes. HDF5 files organize the data and metadata in a hierarchical structure similar to the hierarchical structure of a UNIX file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group can contain other groups, data sets, attributes, links, and data types. A data set is a collection of data, such as a multidimensional numeric array or string. An attribute is any data that is associated with another entity, such as a data set. A link is similar to a UNIX file system symbolic link. Links are a way to reference objects without having to make a copy of the object.

Data types are a description of the data in the data set or attribute. Data types tell how to interpret the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.
```

h5disp('example.h5')
HDF5 example.h5
Group '/'
Attributes:
'attr1': 97 98 99 100 101 102 103 104 105 0
'attr2': 2x2 H5T_INTEGER
Group '/gl'
Group '/gl/g1.1'
Dataset 'dset1.1.1'
Size: 10x10
MaxSize: 10x10
Datatype: H5T_STD_I32BE (int32)
ChunkSize: []
Filters: none

```
```

 Attributes:
 'attr1': 49 115 116 32 97 116 116 114 105 ...
 'attr2': 50 110 100 32 97 116 116 114 105 ...
 Dataset 'dset1.1.2'
 Size: 20
 MaxSize: 20
 Datatype: H5T_STD_I32BE (int32)
 ChunkSize: []
 Filters: none
 Group '/gl/gl.2'
 Group '/g1/g1.2/g1.2.1'
 Link 'slink'
 Type: soft link
 Group '/g2'
Dataset 'dset2.1'
Size: 10
MaxSize: 10
Datatype: H5T_IEEE_F32BE (single)
ChunkSize: []
Filters: none
Dataset 'dset2.2'
Size: 5x3
MaxSize: 5x3
Datatype: H5T_IEEE_F32BE (single)
ChunkSize: []
Filters: none

```

To explore the hierarchical organization of an HDF5 file, use the h5info function. h5info returns a structure that contains various information about the HDF5 file, including the name of the file.
```

info = h5info('example.h5')
info =

```

Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5' Name: '/'
Groups: [4x1 struct]
        Datasets: []
    Datatypes: []
        Links: []
    Attributes: [2x1 struct]

By looking at the Groups and Attributes fields, you can see that the file contains four groups and two attributes. The Datasets, Datatypes, and Links fields are all empty, indicating that the root group does not contain any data sets, data types, or links. To explore the contents of the sample HDF5 file further, examine one of the structures in Groups. The following example shows the contents of the second structure in this field.
```

level2 = info.Groups(2)
level2 =
Name: '/g2'
Groups: []
Datasets: [2x1 struct]
Datatypes: []
Links: []
Attributes: []

```

In the sample file, the group named /g2 contains two data sets. The following figure illustrates this part of the sample HDF5 file organization.


To get information about a data set, such as its name, dimensions, and data type, look at either of the structures returned in the Datasets field.
```

dataset1 = level2.Datasets(1)
dataset1 =
Filename: 'matlabroot\example.h5'
Name: '/g2/dset2.1'
Rank: 1

```
```

 Datatype: [1x1 struct]
 Dims: 10
 MaxDims: 10
 Layout: 'contiguous'
 Attributes: []
Links: []
Chunksize: []
Fillvalue: []

```

\section*{Importing Data from an HDF5 File}

To read data or metadata from an HDF5 file, use the h5read function. As arguments, specify the name of the HDF5 file and the name of the data set. (To read the value of an attribute, you must use h5readatt.)

To illustrate, this example reads the data set, /g2/dset2. 1 from the HDF5 sample file example.h5.
```

data = h5read('example.h5','/g2/dset2.1')

```
data =
1.0000
1. 1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000

\section*{Mapping HDF5 Datatypes to MATLAB Datatypes}

When the h5 read function reads data from an HDF5 file into the MATLAB workspace, it maps HDF5 data types toMATLAB data types, as shown in the table below.
\begin{tabular}{|l|l|}
\hline HDF5 Data Type & h5read Returns \\
\hline Bit-field & Array of packed 8-bit integers \\
\hline Float & \begin{tabular}{l} 
MATLAB single and double types, provided that they \\
occupy 64 bits or fewer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline HDF5 Data Type & h5read Returns \\
\hline \begin{tabular}{l} 
Integer types, signed and \\
unsigned
\end{tabular} & Equivalent MATLAB integer types, signed and unsigned \\
\hline Opaque & Array of uint8 values \\
\hline Reference & \begin{tabular}{l} 
Returns the actual data pointed to by the reference, not \\
the value of the reference.
\end{tabular} \\
\hline \begin{tabular}{l} 
Strings, fixed-length and variable \\
length
\end{tabular} & Cell array of character vectors \\
\hline Enums & \begin{tabular}{l} 
Cell array of character vectors, where each \\
enumerated value is replaced by the corresponding \\
member name
\end{tabular} \\
\hline Compound & \begin{tabular}{l}
1 -by-1 struct array; the dimensions of the dataset are \\
expressed in the fields of the structure.
\end{tabular} \\
\hline Arrays & \begin{tabular}{l} 
Array of values using the same datatype as the HDF5 \\
array. For example, if the array is of signed 32-bit \\
integers, the MATLAB array will be of type int32.
\end{tabular} \\
\hline
\end{tabular}

The example HDF5 file included with MATLAB includes examples of all these datatypes.
For example, the data set /g3/string is a string.
```

h5disp('example.h5','/g3/string')
HDF5 example.h5
Dataset 'string'
Size: 2
MaxSize: 2
Datatype: H5T_STRING
String Length: 3
Padding: H5T_STR_NULLTERM
Character Se\overline{t}: H\overline{5}T_CSET_ASCII
Character Type: H5T_C_S\overline{1}
ChunkSize: []
Filters: none
FillValue: ''

```

Now read the data from the file, MATLAB returns it as a cell array of character vectors.
```

s = h5read('example.h5','/g3/string')
s =

```
```

 'ab
 'de
 >> whos s

| Name | Size | Bytes Class Attributes |
| :--- | :---: | ---: | :--- |
| s | 2×1 | 236 cell |

```

The compound data types are always returned as a 1-by-1 struct. The dimensions of the data set are expressed in the fields of the struct. For example, the data set/g3/ compound2D is a compound datatype.
```

h5disp('example.h5','/g3/compound2D')
HDF5 example.h5
Dataset 'compound2D'
Size: 2x3
MaxSize: 2x3
Datatype: H5T_COMPOUND
Member 'a': H5T_STD I8LE (int8)
Member 'b': H5T_IEE\overline{E}_F64LE (double)
ChunkSize: []
Filters: none
FillValue: H5T COMPOUND

```

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.
```

data = h5read('example.h5','/g3/compound2D')

```
data \(=\)
    a: [2x3 int8]
    b: [2x3 double]

\section*{Read an HDF5 Dataset with Dynamically Loaded Filters}

In R2015a and later releases, MATLAB supports reading HDF5 datasets that are written using a third-party filter. To read the datasets using the dynamically loaded filter feature, you must:
- Install the HDF5 filter plugin on your system as a shared library or a DLL.
- Set the HDF5_PLUGIN_PATH environment variable to point to the installation.

For more information see, HDF5 Dynamically Loaded Filters.

Note Writing HDF5 datasets using dynamically loaded filters is not supported.

\section*{Using the Low-Level HDF5 Functions to Import Data}

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level functions that correspond to the functions in the HDF5 library. In this way, you can access the features of the HDF5 library from MATLAB, such as reading and writing complex data types and using the HDF5 subsetting capabilities. For more information, see "Using the MATLAB Low-Level HDF5 Functions to Export Data" on page 7-42.

\section*{Exporting to HDF5 Files}

\author{
In this section... \\ "Overview" on page 7-41 \\ "Using the MATLAB High-Level HDF5 Functions to Export Data" on page 7-41 \\ "Using the MATLAB Low-Level HDF5 Functions to Export Data" on page 7-42
}

\section*{Overview}

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent standard for storing scientific data in files, developed by the National Center for Supercomputing Applications (NCSA). HDF5 is used by a wide range of engineering and scientific fields that want a standard way to store data so that it can be shared. For more information about the HDF5 file format, read the HDF5 documentation available at the HDF Web site (https://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:
- High-level functions that simplify the process of exporting data, when working with numeric datasets
- Low-level functions that provide a MATLAB interface to routines in the HDF5 C library

Note For information about exporting to HDF4 files, which have a separate and incompatible format, see "Export to HDF4 Files" on page 7-81.

\section*{Using the MATLAB High-Level HDF5 Functions to Export Data}

The easiest way to write data or metadata from the MATLAB workspace to an HDF5 file is to use these MATLAB high-level functions.

Note You can use the high-level functions only with numeric data. To write nonnumeric data, you must use the low-level interface on page 7-42.
- h5create - Create an HDF5 dataset
- h5write - Write data to an HDF5 dataset
- h5writeatt - Write data to an HDF5 attribute

For details about how to use these functions, see their reference pages, which include examples. The following sections illustrate some common usage scenarios.

\section*{Writing a Numeric Array to an HDF5 Dataset}

This example creates an array and then writes the array to an HDF5 file.
1 Create a MATLAB variable in the workspace. This example creates a 5-by-5 array of uint8 values.
testdata \(=\) uint8(magic(5))
2 Create the HDF5 file and the dataset, using h5create.
h5create('my_example_file.h5', '/dataset1', size(testdata))
3 Write the data to the HDF5 file.
h5write('my_example_file.h5', '/dataset1', testdata)

\section*{Using the MATLAB Low-Level HDF5 Functions to Export Data}

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level functions that correspond to the functions in the HDF5 library. In this way, you can access the features of the HDF5 library from MATLAB, such as reading and writing complex data types and using the HDF5 subsetting capabilities.

The HDF5 library organizes the library functions into collections, called interfaces. For example, all the routines related to working with files, such as opening and closing, are in the H5F interface, where \(F\) stands for file. MATLAB organizes the low-level HDF5 functions into classes that correspond to each HDF5 interface. For example, the MATLAB functions that correspond to the HDF5 file interface (H5F) are in the @H5F class folder.

The following sections provide more detail about how to use the MATLAB HDF5 low-level functions.
- "Map HDF5 Function Syntax to MATLAB Function Syntax" on page 7-43
- "Map Between HDF5 Data Types and MATLAB Data Types" on page 7-45
- "Report Data Set Dimensions" on page 7-46
- "Write Data to HDF5 Data Set Using MATLAB Low-Level Functions" on page 7-46
- "Write a Large Data Set" on page 7-49
- "Preserve Correct Layout of Your Data" on page 7-49

\begin{abstract}
Note This section does not describe all features of the HDF5 library or explain basic HDF5 programming concepts. To use the MATLAB HDF5 low-level functions effectively, refer to the official HDF5 documentation available at https://www.hdfgroup.org.
\end{abstract}

\section*{Map HDF5 Function Syntax to MATLAB Function Syntax}

In most cases, the syntax of the MATLAB low-level HDF5 functions matches the syntax of the corresponding HDF5 library functions. For example, the following is the function signature of the H5Fopen function in the HDF5 library. In the HDF5 function signatures, hid_t and herr_t are HDF5 types that return numeric values that represent object identifiers or error status values.
```

hid t H5Fopen(const char *name, unsigned flags, hid t access id) /* C syntax */

```

In MATLAB, each function in an HDF5 interface is a method of a MATLAB class. The following shows the signature of the corresponding MATLAB function. First note that, because it's a method of a class, you must use the dot notation to call the MATLAB function: H5F . open. This MATLAB function accepts the same three arguments as the HDF5 function: a character vector containing the name, an HDF5-defined constant for the flags argument, and an HDF5 property list ID. You use property lists to specify characteristics of many different HDF5 objects. In this case, it's a file access property list. Refer to the HDF5 documentation to see which constants can be used with a particular function and note that, in MATLAB, constants are passed as character vectors.
```

file_id = H5F.open(name, flags, plist_id)

```

There are, however, some functions where the MATLAB function signature is different than the corresponding HDF5 library function. The following describes some general differences that you should keep in mind when using the MATLAB low-level HDF5 functions.
- HDF5 output parameters become MATLAB return values - Some HDF5 library functions use function parameters to return data. Because MATLAB functions can return multiple values, these output parameters become return values. To illustrate, the HDF5 H5D read function returns data in the buf parameter.
```

herr_t H5Dread(hid_t dataset_id,
hid_t mem_type_id,

```
```

hid_t mem_space_id,
hid_t file_space_id,
hid_t xfer_plist_id,
void * buf) /* C syntax */

```

The corresponding MATLAB function changes the output parameter buf into a return value. Also, in the MATLAB function, the nonzero or negative value herr_t return values become MATLAB errors. Use MATLAB try-catch statements to handle errors.
```

buf = H5D.read(dataset_id,
mem_type_id,
mem_space_id,
file_space_id,
plist_id)

```
- String length parameters are unnecessary - The length parameter, used by some HDF5 library functions to specify the length of a string parameter, is not necessary in the corresponding MATLAB function. For example, the H5Aget name function in the HDF5 library includes a buffer as an output parameter and the size of the buffer as an input parameter.
```

ssize_t H5Aget_name(hid_t attr_id,
size_t buf_size,
char *buf) /* C syntax */

```

The corresponding MATLAB function changes the output parameter buf into a return value and drops the buf_size parameter.
```

buf = H5A.get_name(attr_id)

```
- Use an empty array to specify NULL - Wherever HDF5 library functions accept the value NULL, the corresponding MATLAB function uses empty arrays ([]). For example, the H5Dfill function in the HDF5 library accepts the value NULL in place of a specified fill value.
```

herr_t H5Dfill(const void *fill,
hid_t fill_type_id, void *buf,
hid_t buf_type_id,
hid_t space_id}\mp@subsup{}{}{-}) /* C syntax */

```

When using the corresponding MATLAB function, you can specify an empty array ([ ]) instead of NULL.
- Use cell arrays to specify multiple constants - Some functions in the HDF5 library require you to specify an array of constants. For example, in the H5Screate_simple function, to specify that a dimension in the data space can be unlimited, you use the constant H5S_UNLIMITED for the dimension in maxdims. In MATLAB, because you pass constants as character vectors, you must use a cell array of character vectors to achieve the same result. The following code fragment provides
an example of using a cell array of character vectors to specify this constant for each dimension of this data space.
```

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

```

\section*{Map Between HDF5 Data Types and MATLAB Data Types}

When the HDF5 low-level functions read data from an HDF5 file or write data to an HDF5 file, the functions map HDF5 data types to MATLAB data types automatically.

For atomic data types, such as commonly used binary formats for numbers (integers and floating point) and characters (ASCII), the mapping is typically straightforward because MATLAB supports similar types. See the table Mapping Between HDF5 Atomic Data Types and MATLAB Data Types for a list of these mappings.

\section*{Mapping Between HDF5 Atomic Data Types and MATLAB Data Types}

\section*{HDF5 Atomic Data MATLAB Data Type}

Type
Bit-field
Float

Integer types, signed and unsigned
Opaque
Reference
String

Array of packed 8-bit integers
MATLAB single and double types, provided that they occupy 64 bits or fewer
Equivalent MATLAB integer types, signed and unsigned
Array of uint8 values
Array of uint8 values
MATLAB character arrays

For composite data types, such as aggregations of one or more atomic data types into structures, multidimensional arrays, and variable-length data types (one-dimensional arrays), the mapping is sometimes ambiguous with reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing a single uint8 value in each element is distinct from a 1-by-1 data set containing a 5-by-5 array of uint8 values. In the first case, the data set contains 25 observations of a single value. In the second case, the data set contains a single observation with 25 values. In MATLAB both of these data sets are represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data types directly to make sure that you have the mapping you intend. See the table Mapping Between HDF5 Composite Data Types and MATLAB Data Types for a list of the default mappings. You can
specify the data type when you write data to the file using the H5Dwrite function. See the HDF5 data type interface documentation for more information.

Mapping Between HDF5 Composite Data Types and MATLAB Data Types
HDF5 Composite Data MATLAB Data Type
Type
\begin{tabular}{ll} 
Array & \begin{tabular}{l} 
Extends the dimensionality of the data type which it contains. \\
For example, an array of integers in HDF5 would map onto a \\
two dimensional array of integers in MATLAB.
\end{tabular} \\
Compound & \begin{tabular}{l} 
MATLAB structure. Note: All structures representing HDF5 \\
data in MATLAB are scalar.
\end{tabular} \\
Enumeration & \begin{tabular}{l} 
Array of integers which each have an associated name
\end{tabular} \\
Variable Length & MATLAB 1-D cell arrays
\end{tabular}

\section*{Report Data Set Dimensions}

The MATLAB low-level HDF5 functions report data set dimensions and the shape of data sets differently than the MATLAB high-level functions. For ease of use, the MATLAB highlevel functions report data set dimensions consistent with MATLAB column-major indexing. To be consistent with the HDF5 library, and to support the possibility of nested data sets and complicated data types, the MATLAB low-level functions report array dimensions using the C row-major orientation.

\section*{Write Data to HDF5 Data Set Using MATLAB Low-Level Functions}

This example shows how to use the MATLAB® HDF5 low-level functions to write a data set to an HDF5 file and then read the data set from the file.

Create a 2-by-3 array of data to write to an HDF5 file.
```

testdata = [1 3 5; 2 4 6];

```

Create a new HDF5 file named my_file.h5 in the system temp folder. Use the MATLAB H5F. create function to create a file. This MATLAB function corresponds to the HDF5 function, H5Fcreate. As arguments, specify the name you want to assign to the file, the type of access you want to the file ('H5F_ACC_TRUNC' in this case), and optional additional characteristics specified by a file creation property list and a file access property list. In this case, use default values for these property lists ('H5P_DEFAULT'). Pass C constants to the MATLAB function as character vectors.
```

filename = fullfile(tempdir,'my file.h5');
fileID = H5F.create(filename,'H5F ACC TRUNC','H5P DEFAULT','H5P DEFAULT');

```

H5F . create returns a file identifier corresponding to the HDF5 file.
Create the data set in the file to hold the MATLAB variable. In the HDF5 programming model, you must define the data type and dimensionality (data space) of the data set as separate entities. First, use the H5T. copy function to specify the data type used by the data set, in this case, double. This MATLAB function corresponds to the HDF5 function, H5Tcopy.
```

datatypeID = H5T.copy('H5T_NATIVE_DOUBLE');

```

H5T. copy returns a data type identifier.
Create a data space using H5S. create_simple, which corresponds to the HDF5 function, H5Screate_simple. The first input, 2, is the rank of the data space. The second input is an array specifying the size of each dimension of the dataset. Because HDF5 stores data in row-major order and the MATLAB array is organized in column-major order, you should reverse the ordering of the dimension extents before using H5Screate_simple to preserve the layout of the data. You can use fliplr for this purpose.
```

dims = size(testdata);
dataspaceID = H5S.create_simple(2,fliplr(dims),[]);

```

H5S. create_simple returns a data space identifier, dataspaceID. Note that other software programs that use row-major ordering (such as H5DUMP from the HDF Group) might report the size of the dataset to be 3-by-2 instead of 2-by-3.

Create the data set using H5D. create, which corresponds to the HDF5 function, H5Dcreate. Specify the file identifier, the name you want to assign to the data set, the data type identifier, the data space identifier, and a data set creation property list identifier as arguments. 'H5P_DEFAULT' specifies the default property list settings.
```

dsetname = 'my dataset';
datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P DEFAULT');

```

H5D. create returns a data set identifier, datasetID.
Write the data to the data set using H5D. write, which corresponds to the HDF5 function, H5Dwrite. The input arguments are the data set identifier, the memory data type identifier, the memory space identifier, the data space identifier, the transfer property list
identifier and the name of the MATLAB variable to write to the data set. The constant, 'H5ML_DEFAULT' , specifies automatic mapping to HDF5 data types. The constant, 'H5S_ALL', tells H5D . write to write all the data to the file.
```

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL',...
'H5P_DEFAULT',testdatā);

```

Close the data set, data space, data type, and file objects. If used inside a MATLAB function, these identifiers are closed automatically when they go out of scope.
```

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

```

Open the HDF5 file in order to read the data set you wrote. Use H5F. open to open the file for read-only access. This MATLAB function corresponds to the HDF5 function, H5Fopen.
fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');
Open the data set to read using H5D. open, which corresponds to the HDF5 function, H5Dopen. Specify as arguments the file identifier and the name of the data set, defined earlier in the example.
```

datasetID = H5D.open(fileID,dsetname);

```

Read the data into the MATLAB workspace using H5D. read, which corresponds to the HDF5 function, H5Dread. The input arguments are the data set identifier, the memory data type identifier, the memory space identifier, the data space identifier, and the transfer property list identifier.
```

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
'H5S_ALL','H5S_ALL','H5P_DEFAULT');

```

Compare the original MATLAB variable, testdata, with the variable just created, returned_data.
```

isequal(testdata,returned_data)

```
```

ans = logical

```
    1

The two variables are the same.

\section*{Write a Large Data Set}

To write a large data set, you must use the chunking capability of the HDF5 library. To do this, create a property list and use the H5P. set_chunk function to set the chunk size in the property list. Suppose the dimensions of your data set are [ \(\left.2^{\wedge} 162^{\wedge} 16\right]\) and the chunk size is 1024 -by-1024. You then pass the property list as the last argument to the data set creation function, H5D. create, instead of using the H5P_DEFAULT value.
```

dims = [2^16 2^16];
plistID = H5P.create('H5P_DATASET_CREATE'); % create property list
chunk_size = min([1024 1024], dims); % define chunk size
H5P.set_chunk(plistID, fliplr(chunk_size)); % set chunk size in property list
datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

```

\section*{Preserve Correct Layout of Your Data}

When you use any of the following functions that deal with dataspaces, you should flip dimension extents to preserve the correct layout of the data.
- H5D.set_extent
- H5P.get_chunk
- H5P.set_chunk
- H5S.create_simple
- H5S.get_simple_extent_dims
- H5S.select_hyperslab
- H5T.array_create
- H5T.get_array_dims

\section*{Working with Non－ASCII Characters in HDF5 Files}

To enable sharing of HDF5 files across multiple locales，MATLAB supports the use of non－ ASCII characters in HDF5 files．This example shows you how to：
－Create HDF5 files containing dataset and attribute names that have non－ASCII characters using the high－level functions．
－Create variable－length string datasets containing non－ASCII characters using the low－ level functions．

\section*{Create Dataset and Attribute Names Containing Non－ASCII Characters}

Create an HDF5 file containing a dataset name and an attribute name that contains non－ ASCII characters．To check if the dataset and attribute names appear as expected，write data to the dataset，and display the file information．

Create a dataset with a name（／数据集）that includes non－ASCII characters．
```

dsetName = ['/' char([25968 25454 38598])];
dsetDims = [5 2];
h5create('outfile.h5',['/grp1' dsetName],dsetDims,...
'TextEncoding','UTF-8');

```

Write data to the file．
```

dataToWrite = rand(dsetDims);
h5write('outfile.h5',['/grp1' dsetName],dataToWrite);

```

Create an attribute name（屬性名稱）that includes non－ASCII characters and assign a value to the attribute．
```

attrName = char([25967 25453 38597]);
h5writeatt('outfile.h5','/',attrName,'I am an attribute',...
'TextEncoding','UTF-8');

```

Display information about the file and check if the attribute name and dataset name appear correctly．
```

h5disp('outfile.h5')

```
HDF5 outfile.h5
Group '/'
```

Attributes:
'/䟉性名稱': 'I am an attribute'
Group '/grpl'
Dataset '数据集'
Size: 5x2
MaxSize: 5x2
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000

```

\section*{Create Variable－Length String Data Containing Non－ASCII Characters}

Create a variable－length string dataset to store data containing non－ASCII characters using the low－level functions．Write the data to the dataset．Check if the data is written correctly．

Create data containing non－ASCII characters．
```

dataToWrite = {char([12487 12540 12479]) 'hello' ...
char([1605 1585 1581 1576 1575]); ...
'world' char([1052 1080 1088]) ...
char([954 972 963 956 959 962])};
disp(dataToWrite)

```


To write this data into a file，create an HDF5 file，define a group name，and a dataset name within the group．

Create the HDF5 file．
```

fileName = 'outfile.h5';
fileID = H5F.create(fileName,'H5F ACC TRUNC',...
'H5P_DEFAULT', 'H5P_DEFAULT');

```

To create the group containing non－ASCII characters in its name，first，configure the link creation property．
lcplID＝H5P．create（＇H5P＿LINK＿CREATE＇）；
H5P．set＿char＿encoding（lćplID， \(\left.\bar{H} 5 M L . g e t \_c o n s t a n t \_v a l u e(' H 5 T ~ C S E T ~ U T F 8 ')\right) ; ~ ; ~\) plist＝＇H5P＿DEFAULT＇；
```

Then, create the group (グループ).
grpName = char([12464 12523 12540 12503]);
grpID = H5G.create(fileID,grpName,lcplID,plist,plist);

```

Create a dataset that contains variable－length string data with non－ASCII characters． First，configure its data type．
```

typeID = H5T.copy('H5T_C_S1');
H5T.set_size(typeID,'H55T_VARIABLE');
H5T.set_cset(typeID,H5ML.get_constant_value('H5T_CSET_UTF8'));

```

Now create the dataset by specifying its name，data type，and dimensions．
```

dsetName = 'datasetUtf8';
dataDims = [2 3];
h5DataDims = fliplr(dataDims);
h5MaxDims = h5DataDims;
spaceID = H5S.create_simple(2,h5DataDims,h5MaxDims);
dsetID = H5D.create(grpID,dsetName,typeID,spaceID,...
'H5P DEFAULT','H5P DEFAULT','H5P DEFAULT');

```

Write the data to the dataset．
```

H5D.write(dsetID,'H5ML_DEFAULT','H5S_ALL',...
'H5S_ALL','H5P_DEFAULT',dataToWrite);

```

Read the data back．
```

dataRead = h5read('outfile.h5',['/' grpName '/' dsetName])
dataRead =
2\times3 cell array
{'データ'} {'hello'} {'مبا' }
{'world'} {'Мир' } {'ко́\sigma\muо\varsigma'}

```

Check if data in the file matches the written data．
```

isequal(dataRead,dataToWrite)

```
ans \(=\)
    logical

1
Close ids.
```

H5D.close(dsetID);
H5S.close(spaceID);
H5T.close(typeID);
H5G.close(grpID);
H5P.close(lcplID);
H5F.close(fileID);

```

\section*{See Also}

H5A.get_name | H5I.get_name | H5L.get_name_by_idx | H5L.get_val| H5R.get_name | h5create |h5disp|h5info|h5writeatt

\section*{Import HDF4 Files Programatically}

\author{
In this section... \\ "Overview" on page 7-54 \\ "Using the MATLAB HDF4 High-Level Functions" on page 7-54
}

\section*{Overview}

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard for storing scientific data in files, developed by the National Center for Supercomputing Applications (NCSA). For more information about these file formats, read the HDF documentation at the HDF Web site (www. hdfgroup. org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and Space Administration (NASA) for storage of data returned from the Earth Observing System (EOS). For more information about this extension to HDF4, see the HDF-EOS documentation at the NASA Web site (www.hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in the following sections.

Note For information about importing HDF5 data, which is a separate, incompatible format, see "Importing HDF5 Files" on page 7-33.

\section*{Using the MATLAB HDF4 High-Level Functions}

To import data from an HDF or HDF-EOS file, you can use the MATLAB HDF4 high-level function hdfread. The hdfread function provides a programmatic way to import data from an HDF4 or HDF-EOS file that still hides many of the details that you need to know if you use the low-level HDF functions, described in "Import HDF4 Files Using Low-Level Functions" on page 7-60.

This section describes these high-level MATLAB HDF functions, including
- "Using hdfinfo to Get Information About an HDF4 File" on page 7-55
- "Using hdfread to Import Data from an HDF4 File" on page 7-55

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level functions.

\section*{Using hdfinfo to Get Information About an HDF4 File}

To get information about the contents of an HDF4 file, use the hdfinfo function. The hdfinfo function returns a structure that contains information about the file and the data in the file.

This example returns information about a sample HDF4 file included with MATLAB:
```

info = hdfinfo('example.hdf')
info =
Filename: 'matlabroot\example.hdf'
Attributes: [1x2 struct]
Vgroup: [1x1 struct]
SDS: [1x1 struct]
Vdata: [1x1 struct]

```

To get information about the data sets stored in the file, look at the SDS field.

\section*{Using hdfread to Import Data from an HDF4 File}

To use the hdfread function, you must specify the data set that you want to read. You can specify the filename and the data set name as arguments, or you can specify a structure returned by the hdfinfo function that contains this information. The following example shows both methods. For information about how to import a subset of the data in a data set, see "Reading a Subset of the Data in a Data Set" on page 7-57.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo function.
```

info = hdfinfo('example.hdf')
info =
Filename: \quad 'matlabroot ${ }^{2}$ example.hdf'
Attributes: $[1 \times 2$ struct]
Vgroup: $[1 \times 1$ struct]
SDS: $[1 \times 1$ struct]
Vdata: [1x1 struct]

```

To determine the names and other information about the data sets in the file, look at the contents of the SDS field. The Name field in the SDS structure gives the name of the data set.
```

dsets = info.SDS

```
```

dsets =
Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2
DataType: 'int16'
Attributes: []
Dims: [2x1 struct]
Label: {}
Description: {}
Index: 0

```

2 Read the data set from the HDF4 file, using the hdfread function. Specify the name of the data set as a parameter to the function. Note that the data set name is case sensitive. This example returns a 16 -by- 5 array:
```

dset = hdfread('example.hdf', 'Example SDS')
dset =

```
\begin{tabular}{rrrrr}
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 9 \\
6 & 7 & 8 & 9 & 10 \\
7 & 8 & 9 & 10 & 11 \\
8 & 9 & 10 & 11 & 12 \\
9 & 10 & 11 & 12 & 13 \\
10 & 11 & 12 & 13 & 14 \\
11 & 12 & 13 & 14 & 15 \\
12 & 13 & 14 & 15 & 16 \\
13 & 14 & 15 & 16 & 17 \\
14 & 15 & 16 & 17 & 18 \\
15 & 16 & 17 & 18 & 19 \\
16 & 17 & 18 & 19 & 20 \\
17 & 18 & 19 & 20 & 21 \\
18 & 19 & 20 & 21 & 22
\end{tabular}

Alternatively, you can specify the specific field in the structure returned by hdfinfo that contains this information. For example, to read a scientific data set, use the SDS field.
```

dset = hdfread(info.SDS);

```

\section*{Reading a Subset of the Data in a Data Set}

To read a subset of a data set, you can use the optional 'index' parameter. The value of the index parameter is a cell array of three vectors that specify the location in the data set to start reading, the skip interval (e.g., read every other data item), and the amount of data to read (e.g., the length along each dimension). In HDF4 terminology, these parameters are called the start, stride, and edge values.

For example, this code
- Starts reading data at the third row, third column ([3 3 3).
- Reads every element in the array ([ ] ).
- Reads 10 rows and 2 columns ([10 2]).
```

subset $=$ hdfread('Example.hdf','Example SDS',...
'Index',\{[3 3],[],[10 2]\})

```
subset =
\begin{tabular}{rr}
7 & 8 \\
8 & 9 \\
9 & 10 \\
10 & 11 \\
11 & 12 \\
12 & 13 \\
13 & 14 \\
14 & 15 \\
15 & 16 \\
16 & 17
\end{tabular}

\section*{Map HDF4 to MATLAB Syntax}

Each HDF4 API includes many individual routines that you use to read data from files, write data to files, and perform other related functions. For example, the HDF4 Scientific Data (SD) API includes separate C routines to open (SDopen), close (SDend), and read data (SDreaddata). For the SD API and the HDF-EOS GD and SW APIs, MATLAB provides functions that map to individual C routines in the HDF4 library. These functions are implemented in the matlab.io.hdf4.sd, matlab.io.hdfeos.gd, and matlab.io.hdfeos.sw packages. For example, the SD API includes the C routine SDendaccess to close an HDF4 data set:
status = SDendaccess(sds_id); /* C code */
To call this routine from MATLAB, use the MATLAB function, matlab.io.hdf4.sd.endAccess. The syntax is similar:
sd.endAccess(sdsID)
For the remaining supported HDF4 APIs, MATLAB provides a single function that serves as a gateway to all the routines in the particular HDF4 API. For example, the HDF Annotations (AN) API includes the C routine ANend to terminate access to an AN interface:
```

status = ANend(an_id); /* C code */

```

To call this routine from MATLAB, use the MATLAB function associated with the AN API, hdfan. You must specify the name of the routine, minus the API acronym, as the first argument and pass any other required arguments to the routine in the order they are expected. For example,
```

status = hdfan('end',an_id);

```

Some HDF4 API routines use output arguments to return data. Because MATLAB does not support output arguments, you must specify these arguments as return values.

For example, the ANget_tagref routine returns the tag and reference number of an annotation in two output arguments, ann_tag and ann_ref. Here is the C code:
```

status = ANget_tagref(an_id,index,annot_type,ann_tag,ann_ref);

```

To call this routine from MATLAB, change the output arguments into return values:
```

[tag,ref,status] = hdfan('get_tagref',AN_id,index,annot_type);

```

Specify the return values in the same order as they appear as output arguments. The function status return value is always specified as the last return value.

\section*{Import HDF4 Files Using Low-Level Functions}

This example shows how to read data from a Scientific Data Set in an HDF4 file, using the functions in the matlat.io.hdf4.sd package. In HDF4 terminology, the numeric arrays stored in HDF4 files are called data sets.

\section*{Add Package to Import List}

Add the matlab.io.hdf4.* path to the import list.
import matlab.io.hdf4.*
Subsequent calls to functions in the matlat.io.hdf4.sd package need only be prefixed with \(s d\), rather than the entire package path.

\section*{Open HDF4 File}

Open the example HDF4 file, sd.hdf, and specify read access, using the matlab.io.hdf4.sd.start function. This function corresponds to the SD API routine, SDstart.
```

sdID = sd.start('sd.hdf','read');

```
sd.start returns an HDF4 SD file identifier, sdID.

\section*{Get Information About HDF4 File}

Get the number of data sets and global attributes in the file, using the matlab.io.hdf4.sd.fileInfo function. This function corresponds to the SD API routine, SDfileinfo.
```

[ndatasets,ngatts] = sd.fileInfo(sdID)
ndatasets = 4
ngatts = 1

```

The file, sd.hdf, contains four data sets and one global attribute,

\section*{Get Attributes from HDF4 File}

Get the contents of the first global attribute. HDF4 uses zero-based indexing, so an index value of 0 specifies the first index.

HDF4 files can optionally include information, called attributes, that describes the data that the file contains. Attributes associated with an entire HDF4 file are global attributes. Attributes associated with a data set are local attributes.
```

attr = sd.readAttr(sdID,0)
attr =
'02-Sep-2010 11:13:16'

```

\section*{Select Data Sets to Import}

Determine the index number of the data set named temperature. Then, get the identifier of that data set.
```

idx = sd.nameToIndex(sdID,'temperature');
sdsID = sd.select(sdID,idx);
sd. select returns an HDF4 SD data set identifier, sdsID.

```

\section*{Get Information About Data Set}

Get information about the data set identified by sdsID using the matlab.io.hdf4.sd.getInfo function. This function corresponds to the SD API routine, SDgetinfo.
```

[name,dims,datatype,nattrs] = sd.getInfo(sdsID)
name =
'temperature'
dims = 1\times2
20 10
datatype =
'double'
nattrs = 11

```
sd.getInfo returns information about the name, size, data type, and number of attributes of the data set.

\section*{Read Entire Data Set}

Read the entire contents of the data set specified by the data set identifier, sdsID.
```

data = sd.readData(sdsID);

```

\section*{Read Portion of Data Set}

Read a 2-by-4 portion of the data set, starting from the first column in the second row. Use the matlab.io.hdf4.sd.readData function, which corresponds to the SD API routine, SDreaddata. The start input is a vector of index values specifying the location in the data set where you want to start reading data. The count input is a vector specifying the number of elements to read along each data set dimension.
```

start = [0 1];
count = [2 4];
data2 = sd.readData(sdsID,start,count)
data2 = 2×4

```
\begin{tabular}{llll}
21 & 41 & 61 & 81 \\
22 & 42 & 62 & 82
\end{tabular}

\section*{Close HDF4 Data Set}

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This function corresponds to the SD API routine, SDendaccess. You must close access to all the data sets in and HDF4 file before closing the file.
```

sd.endAccess(sdsID)

```

\section*{Close HDF4 File}

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function corresponds to the SD API routine, SDend.
sd.close(sdID)

\section*{See Also}
sd.close|sd.endAccess|sd.fileInfo|sd.getInfo|sd.readData|sd.start

\section*{More About}
- "Map HDF4 to MATLAB Syntax" on page 7-58

\section*{Import HDF4 Files Interactively}

The HDF Import Tool is a graphical user interface that you can use to navigate through HDF4 or HDF-EOS files and import data from them. Importing data using the HDF Import Tool involves these steps:

\section*{In this section...}
"Step 1: Opening an HDF4 File in the HDF Import Tool" on page 7-63
"Step 2: Selecting a Data Set in an HDF File" on page 7-65
"Step 3: Specifying a Subset of the Data (Optional)" on page 7-66
"Step 4: Importing Data and Metadata" on page 7-66
"Step 5: Closing HDF Files and the HDF Import Tool" on page 7-67
"Using the HDF Import Tool Subsetting Options" on page 7-67
The following sections provide more detail about each of these steps.

\section*{Step 1: Opening an HDF4 File in the HDF Import Tool}

Open an HDF4 or HDF-EOS file in MATLAB using one of the following methods:
- On the Home tab, in the Variable section, click Import Data. If you select an HDF4 or HDF-EOS file, the MATLAB Import Wizard automatically starts the HDF Import Tool.
- Start the HDF Import Tool by entering the hdftool command at the MATLAB command line:
hdftool
This opens an empty HDF Import Tool. To open a file, click the Open option on the HDFTool File menu and select the file you want to open. You can open multiple files in the HDF Import Tool.
- Open an HDF or HDF-EOS file by specifying the file name with the hdftool command on the MATLAB command line:
hdftool('example.hdf')

\section*{Viewing a File in the HDF Import Tool}

When you open an HDF4 or HDF-EOS file in the HDF Import Tool, the tool displays the contents of the file in the Contents pane. You can use this pane to navigate within the file to see what data sets it contains. You can view the contents of HDF-EOS files as HDF data sets or as HDF-EOS files. The icon in the contents pane indicates the view, as illustrated in the following figure. Note that these are just two views of the same data.


\section*{Step 2: Selecting a Data Set in an HDF File}

To import a data set, you must first select the data set in the contents pane of the HDF Import Tool. Use the Contents pane to view the contents of the file and navigate to the data set you want to import.

For example, the following figure shows the data set Example SDS in the HDF file selected. Once you select a data set, the Metadata panel displays information about the data set and the importing and subsetting pane displays subsetting options available for this type of HDF object.


\section*{Step 3: Specifying a Subset of the Data (Optional)}

When you select a data set in the contents pane, the importing and subsetting pane displays the subsetting options available for that type of HDF object. The subsetting options displayed vary depending on the type of HDF object. For more information, see "Using the HDF Import Tool Subsetting Options" on page 7-67.

\section*{Step 4: Importing Data and Metadata}

To import the data set you have selected, click the Import button, bottom right corner of the Importing and Subsetting pane. Using the Importing and Subsetting pane, you can
- Specify the name of the workspace variable - By default, the HDF Import Tool uses the name of the HDF4 data set as the name of the MATLAB workspace variable. In the following figure, the variable name is Example_SDS. To specify another name, enter text in the Workspace Variable text box.
- Specify whether to import metadata associated with the data set - To import any metadata that might be associated with the data set, select the Import Metadata check box. To store the metadata, the HDF Import Tool creates a second variable in the workspace with the same name with "_info" appended to it. For example, if you select this check box, the name of the metadata variable for the data set in the figure would be Example_SDS_info.
- Save the data set import command syntax - The Dataset import command text window displays the MATLAB command used to import the data set. This text is not editable, but you can copy and paste it into the MATLAB Command Window or a text editor for reuse.

The following figure shows how to specify these options in the HDF Import Tool.


\section*{Step 5: Closing HDF Files and the HDF Import Tool}

To close a file, select the file in the contents pane and click Close File on the HDF Import Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on the HDF Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or click the Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,
h = hdftool('example.hdf')
you can use the close ( h ) command to close the tool from the MATLAB command line.

\section*{Using the HDF Import Tool Subsetting Options}

Note The HDF Import Tool will be removed in a future release.

When you select a data set, the importing and subsetting pane displays the subsetting options available for that type of data set. The following sections provide information about these subsetting options for all supported data set types. For general information about the HDF Import tool, see "Import HDF4 Files Interactively" on page 7-63.
- "HDF Scientific Data Sets (SD)" on page 7-68
- "HDF Vdata" on page 7-69
- "HDF-EOS Grid Data" on page 7-70
- "HDF-EOS Point Data" on page 7-75
- "HDF-EOS Swath Data" on page 7-75
- "HDF Raster Image Data" on page 7-79

Note To use these data subsetting options effectively, you must understand the HDF and HDF-EOS data formats. Therefore, use this documentation in conjunction with the HDF documentation (www.hdfgroup. org) and the HDF-EOS documentation (www.hdfeos.org).

\section*{HDF Scientific Data Sets (SD)}

The HDF scientific data set (SD) is a group of data structures used to store and describe multidimensional arrays of scientific data. Using the HDF Import Tool subsetting parameters, you can import a subset of an HDF scientific data set by specifying the location, range, and number of values to be read along each dimension.


The subsetting parameters are:
- Start - Specifies the position on the dimension to begin reading. The default value is 1, which starts reading at the first element of each dimension. The values specified must not exceed the size of the relevant dimension of the data set.
- Increment - Specifies the interval between the values to read. The default value is 1 , which reads every element of the data set.
- Length - Specifies how much data to read along each dimension. The default value is the length of the dimension, which causes all the data to be read.

\section*{HDF Vdata}

HDF Vdata data sets provide a framework for storing customized tables. A Vdata table consists of a collection of records whose values are stored in fixed-length fields. All records have the same structure and all values in each field have the same data type. Each field is identified by a name. The following figure illustrates a Vdata table.


Fields
You can import a subset of an HDF Vdata data set in the following ways:
- Specifying the name of the field that you want to import
- Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for Vdata.


In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a known map projection. The HDF Import Tool supports the following mutually exclusive subsetting options for Grid data:
- "Direct Index" on page 7-71
- "Geographic Box" on page 7-72
- "Interpolation" on page 7-72
- "Pixels" on page 7-73
- "Tile" on page 7-73
- "Time" on page 7-74
- "User-Defined" on page 7-74

To access these options, click the Subsetting method menu in the importing and subsetting pane.

Click here to see options


\section*{Direct Index}

You can import a subset of an HDF-EOS Grid data set by specifying the location, range, and number of values to be read along each dimension.


Each row represents a dimension in the data set and each column represents these subsetting parameters:
- Start - Specifies the position on the dimension to begin reading. The default value is 1 , which starts reading at the first element of each dimension. The values specified must not exceed the size of the relevant dimension of the data set.
- Increment - Specifies the interval between the values to read. The default value is 1 , which reads every element of the data set.
- Length - Specifies how much data to read along each dimension. The default value is the length of the dimension, which causes all the data to be read.

\section*{Geographic Box}

You can import a subset of an HDF-EOS Grid data set by specifying the rectangular area of the grid that you are interested in. To define this rectangular area, you must specify two points, using longitude and latitude in decimal degrees. These points are two corners of the rectangular area. Typically, Corner 1 is the upper-left corner of the box, and Corner 2 is the lower-right corner of the box.


Optionally, you can further define the subset of data you are interested in by using Time on page 7-74 parameters (see "Time" on page 7-74) or by specifying other UserDefined on page 7-74 subsetting parameters (see "User-Defined" on page 7-74).

\section*{Interpolation}

Interpolation is the process of estimating a pixel value at a location in between other pixels. In interpolation, the value of a particular pixel is determined by computing the weighted average of some set of pixels in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points that are corners of the interpolation area:
- Corner 1 - Specify longitude and latitude values in decimal degrees. Typically,

Corner 1 is the upper-left corner of the box.
- Corner 2 - Specify longitude and latitude values in decimal degrees. Typically, Corner 2 is the lower-right corner of the box


\section*{Pixels}

You can import a subset of the pixels in a Grid data set by defining a rectangular area over the grid. You define the region used for bilinear interpolation by specifying two points that are corners of the interpolation area:
- Corner 1 - Specify longitude and latitude values in decimal degrees. Typically,

Corner 1 is the upper-left corner of the box.
- Corner 2 - Specify longitude and latitude values in decimal degrees. Typically,

Corner 2 is the lower-right corner of the box


\section*{Tile}

In HDF-EOS Grid data, a rectilinear grid overlays a map. Each rectangle defined by the horizontal and vertical lines of the grid is referred to as a tile. If the HDF-EOS Grid data is stored as tiles, you can import a subset of the data by specifying the coordinates of the tile you are interested in. Tile coordinates are 1-based, with the upper-left corner of a two-dimensional data set identified as 1,1 . In a three-dimensional data set, this tile would be referenced as \(1,1,1\).


\section*{Time}

You can import a subset of the Grid data set by specifying a time period. You must specify both the start time and the stop time (the endpoint of the time span). The units (hours, minutes, seconds) used to specify the time are defined by the data set.


Along with these time parameters, you can optionally further define the subset of data to import by supplying user-defined on page 7-74 parameters.

\section*{User-Defined}

You can import a subset of the Grid data set by specifying user-defined subsetting parameters.


When specifying user-defined parameters, you must first specify whether you are subsetting along a dimension or by field. Select the dimension or field by name using the Dimension or Field Name menu. Dimension names are prefixed with the characters DIM:.

Once you specify the dimension or field, you use Min and Max to specify the range of values that you want to import. For dimensions, Min and Max represent a range of elements. For fields, Min and Max represent a range of values.

\section*{HDF-EOS Point Data}

HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS Point data set by specifying field names and level. Optionally, you can refine the subsetting by specifying the range of records you want to import, by defining a rectangular area, or by specifying a time period. For information about specifying a rectangular area, see "Geographic Box" on page 7-72. For information about subsetting by time, see "Time" on page 7-74.


\section*{HDF-EOS Swath Data}

HDF-EOS Swath data is data that is produced by a satellite as it traces a path over the earth. This path is called its ground track. The sensor aboard the satellite takes a series of scans perpendicular to the ground track. Swath data can also include a vertical measure as a third dimension. For example, this vertical dimension can represent the height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting options for Swath data:
- "Direct Index" on page 7-76
- "Geographic Box" on page 7-77
- "Time" on page 7-78
- "User-Defined" on page 7-78

To access these options, click the Subsetting method menu in the Importing and Subsetting pane.

Click here to select a subsetting option


\section*{Direct Index}

You can import a subset of an HDF-EOS Swath data set by specifying the location, range, and number of values to be read along each dimension.


Each row represents a dimension in the data set and each column represents these subsetting parameters:
- Start - Specifies the position on the dimension to begin reading. The default value is 1 , which starts reading at the first element of each dimension. The values specified must not exceed the size of the relevant dimension of the data set.
- Increment - Specifies the interval between the values to read. The default value is 1 , which reads every element of the data set.
- Length - Specifies how much data to read along each dimension. The default value is the length of the dimension, which causes all the data to be read.

\section*{Geographic Box}

You can import a subset of an HDF-EOS Swath data set by specifying the rectangular area of the grid that you are interested in and by specifying the selection Mode.


You define the rectangular area by specifying two points that specify two corners of the box:
- Corner 1 - Specify longitude and latitude values in decimal degrees. Typically, Corner 1 is the upper-left corner of the box.
- Corner 2 - Specify longitude and latitude values in decimal degrees. Typically, Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track Inclusion and the Geolocation mode. The Cross Track Inclusion value determines how much of the area of the geographic box that you define must fall within the boundaries of the swath.
\begin{tabular}{l|l|}
\hline Cross Track Inclusion Mode & AnyPoint - \\
& AnyPoint \\
\hline Midpoint \\
\hline & Endpoint \\
\hline
\end{tabular}

Select from these values:
- AnyPoint - Any part of the box overlaps with the swath.
- Midpoint - At least half of the box overlaps with the swath.
- Endpoint - All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data must be in the same swath.
```

Geolocation Mode Internal -
Internal
External

```

Select from these values:
- Internal - Geolocation fields and data fields must be in the same swath.
- External - Geolocation fields and data fields can be in different swaths.

\section*{Time}

You can optionally also subset swath data by specifying a time period. The units used (hours, minutes, seconds) to specify the time are defined by the data set


\section*{User-Defined}

You can optionally also subset a swath data set by specifying user-defined parameters.


When specifying user-defined parameters, you must first specify whether you are subsetting along a dimension or by field. Select the dimension or field by name using the

Dimension or Field Name menu. Dimension names are prefixed with the characters DIM: .

Once you specify the dimension or field, you use Min and Max to specify the range of values that you want to import. For dimensions, Min and Max represent a range of elements. For fields, Min and Max represent a range of values.

HDF Raster Image Data
For 8-bit HDF raster image data, you can specify the colormap.

\section*{About HDF4 and HDF-EOS}

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard for storing scientific data in files, developed by the National Center for Supercomputing Applications (NCSA). For more information about these file formats, read the HDF documentation at the HDF Web site (www. hdfgroup. org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and Space Administration (NASA) for storage of data returned from the Earth Observing System (EOS). For more information about this extension to HDF4, see the HDF-EOS documentation at the NASA Web site (www.hdfeos.org).

HDF4 Application Programming Interfaces (APIs) are libraries of C routines. To import or export data, you must use the functions in the HDF4 API associated with the particular HDF4 data type you are working with. Each API has a particular programming model, that is, a prescribed way to use the routines to write data sets to the file. MATLAB functions allow you to access specific HDF4 APIs.

To use the MATLAB HDF4 functions effectively, you must be familiar with the HDF library. For detailed information about HDF4 features and routines, refer to the documentation at the HDF Web site.

\section*{Export to HDF4 Files}
```

In this section...
"Write MATLAB Data to HDF4 File" on page 7-81
"Manage HDF4 Identifiers" on page 7-83

```

\section*{Write MATLAB Data to HDF4 File}

This example shows how to write MATLAB® arrays to a Scientific Data Set in an HDF4 file.

\section*{Add Package to Import List}

Add the matlab.io. hdf4.* path to the import list.
```

import matlab.io.hdf4.*

```

Prefix subsequent calls to functions in the matlat.io.hdf4.sd package with sd, rather than the entire package path.

\section*{Create HDF4 File}

Create a new HDF4 file using the matlab.io.hdf4.sd.start function. This function corresponds to the SD API routine, SDstart.
```

sdID = sd.start('mydata.hdf','create');

```
sd.start creates the file and returns a file identifier named sdID.
To open an existing file instead of creating a new one, call sd.start with 'write' access instead of 'create'.

\section*{Create HDF4 Data Set}

Create a data set in the file for each MATLAB array you want to export. If you are writing to an existing data set, you can skip ahead to the next step. In this example, create one data set for the array of sample data, \(A\), using the matlab.io.hdf4.sd.create function. This function corresponds to the SD API routine, SDcreate. The ds_type argument is a character vector specifying the MATLAB data type of the data set.
\(A=[12345 ; 67810 ; 1112131415]\);
ds_name = 'A';
```

ds type = 'double';
ds_dims = size(A);
sdsID = sd.create(sdID,ds_name,ds_type,ds_dims);

```
sd. create returns an HDF4 SD data set identifier, sdsID.

\section*{Write MATLAB Data to HDF4 File}

Write data in A to the data set in the file using the matlab.io.hdf4.sd.writedata function. This function corresponds to the SD API routine, SDwritedata. The start argument specifies the zero-based starting index.
```

start = [0 0];
sd.writeData(sdsID,start,A);

```
sd.writeData queues the write operation. Queued operations execute when you close the HDF4 file.

\section*{Write MATLAB Data to Portion of Data Set}

Replace the second row of the data set with the vector B. Use a start input value of [ 1 0 ] to begin writing at the second row, first column. start uses zero-based indexing.
```

B = [9 9 9 9 9];
start = [1 0];
sd.writeData(sdsID,start,B);

```

\section*{Write Metadata to HDF4 File}

Create a global attribute named creation_date, with a value that is the current date and time. Use the matlab.io.hdf4.sd.setAttr function, which corresponds to the SD API routine, SDsetattr.
```

sd.setAttr(sdID,'creation_date',datestr(now));

```
sd.Attr creates a file attribute, also called a global attribute, associated with the HDF4 file identified by sdID.

Associate a predefined attribute, cordsys, to the data set identified by sdsID. Possible values of this attribute include the text strings 'cartesian', 'polar', and 'spherical'.
```

attr_name = 'cordsys';

```
attr_value = 'polar';
sd.sètAttr(sdsID,attr_name, attr_value);

\section*{Close HDF4 Data Set}

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This function corresponds to the SD API routine, SDendaccess. You must close access to all the data sets in and HDF4 file before closing the file.
```

sd.endAccess(sdsID);

```

\section*{Close HDF4 File}

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function corresponds to the SD API routine, SDend.
sd.close(sdID);
Closing an HDF4 file executes all the write operations that have been queued using SDwritedata.

\section*{Manage HDF4 Identifiers}

MATLAB supports utility functions that make it easier to use HDF4 in the MATLAB environment.
- "View All Open HDF4 Identifiers" on page 7-83
- "Close All Open HDF4 Identifiers" on page 7-84

\section*{View All Open HDF4 Identifiers}

Use the gateway function to the MATLAB HDF4 utility API, hdfml, and specify the name of the listinfo routine as an argument to view all the currently open HDF4 identifiers. MATLAB updates this list whenever HDF identifiers are created or closed. In this example only two identifiers are open.
```

hdfml('listinfo')
No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
262144

```
```

Open scientific data file identifiers:
3 9 3 2 1 6
No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

```

\section*{Close All Open HDF4 Identifiers}

Close all the currently open HDF4 identifiers in a single call using the gateway function to the MATLAB HDF4 utility API, hdfml. Specify the name of the closeall routine as an argument:
```

hdfml('closeall')

```

\section*{See Also}
hdfml|sd.close|sd.create|sd.endAccess|sd.setAttr|sd.start| sd.writeData

\section*{More About}
- "Map HDF4 to MATLAB Syntax" on page 7-58

\section*{Audio and Video}
- "Read and Write Audio Files" on page 8-2
- "Record and Play Audio" on page 8-5
- "Read Video Files" on page 8-10
- "Supported Video and Audio File Formats" on page 8-15
- "Convert Between Image Sequences and Video" on page 8-20

\section*{Read and Write Audio Files}

Write data to an audio file, get information about the file, and then read the data back into the MATLAB workspace.

\section*{Write to Audio File}

Load sample data from the file, handel.mat
load handel.mat
The workspace now contains a matrix of audio data, \(y\), and a sample rate, Fs.
Use the audiowrite function to write the data to a WAVE file named handel. wav in the current folder.
```

audiowrite('handel.wav',y,Fs)
clear y Fs

```

The audiowrite function also can write to other audio file formats such as OGG, FLAC, and MPEG-4 AAC.

\section*{Get Information About Audio File}

Use the audioinfo function to get information about the WAVE file, handel . wav.
```

info = audioinfo('handel.wav')

```
info =

Filename: 'pwd\handel.wav'
CompressionMethod: 'Uncompressed'
NumChannels: 1
SampleRate: 8192
TotalSamples: 73113
Duration: 8.9249
Title: []
Comment: []
Artist: []
BitsPerSample: 16
audioinfo returns a 1-by-1 structure array. The SampleRate field indicates the sample rate of the audio data, in hertz. The Duration field indicates the duration of the file, in seconds.

\section*{Read Audio File}

Use the audioread function to read the file, handel.wav. The audioread function can support WAVE, OGG, FLAC, AU, MP3, and MPEG-4 AAC files.
[y,Fs] = audioread('handel.wav');
Play the audio.
sound (y, Fs)

You also can read WAV, AU, or SND files interactively. Select \(\begin{aligned} & \text { Import Data or double- }\end{aligned}\) click the file name in the Current Folder browser.

\section*{Plot Audio Data}

Create a vector \(t\) the same length as \(y\), that represents elapsed time.
```

t = 0:seconds(1/Fs):seconds(info.Duration);
t = t(1:end-1);

```

Plot the audio data as a function of time.
```

plot(t,y)
xlabel('Time')
ylabel('Audio Signal')

```


See Also
audioinfo|audioread|audiowrite
Related Examples
- "Import Images, Audio, and Video Interactively" on page 1-9

\section*{Record and Play Audio}

Record and play audio data for processing in MATLAB from audio input and output devices on your system.

\section*{In this section...}
"Record Audio" on page 8-5
"Play Audio" on page 8-7
"Record or Play Audio within a Function" on page 8-8

\section*{Record Audio}

Record data from an audio input device such as a microphone connected to your system:
1 Create an audiorecorder object.
2 Call the record or recordblocking method, where:
- record returns immediate control to the calling function or the command prompt even as recording proceeds. Specify the length of the recording in seconds, or end the recording with the stop method. Optionally, call the pause and resume methods. The recording is performed asynchronously.
- recordblocking retains control until the recording is complete. Specify the length of the recording in seconds. The recording is performed synchronously.
3 Create a numeric array corresponding to the signal data using the getaudiodata method.

The following examples show how to use the recordblocking and record methods.

\section*{Record Microphone Input}

This example shows how to record microphone input, play back the recording, and store the recorded audio signal in a numeric array. You must first connect a microphone to your system.

Create an audiorecorder object named rec0bj for recording audio input.
recObj = audiorecorder
rec0bj =
```

audiorecorder with properties:
SampleRate: 8000
BitsPerSample: 8
NumChannels: 1
DeviceID: -1
CurrentSample: 1
TotalSamples: 0
Running: 'off'
StartFcn: []
StopFen: []
TimerFcn: []
TimerPeriod: 0.0500
Tag:
UserData: []
Type: 'audiorecorder'

```
audiorecorder creates an 8000 Hz , 8-bit, 1-channel audiorecorder object.
Record your voice for 5 seconds.
```

disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

```

Play back the recording.
play(recObj);
Store data in double-precision array, y.
```

y = getaudiodata(recObj);

```

Plot the audio samples.
```

plot(y);

```

\section*{Record Two Channels from Different Sound Cards}

To record audio independently from two different sound cards, with a microphone connected to each:

1 Call audiodevinfo to list the available sounds cards. For example, this code returns a structure array containing all input and output audio devices on your system:
```

info = audiodevinfo;

```

Identify the sound cards you want to use by name, and note their ID values.
2 Create two audiorecorder objects. For example, this code creates the audiorecorder object, recorder1, for recording a single channel from device 3 at 44.1 kHz and 16 bits per sample. The audiorecorder object, recorder2, is for recording a single channel from device 4 at 48 kHz :
```

recorder1 = audiorecorder(44100,16,1,3);
recorder2 = audiorecorder(48000,16,1,4);

```

3 Record each audio channel separately.
```

record(recorder1);
record(recorder2);
pause(5);

```

The recordings occur simultaneously as the first call to record does not block.
4 Stop the recordings.
stop(recorder1);
stop(recorder2);

\section*{Specify the Quality of the Recording}

By default, an audiorecorder object uses a sample rate of 8000 hertz, a depth of 8 bits ( 8 bits per sample), and a single audio channel. These settings minimize the required amount of data storage. For higher quality recordings, increase the sample rate or bit depth.

For example, typical compact disks use a sample rate of 44,100 hertz and a 16-bit depth. Create an audiorecorder object to record in stereo (two channels) with those settings:
```

myRecObj = audiorecorder(44100, 16, 2);

```

For more information on the available properties and values, see the audiorecorder reference page.

\section*{Play Audio}

After you import or record audio, MATLAB supports several ways to listen to the data:
- For simple playback using a single function call, use sound or soundsc. For example, load a sample MAT-file that contains signal and sample rate data, and listen to the audio:
```

load chirp.mat;
sound(y, Fs);

```
- For more flexibility during playback, including the ability to pause, resume, or define callbacks, use the audioplayer function. Create an audioplayer object, then call methods to play the audio. For example, listen to the gong sample file:
```

load gong.mat;
gong = audioplayer(y, Fs);
play(gong);

```

For an additional example, see "Record or Play Audio within a Function" on page 88.

If you do not specify the sample rate, sound plays back at 8192 hertz. For any playback, specify smaller sample rates to play back more slowly, and larger sample rates to play back more quickly.

Note Most sound cards support sample rates between approximately 5,000 and 48,000 hertz. Specifying sample rates outside this range can produce unexpected results.

\section*{Record or Play Audio within a Function}

If you create an audioplayer or audiorecorder object inside a function, the object exists only for the duration of the function. For example, create a player function called playFile and a simple callback function showSeconds:
```

function playFile(myfile)
load(myfile);
obj = audioplayer(y, Fs);
obj.TimerFcn = 'showSeconds';
obj.TimerPeriod = 1;
play(obj);
end
function showSeconds
disp('tick')
end

```

Call playFile from the command prompt to play the file handel.mat:

\section*{playFile('handel.mat')}

At the recorded sample rate of 8192 samples per second, playing the 73113 samples in the file takes approximately 8.9 seconds. However, the playFile function typically ends before playback completes, and clears the audioplayer object obj.

To ensure complete playback or recording, consider the following options:
- Use playblocking or recordblocking instead of play or record. The blocking methods retain control until playing or recording completes. If you block control, you cannot issue any other commands or methods (such as pause or resume) during the playback or recording.
- Create an output argument for your function that generates an object in the base workspace. For example, modify the playFile function to include an output argument:
```

function obj = playFile(myfile)

```

Call the function:
h = playFile('handel.mat');
Because \(h\) exists in the base workspace, you can pause playback from the command prompt:
```

pause(h)

```

\section*{See Also}
audioplayer | audiorecorder | sound | soundsc

\section*{More About}
- "Read and Write Audio Files" on page 8-2

\section*{Read Video Files}

Read frames from a video starting at a specific time or frame index, read frames within a specified interval, or read all the frames in the video.

\section*{Read Frames Beginning at Specified Time or Frame Index}

Read part of a video file starting 0.5 second from the beginning of the file. Then, read the video starting from frame index 100 to the end of the video file.

Construct a VideoReader object associated with the sample file 'xylophone.mp4'.
vidObj = VideoReader('xylophone.mp4');
Specify that reading should begin 0.5 second from the beginning of the file by setting the CurrentTime property.
vidObj.CurrentTime = 0.5;
Read video frames until the end of the file is reached by using the readFrame method.
```

while hasFrame(vidObj)
vidFrame = readFrame(vidObj);
imshow(vidFrame)
pause(1/vidObj.FrameRate);
end

```


Alternatively, you can read frames from a video starting at a specified frame index to the end of the video by using the read method. Specify the indices to read as [100 Inf]. The read method returns all the frames starting at 100 to the end of the video file.
```

vidframes = read(vidObj,[100 Inf]);

```

\section*{Read Frames Within Specified Interval}

Read a part of a video file by specifying the time or frame interval.
Read the video frames between 0.6 and 0.9 seconds. First, create a video reader object and a structure array to hold the frames.
```

vidObj = VideoReader('xylophone.mp4');
s = struct('cdata',zeros(vidObj.Height,vidObj.Width,3,'uint8'),'colormap',[]);

```

Then, specify that reading should begin 0.6 second from the beginning of the file by setting the CurrentTime property.
vidObj.CurrentTime = 0.6;

Read one frame at a time until CurrentTime reaches 0.9 second. Append data from each video frame to the structure array. View the number of frames in the structure array. s is a 1-by-10 structure indicating that 10 frames were read. For information on displaying the frames in the structure \(s\) as a movie, see the movie function reference page.
```

k = 1;
while vidObj.CurrentTime <= 0.9
s(k).cdata = readFrame(vidObj);
k = k+1;
end
whos s

| Name | Size | Bytes | Class | Attributes |
| :--- | ---: | ---: | :--- | ---: |
| s | 1×10 | 2305432 | struct | |

```

Alternatively, you can read all the frames in a specified interval by using frame indices. For example, specify the second argument of read as [18 27]. The read method returns a FrameSize-by-10 array indicating that 10 frames were read.
```

frames = read(vidObj,[18 27]);

```
whos frames
\begin{tabular}{llrlr} 
Name & Size & Bytes & Class & Attributes \\
frames & \(240 \times 320 \times 3 \times 10\) & 2304000 & uint8
\end{tabular}

\section*{Read All Frames}

Read all the frames from video, one frame at a time or all the frames at once.
Create a video reader object and display the total number of frames in the video.
```

vidObj = VideoReader('xylophone.mp4');
vidObj.NumFrames
ans = 141

```

Read all the frames, one frame at a time, by using the readFrame method, and display the frames.
```

while hasFrame(vidObj)
frame = readFrame(vidObj);
imshow(frame)

```
```

 pause(1/vidObj.FrameRate);
 end

```


Alternatively, you can read all the video frames at once. The read method returns a FrameSize-by-141 array of video frames.
allFrames \(=\) read(vidObj);
whos allFrames
\begin{tabular}{lcrl} 
Name & Size & Bytes & Class Attributes \\
allFrames & \(240 \times 320 \times 3 \times 141\) & 32486400 & uint8
\end{tabular}

\section*{Troubleshooting and Tips For Video Reading}
- The hasFrame method might return logical 1 (true) when the value of the CurrentTime property is equal to the value of the Duration property. This is due to a limitation in the underlying APIs used.
- Seeking to the last frame in a video file by setting the CurrentTime property to a value close to the Duration value is not recommended. For some files, this operation
returns an error indicating that the end-of-file has been reached, even though the CurrentTime value is less than the Duration value. This typically occurs if the file duration is larger than the duration of the video stream, and there is no video available to read near the end of the file.
- Use of the Duration property to limit the reading of data from a video file is not recommended. Use the hasFrame method to check whether there is a frame available to read. It is best to read data until the file reports that there are no more frames available to read.
- Video Reading Performance on Windows® Systems: To achieve better video reader performance on Windows for MP4 and MOV files, MATLAB® uses the system's graphics hardware for decoding. However, in some cases using the graphics card for decoding can result in poorer performance depending on the specific graphics hardware on the system. If you notice slower video reader performance on your system, turn off the hardware acceleration by typing:
matlab.video.read.UseHardwareAcceleration('off'). You can reenable hardware acceleration by typing:
matlab.video.read.UseHardwareAcceleration('on').

\section*{See Also}

VideoReader|mmfileinfo|movie | read | readFrame

\section*{More About}
- "Supported Video and Audio File Formats" on page 8-15

\section*{Supported Video and Audio File Formats}

Video and audio files in MATLAB and their supported file formats and codecs.

\section*{Video Data in MATLAB}

\section*{What Are Video Files?}

For video data, the term "file format" often refers to either the container format or the codec. A container format describes the layout of the file, while a codec describes how to encode/decode the video data. Many container formats can hold data encoded with different codecs.

To read a video file, any application must:
- Recognize the container format (such as AVI).
- Have access to the codec that can decode the video data stored in the file. Some codecs are part of standard Windows and Macintosh system installations, and allow you to play video in Windows Media Player or QuickTime. In MATLAB, VideoReader can access most, but not all, of these codecs.
- Properly use the codec to decode the video data in the file. VideoReader cannot always read files associated with codecs that were not part of your original system installation.

\section*{Formats That VideoReader Supports}

Use VideoReader to read video files in MATLAB. The file formats that VideoReader supports vary by platform, and have no restrictions on file extensions.
\begin{tabular}{|l|l|}
\hline Platforms & File Formats \\
\hline All Platforms & \begin{tabular}{l} 
AVI, including uncompressed, indexed, \\
grayscale, and Motion JPEG-encoded video \\
(.avi) \\
Motion JPEG 2000 (.mj 2)
\end{tabular} \\
\hline All Windows & \begin{tabular}{l} 
MPEG-1 (.mpg) \\
Windows Media Video (.wmv, .asf, . asx) \\
Any format supported by Microsoft \\
DirectShow
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Platforms & File Formats \\
\hline Windows 7 or later & \begin{tabular}{l}
MPEG-4, including H. 264 encoded video (.mp4, .m4v) \\
Apple QuickTime Movie (.mov) \\
Any format supported by Microsoft Media Foundation
\end{tabular} \\
\hline Macintosh & \begin{tabular}{l}
Most formats supported by QuickTime \\
Player, including: \\
MPEG-1 (.mpg) \\
MPEG-4, including H. 264 encoded video \\
(.mp4, .m4v) \\
Apple QuickTime Movie (.mov) \\
3GPP \\
3GPP2 \\
AVCHD \\
DV \\
Note: For OS X Yosemite (Version 10.10) and later, MPEG-4/H. 264 files written using VideoWriter, play correctly, but display an inexact frame rate.
\end{tabular} \\
\hline Linux & Any format supported by your installed plug-ins for GStreamer 1.0 or higher, as listed on https://gstreamer.freedesktop.org/ documentation/plugins_doc.html, including Ogg Theora (.ogg). \\
\hline
\end{tabular}

\section*{View Codec Associated with Video File}

This example shows how to view the codec associated with a video file, using the mmfileinfo function.

Store information about the sample video file, shuttle. avi, in a structure array named info. The info structure contains the following fields: Filename, Path, Duration, Audio and Video.
```

info = mmfileinfo('shuttle.avi');

```

Show the properties in the command window by displaying the fields of the info structure. For example, to view information under the Video field, type info.Video

\section*{info.Video}
```

ans = struct with fields:
Format: 'MJPG'
Height: 288
Width: 512

```

The file, shuttle. avi, uses the Motion JPEG codec.

\section*{Troubleshooting: Errors Reading Video File}

You might be unable to read a video file if MATLAB cannot access the appropriate codec. 64 -bit applications use 64 -bit codec libraries, while 32 -bit applications use 32 -bit codec libraries. For example, when working with 64-bit MATLAB, you cannot read video files that require access to a 32-bit codec installed on your system. To read these files, try one of the following:
- Install a 64 -bit codec that supports this file format. Then, try reading the file using 64bit MATLAB.
- Re-encode the file into a different format with a 64 -bit codec that is installed on your computer.

Sometimes, VideoReader cannot open a video file for reading on Windows platforms. This might occur if you have installed a third-party codec that overrides your system settings. Uninstall the codec and try opening the video file in MATLAB again.

\section*{Audio Data in MATLAB}

\section*{What Are Audio Files?}

The audio signal in a file represents a series of samples that capture the amplitude of the sound over time. The sample rate is the number of discrete samples taken per second and given in hertz. The precision of the samples, measured by the bit depth (number of bits per sample), depends on the available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in an m-by-1 column vector, and stereo data in an \(m\)-by- 2 matrix. In either case, \(m\) is the number of samples. For stereo data, the first column contains the left channel, and the second column contains the right channel.

Typically, each sample is a double-precision value between -1 and 1. In some cases, particularly when the audio hardware does not support high bit depths, audio files store the values as 8 -bit or 16 -bit integers. The range of the sample values depends on the available number of bits. For example, samples stored as uint8 values can range from 0 to \(255\left(2^{8}-1\right)\). The MATLAB sound and soundsc functions support only single- or double-precision values between -1 and 1 . Other audio functions support multiple data types, as indicated on the function reference pages.

\section*{Formats That audioReader Supports}

Use audioread to read audio files in MATLAB. The audioread function supports these file formats.
\begin{tabular}{|l|l|}
\hline Platform Support & File Format \\
\hline All platforms & WAVE (.wav) \\
\cline { 2 - 6 } & OGG (.ogg) \\
\cline { 2 - 4 } & FLAC (.flac) \\
\cline { 2 - 4 } & AU (.au) \\
\cline { 2 - 3 } & AIFF (.aiff, .aif) \\
\cline { 2 - 3 } & AIFC (.aifc) \\
\hline
\end{tabular}

On Windows platforms prior to Windows 7, audioread does not read WAVE files with MP3 encoded data.

On Windows 7 (or later) platforms, audioread might also read any files supported by Windows Media Foundation.

On Linux platforms, audioread might also read any files supported by GStreamer.
audioread can extract audio from MPEG-4 (.mp4, .m4v) video files on Windows 7 or later, Macintosh, and Linux, and from Windows Media Video (.wmv) and AVI (. avi) files on Windows 7 (or later) and Linux platforms.

\section*{See Also}

VideoReader|audioinfo|audioread|mmfileinfo

\section*{More About}
- "Read Video Files" on page 8-10
- "Read and Write Audio Files" on page 8-2

\section*{Convert Between Image Sequences and Video}

Convert between video files and sequences of image files using VideoReader and VideoWriter.

The sample file named shuttle. avi contains 121 frames. Convert the frames to image files using VideoReader and the imwrite function. Then, convert the image files to an AVI file using VideoWriter.

\section*{Setup}

Create a temporary working folder to store the image sequence.
```

workingDir = tempname;
mkdir(workingDir)
mkdir(workingDir,'images')

```

\section*{Create VideoReader}

Create a VideoReader to use for reading frames from the file.
```

shuttleVideo = VideoReader('shuttle.avi');

```

\section*{Create the Image Sequence}

Loop through the video, reading each frame into a width-by-height-by-3 array named img. Write out each image to a JPEG file with a name in the form imgN.jpg, where \(N\) is the frame number.
```

| img001.jpg|

```
| img002.jpg|
| ...|
| img121.jpg|
ii = 1 ;
while hasFrame(shuttleVideo)
    img = readFrame(shuttleVideo);
    filename = [sprintf('\%03d',ii) '.jpg'];
    fullname = fullfile(workingDir,'images',filename);
    imwrite(img,fullname) \%Write out to a JPEG file (img1.jpg, img2.jpg, etc.)
```

 ii = ii+1;
 end

```

\section*{Find Image File Names}

Find all the JPEG file names in the images folder. Convert the set of image names to a cell array.
```

imageNames = dir(fullfile(workingDir,'images','*.jpg'));
imageNames = {imageNames.name}';

```

\section*{Create New Video with the Image Sequence}

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by default.
```

outputVideo = VideoWriter(fullfile(workingDir,'shuttle_out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo)

```

Loop through the image sequence, load each image, and then write it to the video.
```

for ii = 1:length(imageNames)
img = imread(fullfile(workingDir,'images',imageNames{ii}));
writeVideo(outputVideo,img)
end

```

Finalize the video file.
close(outputVideo)

\section*{View the Final Video}

Construct a reader object.
```

shuttleAvi = VideoReader(fullfile(workingDir,'shuttle_out.avi'));

```

Create a MATLAB movie struct from the video frames.
```

ii = 1;
while hasFrame(shuttleAvi)
mov(ii) = im2frame(readFrame(shuttleAvi));
ii = ii+1;
end

```

Resize the current figure and axes based on the video's width and height, and view the first frame of the movie.
figure
imshow(mov(1).cdata, 'Border', 'tight')
Play back the movie once at the video's frame rate.
movie(mov, 1 , shuttleAvi.FrameRate)


\section*{Credits}

Video of the Space Shuttle courtesy of NASA.

\section*{XML Documents}
- "Importing XML Documents" on page 9-2
- "Exporting to XML Documents" on page 9-5

\section*{Importing XML Documents}

To read an XML file from your local disk or from a URL, use the xml read function. xml read returns the contents of the file in a Document Object Model (DOM) node. For more information, see:
- "What Is an XML Document Object Model (DOM)?" on page 9-2
- "Example - Finding Text in an XML File" on page 9-3

\section*{What Is an XML Document Object Model (DOM)?}

In a Document Object Model, every item in an XML file corresponds to a node. The properties and methods for DOM nodes (that is, the way you create and access nodes) follow standards set by the World Wide Web consortium.

For example, consider this sample XML file:
```

<productinfo>
<!-- This is a sample info.xml file. -->
<list>
<listitem>
<label color="blue">Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>
<listitem>
<label color="red">Profiler</label>
<callback>profile viewer</callback>
<icon>ApplicationIcon.PROFILER</icon>
</listitem>
</list>
</productinfo>
```

The information in the file maps to the following types of nodes in a DOM:
- Element nodes - Corresponds to tag names. In the sample info.xml file, these tags correspond to element nodes:
- productinfo
- list
- listitem
- label
- callback
- icon

In this case, the list element is the parent of listitem element child nodes. The productinfo element is the root element node.
- Text nodes - Contains values associated with element nodes. Every text node is the child of an element node. For example, the Import Wizard text node is the child of the first label element node.
- Attribute nodes - Contains name and value pairs associated with an element node. For example, in the first label element node, color is the name of an attribute and blue is its value. Attribute nodes are not parents or children of any nodes.
- Comment nodes - Includes additional text in the file, in the form <! - Sample comment-->.
- Document nodes - Corresponds to the entire file. Use methods on the document node to create new element, text, attribute, or comment nodes.

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom package description at https://docs.oracle.com/javase/7/docs/api.

\section*{Example - Finding Text in an XML File}

The full matlabroot/toolbox/matlab/general/info.xml file contains several listitem elements, such as:
```

<listitem>
<label>Import Wizard</label>
<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>
```

One of the label elements has the child text Plot Tools. Suppose that you want to find the text for the callback element in the same listitem. Follow these steps:

1 Initialize your variables, and call xml read to obtain the document node:
findLabel = 'Plot Tools';
findCbk = '';
```

xDoc = xmlread(fullfile(matlabroot, ...
'toolbox','matlab','general','info.xml'));

```

2 Find all the listitem elements. The getElementsByTagName method returns a deep list that contains information about the child nodes:
```

allListitems = xDoc.getElementsByTagName('listitem');

```

Note Lists returned by DOM methods use zero-based indexing.
3 For each listitem, compare the text for the label element to the text you want to find. When you locate the correct label, get the callback text:
```

for k = 0:allListitems.getLength-1
thisListitem = allListitems.item(k);

```
    \% Get the label element. In this file, each
    \% listitem contains only one label.
    thisList = thisListitem.getElementsByTagName('label');
    thisElement = thisList.item(0);
    \% Check whether this is the label you want.
    \% The text is in the first child node.
    if strcmp(thisElement.getFirstChild.getData, findLabel)
        thisList = thisListitem.getElementsByTagName('callback');
        thisElement \(=\) thisList.item(0);
        findCbk = char(thisElement.getFirstChild.getData);
        break;
    end
end

4 Display the final results:
```

if ~isempty(findCbk)
msg = sprintf('Item "%s" has a callback of "%s."',...
findLabel, findCbk);
else
msg = sprintf('Did not find the "%s" item.', findLabel);
end
disp(msg);

```

For an additional example that creates a structure array to store data from an XML file, see the xml read function reference page.

\section*{Exporting to XML Documents}

To write data to an XML file, use the xmlwrite function. xmlwrite requires that you describe the file in a Document Object Model (DOM) node. For an introduction to DOM nodes, see "What Is an XML Document Object Model (DOM)?" on page 9-2

For more information, see:
- "Creating an XML File" on page 9-5
- "Updating an Existing XML File" on page 9-7

\section*{Creating an XML File}

Although each file is different, these are common steps for creating an XML document:
1 Create a document node and define the root element by calling this method:
docNode = com.mathworks.xml.XMLUtils.createDocument('root_element');
2 Get the node corresponding to the root element by calling getDocumentElement. The root element node is required for adding child nodes.
3 Add element, text, comment, and attribute nodes by calling methods on the document node. Useful methods include:
- createElement
- createTextNode
- createComment
- setAttribute

For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom package description at https://docs.oracle.com/javase/7/ docs/api.
4 As needed, define parent/child relationships by calling appendChild on the parent node.

Tip Text nodes are always children of element nodes. To add a text node, call createTextNode on the document node, and then call appendChild on the parent element node.

\section*{Example - Creating an XML File with xmlwrite}

Suppose that you want to create an info.xml file for the Upslope Area Toolbox (described in "Display Custom Documentation"), as follows:
```

<?xml version="1.0" encoding="utf-8"?>
<toc version="2.0">
<tocitem target="upslope_product_page.html">Upslope Area Toolbox<!-- Functions -->
<tocitem target="demFlow_help.html">demFlow</tocitem>
<tocitem target="facetFlow_help.html">facetFlow</tocitem>
<tocitem target="flowMatrix_help.html">flowMatrix</tocitem>
<tocitem target="pixelFlow_help.html">pixelFlow</tocitem>
</tocitem>
</toc>

```

To create this file using xmlwrite, follow these steps:
1 Create the document node and root element, toc:
docNode = com.mathworks.xml.XMLUtils.createDocument('toc');
2 Identify the root element, and set the version attribute:
toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');
3 Add the tocitem element node for the product page. Each tocitem element in this file has a target attribute and a child text node:
product = docNode.createElement('tocitem');
product.setAttribute('target', 'upslope_product_page.html'); product.appendChild(docNode.createTextNode('Upslope Area Toolbox')); toc.appendChild(product)
4 Add the comment:
product.appendChild(docNode.createComment(' Functions '));
5 Add a tocitem element node for each function, where the target is of the form function_help.html:
```

functions = {'demFlow','facetFlow','flowMatrix','pixelFlow'};
for idx = 1:numel(functions)
curr_node = docNode.createElement('tocitem');
curr_file = [functions{idx} '_help.html'];
curr_node.setAttribute('targe\overline{t',curr_file);}
% Child text is the function name.
curr_node.appendChild(docNode.createTextNode(functions{idx}));

```
```

 product.appendChild(curr_node);
 end

```

6 Export the DOM node to info. xml , and view the file with the type function:
xmlwrite('info.xml',docNode);
type('info.xml');

\section*{Updating an Existing XML File}

To change data in an existing file, call xml read to import the file into a DOM node. Traverse the node and add or change data using methods defined by the World Wide Web consortium, such as:
- getElementsByTagName
- getFirstChild
- getNextSibling
- getNodeName
- getNodeType

When the DOM node contains all your changes, call xmlwrite to overwrite the file.
For a complete list of the methods and properties of DOM nodes, see the org.w3c.dom package description at https://docs.oracle.com/javase/7/docs/api.

For examples that use these methods, see:
- "Example - Finding Text in an XML File" on page 9-3
- "Example - Creating an XML File with xmlwrite" on page 9-6
- xml read and xmlwrite

\section*{Memory-Mapping Data Files}
- "Overview of Memory-Mapping" on page 10-2
- "Map File to Memory" on page 10-6
- "Read from Mapped File" on page 10-12
- "Write to Mapped File" on page 10-18
- "Delete Memory Map" on page 10-25
- "Share Memory Between Applications" on page 10-26

\section*{Overview of Memory-Mapping}

\author{
In this section... \\ "What Is Memory-Mapping?" on page 10-2 \\ "Benefits of Memory-Mapping" on page 10-2 \\ "When to Use Memory-Mapping" on page 10-4 \\ "Maximum Size of a Memory Map" on page 10-5 \\ "Byte Ordering" on page 10-5
}

\section*{What Is Memory-Mapping?}

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk to a range of addresses within an application's address space. The application can then access files on disk in the same way it accesses dynamic memory. This makes file reads and writes faster in comparison with using functions such as fread and fwrite.

\section*{Benefits of Memory-Mapping}

The principal benefits of memory-mapping are efficiency, faster file access, the ability to share memory between applications, and more efficient coding.

\section*{Faster File Access}

Accessing files via memory map is faster than using I/O functions such as fread and fwrite. Data are read and written using the virtual memory capabilities that are built in to the operating system rather than having to allocate, copy into, and then deallocate data buffers owned by the process.

MATLAB does not access data from the disk when the map is first constructed. It only reads or writes the file on disk when a specified part of the memory map is accessed, and then it only reads that specific part. This provides faster random access to the mapped data.

\section*{Efficiency}

Mapping a file into memory allows access to data in the file as if that data had been read into an array in the application's address space. Initially, MATLAB only allocates address space for the array; it does not actually read data from the file until you access the
mapped region. As a result, memory-mapped files provide a mechanism by which applications can access data segments in an extremely large file without having to read the entire file into memory first.

\section*{Efficient Coding Style}

Memory-mapping in your MATLAB application enables you to access file data using standard MATLAB indexing operations. Once you have mapped a file to memory, you can read the contents of that file using the same type of MATLAB statements used to read variables from the MATLAB workspace. The contents of the mapped file appear as if they were an array in the currently active workspace. You simply index into this array to read or write the desired data from the file. Therefore, you do not need explicit calls to the fread and fwrite functions.

In MATLAB, if \(x\) is a memory-mapped variable, and \(y\) is the data to be written to a file, then writing to the file is as simple as
```

x.Data = y;

```

\section*{Sharing Memory Between Applications}

Memory-mapped files also provide a mechanism for sharing data between applications, as shown in the figure below. This is achieved by having each application map sections of the same file. You can use this feature to transfer large data sets between MATLAB and other applications.


Also, within a single application, you can map the same segment of a file more than once.

\section*{When to Use Memory-Mapping}

Just how much advantage you get from mapping a file to memory depends mostly on the size and format of the file, the way in which data in the file is used, and the computer platform you are using.

\section*{When Memory-Mapping Is Most Useful}

Memory-mapping works best with binary files, and in the following scenarios:
- For large files that you want to access randomly one or more times
- For small files that you want to read into memory once and access frequently
- For data that you want to share between applications
- When you want to work with data in a file as if it were a MATLAB array

\section*{When the Advantage Is Less Significant}

The following types of files do not fully use the benefits of memory-mapping:
- Formatted binary files like HDF or TIFF that require customized readers are not good for memory-mapping. Describing the data contained in these files can be a very complex task. Also, you cannot access data directly from the mapped segment, but must instead create arrays to hold the data.
- Text or ASCII files require that you convert the text in the mapped region to an appropriate type for the data to be meaningful. This takes up additional address space.
- Files that are larger than several hundred megabytes in size consume a significant amount of the virtual address space needed by MATLAB to process your program. Mapping files of this size may result in MATLAB reporting out-of-memory errors more often. This is more likely if MATLAB has been running for some time, or if the memory used by MATLAB becomes fragmented.

\section*{Maximum Size of a Memory Map}

Due to limits set by the operating system and MATLAB, the maximum amount of data you can map with a single instance of a memory map is 2 gigabytes on 32-bit systems, and 256 terabytes on 64 -bit systems. If you need to map more than this limit, you can either create separate maps for different regions of the file, or you can move the window of one map to different locations in the file.

\section*{Byte Ordering}

Memory-mapping works only with data that have the same byte ordering scheme as the native byte ordering of your operating system. For example, because both Linus Torvalds' Linux and Microsoft Windows systems use little-endian byte ordering, data created on a Linux system can be read on Windows systems. You can use the computer function to determine the native byte ordering of your current system.

\section*{Map File to Memory}
```

In this section...
"Create a Simple Memory Map" on page 10-6
"Specify Format of Your Mapped Data" on page 10-7
"Map Multiple Data Types and Arrays" on page 10-8
"Select File to Map" on page 10-10

```

\section*{Create a Simple Memory Map}

Suppose you want to create a memory map for a file named records. dat, using the memmapfile function.

Create a sample file named records.dat, containing 5000 values.
```

myData = gallery('uniformdata', [5000,1], 0);
fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

```

Next, create the memory map. Use the Format name-value pair argument to specify that the values are of type double. Use the Writable name-value pair argument to allow write access to the mapped region.
```

m = memmapfile('records.dat', ...
'Format', 'double',
'Writable', true)
m =
Filename: 'd:\matlab\records.dat'
Writable: true
Offset: 0
Format: 'double'
Repeat: Inf
Data: 5000x1 double array

```

MATLAB creates a memmapfile object, m. The Format property indicates that read and write operations to the mapped region treat the data in the file as a sequence of double-
precision numbers. The Data property contains the 5000 values from the file, records.dat. You can change the value of any of the properties, except for Data, after you create the memory map, m.

For example, change the starting position of the memory map, m. Begin the mapped region 1024 bytes from the start of the file by changing the value of the Offset property.
```

m.Offset = 1024
m =
Filename: 'd:\matlab\records.dat'
Writable: true
Offset: 1024
Format: 'double'
Repeat: Inf
Data: 4872x1 double array

```

Whenever you change the value of a memory map property, MATLAB remaps the file to memory. The Data property now contains only 4872 values.

\section*{Specify Format of Your Mapped Data}

By default, MATLAB considers all the data in a mapped file to be a sequence of unsigned 8 -bit integers. However, your data might be of a different data type. When you call the memmapfile function, use the Format name-value pair argument to indicate another data type. The value of Format can either be a character vector that identifies a single class used throughout the mapped region, or a cell array that specifies more than one class.

Suppose you map a file that is 12 kilobytes in length. Data read from this file can be treated as a sequence of 6,000 16-bit (2-byte) integers, or as 1,500 8-byte doubleprecision floating-point numbers, to name just a few possibilities. You also could read this data as a combination of different types: for example, as 4,000 8 -bit (1-byte) integers followed by 1,000 64-bit (8-byte) integers. You can determine how MATLAB will interpret the mapped data by setting the Format property of the memory map when you call the memmapfile function.

MATLAB arrays are stored on disk in column-major order. The sequence of array elements is column 1, row 1; column 1, row 2; column 1, last row; column 2, row 1, and so on. You might need to transpose or rearrange the order of array elements when reading or writing via a memory map.

\section*{Map Multiple Data Types and Arrays}

If the region you are mapping comprises segments of varying data types or array shapes, you can specify an individual format for each segment. Specify the value of the Format name-value pair argument as an \(n\)-by- 3 cell array, where n is the number of segments. Each row in the cell array corresponds to a segment. The first cell in the row identifies the data type to apply to the mapped segment. The second cell contains the array dimensions to apply to the segment. The third cell contains the field name for referencing that segment. For a memory map, m, use the following syntax:
```

m = memmapfile(filename,
'Format', {
datatype1, dimensions1, fieldname1; ...
datatype2, dimensions2, fieldname2; ...
datatypeN, dimensionsN, fieldnameN})

```

Suppose you have a file that is 40,000 bytes in length. The following code maps the data beginning at the 2048th byte. The Format value is a 3-by-3 cell array that maps the file data to three different classes: int16, uint32, and single.
```

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...
'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

```

In this case, memmapfile maps the int16 data as a 2 -by-2 matrix that you can access using the field name, model. The uint32 data is a scalar value accessed using the field name, serialno. The single data is a 1-by-3 matrix named expenses. Each of these fields belongs to the 800-by-1 structure array, m. Data.

This figure shows the mapping of the example file.


The next figure shows the ordering of the array elements more closely. In particular, it illustrates that MATLAB arrays are stored on the disk in column-major order. The sequence of array elements in the mapped file is row 1 , column 1 ; row 2 , column 1 ; row 1 , column 2; and row 2, column 2.


If the data in your file is not stored in this order, you might need to transpose or rearrange the order of array elements when reading or writing via a memory map.

\section*{Select File to Map}

You can change the value of the Filename property at any time after constructing the memmapfile object. You might want to do this if:
- You want to use the same memmapfile object on more than one file.
- You save your memmapfile object to a MAT-file, and then later load it back into MATLAB in an environment where the mapped file has been moved to a different location. This requires that you modify the path segment of the Filename to represent the new location.

Update the path in the Filename property for a memory map using dot notation. For example, to specify a new path, \(f\) : \testfiles \(\backslash\) records.dat for a memory map, \(m\), type:
```

m.Filename = 'f:\testfiles\records.dat'

```

\section*{See Also}
memmapfile

\section*{More About}
- "Read from Mapped File" on page 10-12
- "Write to Mapped File" on page 10-18

\section*{Read from Mapped File}

This example shows how to create two different memory maps, and then read from each of the maps using the appropriate syntax. Then, it shows how to modify map properties and analyze your data.

You can read the contents of a file that you mapped to memory using the same MATLAB \({ }^{\circledR}\) commands you use to read variables from the MATLAB workspace. By accessing the Data property of the memory map, the contents of the mapped file appear as an array in the currently active workspace. To read the data you want from the file, simply index into the array. For better performance, copy the Data field to a variable, and then read the mapped file using this variable:
```

dataRef = m.Data;
for k = 1 : N
y(k) = dataRef(k);
end

```

By contrast, reading directly from the memmapfile object is slower:
for \(k=1: N\)
\(y(k)=m . \operatorname{Data}(k)\);
end

\section*{Read from Memory Map as Numeric Array}

First, create a sample data file named records . dat that contains a 5000-by-1 matrix of double-precision floating-point numbers.
```

randData = gallery('uniformdata',[5000,1],0);
fileID = fopen('records.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

```

Map 100 double-precision floating-point numbers from the file to memory, and then read a portion of the mapped data. Create the memory map, m. Specify an Offset value of 1024
to begin the map 1024 bytes from the start of the file. Specify a Repeat value of 100 to map 100 values.
```

m = memmapfile('records.dat','Format','double', ...
'Offset',1024,'Repeat',100);

```

Copy the Data property to a variable, \(d\). Then, show the format of \(d\).
\(\mathrm{d}=\mathrm{m}\). Data;
whos d
\begin{tabular}{lrrlr} 
Name & Size & Bytes & Class & Attributes \\
d & \(100 \times 1\) & 800 & double &
\end{tabular}

The mapped data is an 800-byte array because there are 100 double values, each requiring 8 bytes.

Read a selected set of numbers from the file by indexing into the vector, d .
\(d(15: 20)\)
```

ans = 6\times1

```
0.8392
0.6288
0.1338
0.2071
0.6072
0.6299

\section*{Read from Memory Map as Nonscalar Structure}

Map portions of data in the file, records.dat, as a sequence of multiple data types.
Call the memmapfile function to create a memory map, m.
```

m = memmapfile('records.dat', ...
'Format', {
'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

```

The Format parameter tells memmapfile to treat the first 80 bytes of the file as a 5 -by- 8 matrix of uint 16 values, and the 160 bytes after that as a 4 -by- 5 matrix of double values. This pattern repeats until the end of the file is reached.

Copy the Data property to a variable, d.
```

d = m.Data
d=166\times2 struct
X
y

```
d is a 166 -element structure array with two fields. \(d\) is a nonscalar structure array because the file is mapped as a repeating sequence of multiple data types.

Examine one structure in the array to show the format of each field.
d(3)
```

ans = struct with fields:
x: [5x8 uint16]
y: [4x5 double]

```

Read the x field of that structure from the file.
\(d(3) . x\)
```

ans = 5x8 uint16 matrix

```
\begin{tabular}{rrrrrrrr}
19972 & 47529 & 19145 & 16356 & 46507 & 47978 & 35550 & 16341 \\
60686 & 51944 & 16362 & 58647 & 35418 & 58072 & 16338 & 62509 \\
51075 & 16364 & 54226 & 34395 & 8341 & 16341 & 33787 & 57669 \\
16351 & 35598 & 6686 & 11480 & 16357 & 28709 & 36239 & 5932 \\
44292 & 15577 & 41755 & 16362 & 30311 & 31712 & 54813 & 16353
\end{tabular}

MATLAB formats the block of data as a 5-by-8 matrix of uint16 values, as specified by the Format property.

Read the \(y\) field of that structure from the file.
d(3). \(y\)
```

ans = 4×5

| 0.7271 | 0.3704 | 0.6946 | 0.5226 | 0.2714 |
| :--- | :--- | :--- | :--- | :--- |
| 0.3093 | 0.7027 | 0.6213 | 0.8801 | 0.2523 |
| 0.8385 | 0.5466 | 0.7948 | 0.1730 | 0.8757 |
| 0.5681 | 0.4449 | 0.9568 | 0.9797 | 0.7373 |

```

MATLAB formats the block of data as a 4-by-5 matrix of double values.

\section*{Modify Map Properties and Analyze Data}

This part of the example shows how to plot the Fourier transform of data read from a file via a memory map. It then modifies several properties of the existing map, reads from a different part of the data file, and plots a histogram from that data.

Create a sample file named double.dat.
```

randData = gallery('uniformdata',[5000,1],0);
fileID = fopen('double.dat','w');
fwrite(fileID,randData,'double');
fclose(fileID);

```

Create a memmapfile object of 1,000 elements of type double, starting at the 1025th byte.
```

m = memmapfile('double.dat','Offset',1024, ...
'Format','double','Repeat',1000);

```

Copy the Data property to a variable, k . Then, get data associated with the map and plot the FFT of the first 100 values of the map.
```

k = m.Data;
plot(abs(fft(k(1:100))))

```


This is the first time that data is referenced and is when the actual mapping of the file to the MATLAB address space takes place.

Change the map properties, but continue using the same file. Whenever you change the value of a memory map property, MATLAB remaps the file to memory.
m.Offset = 4096;
m.Format = 'single';
m. Repeat \(=800\);
\(m\) is now a memmapfile object of 800 elements of type single. The map now begins at the 4096th byte in the file, records.dat.

Read from the portion of the file that begins at the 4096th byte, and calculate the maximum value of the data. This command maps a new region and unmaps the previous region.
```

X = max(m.Data)
X = single
7.5449e+37

```

\section*{See Also}
memmapfile

\section*{More About}
- "Map File to Memory" on page 10-6
- "Write to Mapped File" on page 10-18

\section*{Write to Mapped File}

This example shows how to create three different memory maps, and then write to each of the maps using the appropriate syntax. Then, it shows how to work with copies of your mapped data.

You can write to a file using the same MATLAB commands you use to access variables in the MATLAB workspace. By accessing the Data property of the memory map, the contents of the mapped file appear as an array in the currently active workspace. Simply index into this array to write data to the file. The syntax to use when writing to mapped memory depends on the format of the Data property of the memory map.
```

In this section...
"Write to Memory Mapped as Numeric Array" on page 10-18
"Write to Memory Mapped as Scalar Structure" on page 10-19
"Write to Memory Mapped as Nonscalar Structure" on page 10-20
"Syntaxes for Writing to Mapped File" on page 10-21
"Work with Copies of Your Mapped Data" on page 10-22

```

\section*{Write to Memory Mapped as Numeric Array}

First, create a sample file named records. dat, in your current folder.
```

myData = gallery('uniformdata', [5000,1], 0);
fileID = fopen('records.dat','w');
fwrite(fileID, myData,'double');
fclose(fileID);

```

Map the file as a sequence of 16-bit-unsigned integers. Use the Format name-value pair argument to specify that the values are of type uint16.
```

m = memmapfile('records.dat', ...
'Offset',20,
'Format','uint16', ...
'Repeat',15);

```

Because the file is mapped as a sequence of a single class (uint16), Data is a numeric array.

Ensure that you have write permission to the mapped file. Set the Writable property of the memory map, m, to true.
```

m.Writable = true;

```

Create a matrix \(X\) that is the same size as the Data property, and write it to the mapped part of the file. All of the usual MATLAB indexing and class rules apply when assigning values to data via a memory map. The class that you assign to must be big enough to hold the value being assigned.
```

X = uint16(1:1:15);
m.Data = X;

```

X is a 1-by- 15 vector of integer values ranging from 1 to 15 .
Verify that new values were written to the file. Specify an Offset value of 0 to begin reading from the beginning of the file. Specify a Repeat value of 35 to view a total of 35 values. Use the reshape function to display the values as a 7-by-5 matrix.
```

m.Offset = 0;
m.Repeat = 35;
reshape(m.Data,5,7)'
ans = 7x5 uint16 matrix

| 47662 | 34773 | 26485 | 16366 | 58664 |
| ---: | ---: | ---: | ---: | ---: |
| 25170 | 38386 | 16333 | 14934 | 9028 |
| 1 | 2 | 3 | 4 | 5 |
| 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 10085 | 14020 | 16349 | 37120 | 31342 |
| 62110 | 16274 | 9357 | 44395 | 18679 |

```

The values in X have been written to the file, records.dat .

\section*{Write to Memory Mapped as Scalar Structure}

Map a region of the file, records.dat, as a 300-by-8 matrix of type uint16 that can be referenced by the field name, \(x\), followed by a 200-by-5 matrix of type double that can be reference by the field name, y. Specify write permission to the mapped file using the Writable name-value pair argument.
```

m = memmapfile('records.dat', ...
'Format', { ...
'uint16' [300 8] 'x'; ...
'double' [200 5] 'y' }, ...
'Repeat', 1, 'Writable', true);

```

View the Data property
m.Data
```

ans = struct with fields:

```
    x: [300x8 uint16]
    y: [200x5 double]

Data is a scalar structure array. This is because the file, records.dat, is mapped as containing multiple data types that do not repeat.

Replace the matrix in the field, \(x\), with a matrix of all ones.
```

m.Data.x = ones(300,8,'uint16');

```

\section*{Write to Memory Mapped as Nonscalar Structure}

Map the file, records.dat, as a 25-by-8 matrix of type uint 16 followed by a 15 -by- 5 matrix of type double. Repeat the pattern 20 times.
```

m = memmapfile('records.dat', ...
'Format', { ...
'uint16' [5 4] 'x'; ...
'double' [15 5] 'y' }, ...
'Repeat', 20, 'Writable', true);

```

View the Data property
```

m.Data
ans=20\times2 struct
x
y

```

Data is a nonscalar structure array, because the file is mapped as a repeating sequence of multiple data types.

Write an array of all ones to the field named \(x\) in the 12th element of Data.
```

m.Data(12).x = ones(5,4,'uint16');

```

For the 12th element of Data, write the value, 50, to all elements in rows 3 to 5 of the field, \(x\).
```

m.Data(12).x(3:5,1:end) = 50;

```

View the field, \(x\), of the 12th element of Data.
```

 m.Data(12).x
 ans = 5x4 uint16 matrix

| 1 | 1 | 1 | 1 |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 |
| 50 | 50 | 50 | 50 |
| 50 | 50 | 50 | 50 |
| 50 | 50 | 50 | 50 |

```

\section*{Syntaxes for Writing to Mapped File}

The syntax to use when writing to mapped memory depends on the format of the Data property of the memory map. View the properties of the memory map by typing the name of the memmapfile object.

This table shows the syntaxes for writing a matrix, \(X\), to a memory map, m.
\begin{tabular}{|c|c|}
\hline Format of the Data Property & Syntax for Writing to Mapped File \\
\hline \begin{tabular}{l}
Numeric array \\
Example: \(15 \times 1\) uint16 array
\end{tabular} & m. Data = X; \\
\hline \begin{tabular}{l}
Scalar (1-by-1) structure array \\
Example: \\
1x1 struct array with field x \\
y
\end{tabular} & \begin{tabular}{l}
m.Data.fieldname = X; \\
fieldname is the name of a field.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Format of the Data Property & Syntax for Writing to Mapped File \\
\hline \begin{tabular}{l} 
Nonscalar (n-by-1) structure \\
array
\end{tabular} & \begin{tabular}{l} 
m. Data (k).fieldname \(=\) X; \\
Example: \\
\(20 \times 1\) struct array with fiel \\
x \\
\(y\)
\end{tabular} \\
\hline
\end{tabular}

The class of \(X\) and the number of elements in \(X\) must match those of the Data property or the field of the Data property being accessed. You cannot change the dimensions of the Data property after you have created the memory map using the memmapfile function. For example, you cannot diminish or expand the size of an array by removing or adding a row from the mapped array, m. Data.

If you map an entire file and then append to that file after constructing the map, the appended data is not included in the mapped region. If you need to modify the dimensions of data that you have mapped to a memory map, m, you must either modify the Format or Repeat properties for \(m\), or recreate \(m\) using the memmapfile function.

Note To successfully modify a mapped file, you must have write permission for that file. If you do not have write permission, attempting to write to the file generates an error, even if the Writable property is true.

\section*{Work with Copies of Your Mapped Data}

This part of the example shows how to work with copies of your mapped data. The data in variable \(d\) is a copy of the file data mapped by m . Data (2). Because it is a copy, modifying array data in d does not modify the data contained in the file.

Create a sample file named double.dat.
```

myData = gallery('uniformdata',[5000,1],0) * 100;
fileID = fopen('double.dat','w');
fwrite(fileID,myData,'double');
fclose(fileID);

```

Map the file as a series of double matrices.
```

m = memmapfile('double.dat', ...
'Format', {
'double' [5 5] 'x'; ...
'double' [4 5] 'y' });

```

View the values in m.Data(2).x.
m. Data(2).x
```

ans = 5×5

```
\begin{tabular}{lllll}
50.2813 & 19.3431 & 69.7898 & 49.6552 & 66.0228 \\
70.9471 & 68.2223 & 37.8373 & 89.9769 & 34.1971 \\
42.8892 & 30.2764 & 86.0012 & 82.1629 & 28.9726 \\
30.4617 & 54.1674 & 85.3655 & 64.4910 & 34.1194 \\
18.9654 & 15.0873 & 59.3563 & 81.7974 & 53.4079
\end{tabular}

Copy the contents of m . Data to the variable, d .
\(\mathrm{d}=\mathrm{m}\). Data;
Write all zeros to the field named \(x\) in the copy.
\(d(2) . x(1: 5,1: 5)=0 ;\)
Verify that zeros are written to \(d(2) . x\)
\(d(2) \cdot x\)
ans \(=5 \times 5\)
\begin{tabular}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{tabular}

Verify that the data in the mapped file is not changed.
```

m.Data(2).x
ans = 5 55

```
    \(50.2813 \quad 19.3431 \quad 69.7898 \quad 49.6552 \quad 66.0228\)
\begin{tabular}{lllll}
70.9471 & 68.2223 & 37.8373 & 89.9769 & 34.1971 \\
42.8892 & 30.2764 & 86.0012 & 82.1629 & 28.9726 \\
30.4617 & 54.1674 & 85.3655 & 64.4910 & 34.1194 \\
18.9654 & 15.0873 & 59.3563 & 81.7974 & 53.4079
\end{tabular}

\section*{See Also}
memmapfile

\section*{More About}
- "Map File to Memory" on page 10-6
- "Read from Mapped File" on page 10-12

\section*{Delete Memory Map}

\section*{In this section... \\ "Ways to Delete a Memory Map" on page 10-25 \\ "The Effect of Shared Data Copies On Performance" on page 10-25}

\section*{Ways to Delete a Memory Map}

To clear a memmapfile object from memory, do any of the following:
- Reassign another value to the memmapfile object's variable
- Clear the memmapfile object's variable from memory
- Exit the function scope in which the memmapfile object was created

\section*{The Effect of Shared Data Copies On Performance}

When you assign the Data field of the memmapfile object to a variable, MATLAB makes a shared data copy of the mapped data. This is very efficient because no memory actually gets copied. In the following statement, \(d\) is a shared data copy of the data mapped from the file:
d = m.Data;
When you finish using the mapped data, make sure to clear any variables that share data with the mapped file before clearing the memmapfile object itself. If you clear the object first, then the sharing of data between the file and dependent variables is broken, and the data assigned to such variables must be copied into memory before the object is cleared. If access to the mapped file was over a network, then copying this data to local memory can take considerable time. Therefore, if you assign m. Data to the variable, d, you should be sure to clear \(d\) before clearing \(m\) when you are finished with the memory map.

\section*{Share Memory Between Applications}

This example shows how to implement two separate MATLAB processes that communicate with each other by writing and reading from a shared file. They share the file by mapping part of their memory space to a common location in the file. A write operation to the memory map belonging to the first process can be read from the map belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its memory map. It also writes the length of the message to byte 1 in the file, which serves as a means of notifying the other process that a message is available. The second process (running answer.m) monitors byte 1 and, upon seeing it set, displays the received message, puts it into uppercase, and echoes the message back to the sender.

Prior to running the example, copy the send and answer functions to files send.m and answer.m in your current working directory.

\section*{The send Function}

This function prompts you to enter text and then, using memory-mapping, passes the text to another instance of MATLAB that is running the answer function.
```

function send
% Interactively send a message to ANSWER using memmapfile class.
filename = fullfile(tempdir, 'talk_answer.dat');
% Create the communications file if it is not already there.
if ~exist(filename, 'file')
[f, msg] = fopen(filename, 'wb');
if f ~= -1
fwrite(f, zeros(1,256), 'uint8');
fclose(f);
else
error('MATLAB:demo:send:cannotOpenFile', ...
'Cannot open file "%s": %s.', filename, msg);
end
end
% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');
while true

```
```

% Set first byte to zero, indicating a message is not
% yet ready.
m.Data(1) = 0;
str = input('Enter text (or RETURN to end): ', 's');
len = length(str);
if (len == 0)
disp('Terminating SEND function.')
break;
end
% Warn if the message is longer than 255 characters.
if len > 255
warning('ml:ml','SEND input will be truncated to 255 characters.');
end
str = str(1:min(len,255)); % Limit message to 255 characters.
len = length(str); % Update len if str has been truncated.
% Update the file via the memory map.
m.Data(2:len+1) = str;
m.Data(1)=len;
% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1) ~= 0)
pause(.25);
end
% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:len+1))')

```
end

\section*{The answer Function}

The answer function starts a server that, using memory-mapping, watches for a message from send. When the message is received, answer replaces the message with an uppercase version of it, and sends this new message back to send. To use answer, call it with no inputs.
```

function answer
% Respond to SEND using memmapfile class.
disp('ANSWER server is awaiting message');
filename = fullfile(tempdir, 'talk_answer.dat');
% Create the communications file if it is not already there.
if ~exist(filename, 'file')
[f, msg] = fopen(filename, 'wb');
if f ~= -1
fwrite(f, zeros(1,256), 'uint8');
fclose(f);
else
error('MATLAB:demo:answer:cannotOpenFile', ...
'Cannot open file "%s": %s.', filename, msg);
end
end
% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');
while true
% Wait until the first byte is not zero.
while m.Data(1) == 0
pause(.25);
end
% The first byte now contains the length of the message.
% Get it from m.
msg = char(m.Data(2:1+double(m.Data(1))))';
% Display the message.
disp('Received message from SEND:')
disp(msg)
% Transform the message to all uppercase.
m.Data(2:1+double(m.Data(1))) = upper(msg);
% Signal to SEND that the response is ready.
m.Data(1) = 0;
end

```

\section*{Running the Example}

To see what the example looks like when it is run, first, start two separate MATLAB sessions on the same computer system. Call the send function with no inputs in one MATLAB session. Call the answer function in the other session, to create a map in each of the processes' memory to the common file.

Run send in the first MATLAB session.
send
Enter text (or RETURN to end):
Run answer in the second MATLAB session.
answer

\section*{ANSWER server is awaiting message}

Next, enter a message at the prompt displayed by the send function. MATLAB writes the message to the shared file. The second MATLAB session, running the answer function, loops on byte 1 of the shared file and, when the byte is written by send, answer reads the message from the file via its memory map. The answer function then puts the message into uppercase and writes it back to the file, and send (waiting for a reply) reads the message and displays it.
send writes a message and reads the uppercase reply.
Hello. Is there anybody out there?
response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter text (or RETURN to end):
answer reads the message from send.
Received message from SEND:
Hello. Is there anybody out there?
Enter a second message at the prompt display by the send function. send writes the second message to the file.

I received your reply.
```

response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter text (or RETURN to end):

```
answer reads the second message, put it into uppercase, and then writes the message to the file.

Received message from SEND:
I received your reply.
In the first instance of MATLAB, press Enter to exit the example.
Terminating SEND function.

\section*{Internet File Access}

MATLAB software provides functions for exchanging files over the Internet. You can exchange files using common protocols, such as File Transfer Protocol (FTP), Simple Mail Transport Protocol (SMTP), and HyperText Transfer Protocol (HTTP). In addition, you can create zip archives to minimize the transmitted file size, and also save and work with Web pages.

\section*{Server Authentication}

MATLAB provides programmatic interfaces to these Web service interfaces.
- RESTful (Representational state transfer)-Use the webread, webwrite, and websave functions in "Web Access" to read content from RESTful Web services.
- HTTP (Hypertext Transfer Protocol)—Use the "HTTP Interface" API to implement advanced HTTP messaging semantics.

To use a proxy server, see "Proxy Server Authentication" on page 11-4.

\section*{Server Authentication For RESTful Web Services}

Digest authentication is not supported.
NTLM and Kerberos are not supported on Linux and macOS platforms.
\begin{tabular}{|l|l|l|l|l|}
\hline Authentication & Platform & weboptions & \begin{tabular}{l} 
weboptions \\
Arguments
\end{tabular} & System Setup \\
\hline Basic & \begin{tabular}{l} 
Windows \\
Linux \\
macOS
\end{tabular} & Required & \begin{tabular}{l} 
Username and \\
Password
\end{tabular} & N/A \\
\hline NTLM & Windows & Optional & \begin{tabular}{l} 
Do not specify \\
Username or \\
Password
\end{tabular} & \begin{tabular}{l} 
Logged into \\
Windows domain
\end{tabular} \\
\hline Kerberos & Windows & Optional & \begin{tabular}{l} 
Do not specify \\
Username or \\
Password
\end{tabular} & \begin{tabular}{l} 
Logged into \\
Kerberos domain
\end{tabular} \\
\hline Digest & Not supported & N/A & N/A & N/A \\
\hline
\end{tabular}

\section*{Server Authentication For HTTP Web Services}

Kerberos is not supported on Linux and macOS platforms.
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Server \\
Authentication
\end{tabular} & Platform & \begin{tabular}{l} 
matlab.net.htt \\
p HTTPOptions \\
Object
\end{tabular} & \begin{tabular}{l} 
matlab.net.htt \\
p Credentials \\
Properties
\end{tabular} & System Setup \\
\hline \begin{tabular}{l} 
Basic \\
Digest
\end{tabular} & \begin{tabular}{l} 
Windows \\
Linux \\
macOS
\end{tabular} & \begin{tabular}{l} 
Credentials \\
property
\end{tabular} & \begin{tabular}{l} 
Username and \\
Password
\end{tabular} & N/A \\
\hline NTLM & Windows & \begin{tabular}{l} 
Credentials \\
property
\end{tabular} & \begin{tabular}{l} 
Username and \\
Password \\
ignored
\end{tabular} & \begin{tabular}{l} 
Logged into \\
Windows domain
\end{tabular} \\
\hline NTLM & \begin{tabular}{l} 
Linux \\
macOS
\end{tabular} & \begin{tabular}{l} 
Credentials \\
property
\end{tabular} & \begin{tabular}{l} 
Username and \\
Password
\end{tabular} & N/A \\
\hline Kerberos & Windows & \begin{tabular}{l} 
Credentials \\
property
\end{tabular} & \begin{tabular}{l} 
Username and \\
Password \\
ignored
\end{tabular} & \begin{tabular}{l} 
Logged into \\
Kerberos domain
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
matlab.net.http.AuthenticationScheme|matlab.net.http.Credentials| matlab.net.http.HTTPOptions

\section*{More About}
- "Proxy Server Authentication" on page 11-4
- "Web Access"
- "HTTP Interface"

\section*{Proxy Server Authentication}

MATLAB provides programmatic interfaces to these Web service interfaces.
- RESTful (Representational state transfer)—Use the webread, webwrite, and websave functions in "Web Access" to read content from RESTful Web services.
- HTTP (Hypertext Transfer Protocol)—Use the "HTTP Interface" API to implement advanced HTTP messaging semantics.

To authenticate to a server, see "Server Authentication" on page 11-2.

\section*{RESTful Web Services}

MATLAB supports Basic, Digest, and NTLM proxy authentication types. To specify proxy server settings, choose one of these:

1 "Use MATLAB Web Preferences For Proxy Server Settings" on page 11-4
2 "Use System Settings For Proxy Server Settings" on page 11-5
If you specify the values using Web preferences, then MATLAB ignores system settings.

\section*{HTTP Web Services}

MATLAB supports Basic, Digest, and NTLM proxy authentication types. To specify proxy server settings, choose one of these:

1 If you specify a ProxyURI in a mat lab.net. http. HTTPOptions object, then set the Username and Password properties in matlab.net.http.Credentials.
2 "Use MATLAB Web Preferences For Proxy Server Settings" on page 11-4
3 "Use System Settings For Proxy Server Settings" on page 11-5
MATLAB chooses the first setting in this list.

\section*{Use MATLAB Web Preferences For Proxy Server Settings}

You can specify proxy server settings using MATLAB "Web Preferences".

Note Settings in Web Preferences override system settings.

To specify the proxy server settings:
1 On the Home tab, in the Environment section, click Preferences. Select MATLAB > Web.
2 Select the Use a proxy server to connect to the Internet check box.
3 Specify values for Proxy host and Proxy port.
Examples of acceptable formats for the host are: 172.16.10.8 and ourproxy. For the port, enter an integer only, such as 22. If you do not know the values for your proxy server, ask your system or network administrator for the information.

If your proxy server requires a user name and password, select the Use a proxy with authentication check box. Then enter your proxy user name and password.

Note MATLAB stores the password without encryption in your mat lab. prf file.
4 Ensure that your settings work by clicking the Test connection button.
MATLAB attempts to connect to https://www.mathworks.com:
- If MATLAB can access the Internet, Success! appears next to the button.
- If MATLAB cannot access the Internet, Failed! appears next to the button. Correct the values you entered and try again. If you still cannot connect, try using the values you used when you authenticated your MATLAB license.
5 Click OK to accept the changes.
6 Restart MATLAB to enable the changes.

\section*{Use System Settings For Proxy Server Settings}

If no proxy is specified in MATLAB Web preferences, then MATLAB uses the proxy set in the operating system preferences.

To specify proxy server settings in system preferences, refer to your Windows, Linux, or macOS operating system documentation.

MATLAB does not take into account proxy exceptions which you configure in Windows.

\section*{See Also}
matlab.net.http.Credentials|matlab.net.http.HTTPOptions

\section*{More About}
- "Server Authentication" on page 11-2
- "Web Access"
- "HTTP Interface"

\section*{MATLAB and Web Services Security}

This topic describes how MATLAB handles security for web services. For a complete description of computer security, you need to consult external resources.

\section*{MATLAB Does Not Verify Certificate Chains}

For HTTPS connections, the webread, webwrite, and websave functions verify that the certificate domain matches the host name of the web service. These functions do not verify the certificate chain. For a complete description of computer security, you need to consult external resources.

\section*{See Also}
webread | websave | webwrite

\section*{Download Data from Web Service}

This example shows how to download data from a web service with the webread function. The World Bank provides various climate data via the World Bank Climate Data API. A call to this API returns data in JSON format. webread converts JSON objects to structures that are convenient for analysis in MATLAB.

Use webread to read USA average annual temperatures into a structure array.
```

api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
url = [api 'country/cru/tas/year/USA'];
S = webread(url)
S =
112x1 struct array with fields:

```
    year
    data
webread converted the data to a structure array with 112 elements. Each structure contains the temperature for a given year, from 1901 to 2012.

S(1)
ans \(=\)
year: 1901
data: 6.6187
S(112)
ans =
year: 2012
data: 7.9395
Plot the average temperature per year. Convert the temperatures and years to numeric arrays. Convert the years to a datetime object for ease of plotting, and convert the temperatures to degrees Fahrenheit.
```

temps = [S.data];
temps = 9/5 * temps + 32;
years = [S.year];

```
```

yearstoplot = datetime(years,1,1);
figure
plot(yearstoplot, temps);
title('USA Average Temperature 1901-2012')
xlabel('Year')
ylabel('Temperature (^{\circ}F)')
xmin = datetime(1899,1,1);
xmax = datetime(2014,1,1);
xlim([xmin xmax])

```

USA Average Temperature 1901-2012


Overplot a least-squares fit of a line to the temperatures.
```

p = polyfit(years,temps,1);
ptemps = polyval(p,years);

```
```

deltat = p(1);
hold on
fl = plot(yearstoplot, ptemps);
xlim([xmin xmax])
title('USA Average Temperature Trend 1901-2012')
xlabel('Year')
ylabel('Temperature (^{\circ}F)')
deltat = num2str(10.0*deltat);
legend(fl,['Least Squares Fit, ', deltat, '^{\circ}F/decade'])
hold off

```

USA Average Temperature Trend 1901-2012


API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate Data API for more information about the API, and World Bank: Terms of Use.)

\section*{Convert Data from Web Service}

This example shows how to download data from a web service and use a function as a content reader with webread.

The National Geophysical Data Center (NGDC) provides various geophysical and space weather data via a web service. Among other data sets, the NGDC aggregates sunspot numbers published by the American Association of Variable Star Observers (AAVSO). Use webread to download sunspot numbers for every year since 1945.
```

api = 'http://www.ngdc.noaa.gov/stp/space-weather/';
url = [api 'solar-data/solar-indices/sunspot-numbers/' ...
'american/lists/list_aavso-arssn_yearly.txt'];
spots = webread(url);
whos('spots')

| Name | Size | Bytes Class Attributes |
| :--- | :--- | ---: | :--- |
| spots | 1×1269 | 2538 char |

```

The NGDC web service returns the sunspot data as text. By default, webread returns the data as a character array.
```

spots(1:100)
ans =

| American | |
| :---: | ---: |
| Year | SSN |
| 1945 | 32.3 |
| 1946 | 99.9 |
| 1947 | 170.9 |
| 1948 | 166.6 |

```
webread can use a function to return the data as a different type. You can use readtable with webread to return the sunspot data as a table.

Create a weboptions object that specifies a function for readtable.
myreadtable = @(filename)readtable(filename,'HeaderLines',1, ...
'Format', '\%f\%f', 'Delimiter','space', 'MultipleDelimsAsOne',1);
options \(=\) weboptions('ContentReader',myreadtable);
For this data, call readtable with several Name, Value input arguments to convert the data. For example, Format indicates that each row has two numbers. Spaces are
delimiters, and multiple consecutive spaces are treated as a single delimiter. To call readtable with these input arguments, wrap readtable and the arguments in a new function, myreadtable. Create a weboptions object with myreadtable as the content reader.

Download sunspot data and return the data as a table.
```

spots = webread(url,options);
whos('spots')

| Name | Size | Bytes | Class |
| :--- | :---: | ---: | :--- |
| spots | 76×2 | 2932 | table |

```

Display the sunspot data by column and row.
```

spots(1:4,{'Year','SSN'})
ans =
Year SSN
1945 32.3
1946 99.9
1947 170.9
1948 166.6

```

Plot sunspot numbers by year. Use table functions to select sunspot numbers up to the year 2013. Convert the Year and SSN columns to arrays and plot them.
```

rows = spots.Year < 2014;
vars = {'Year','SSN'};
spots = spots(rows,vars);
year = spots.Year;
numspots = spots.SSN;
figure
plot(year,numspots);
title('Sunspot Data');
xlabel('Year');
ylabel('Number of Sunspots');
xlim([1940 2015])
ylim([0 180])

```

Sunspot Data


Aggregated data and web service courtesy of the NGDC. Sunspot data courtesy of the AAVSO, originally published in AAVSO Sunspot Counts: 1943-2013, AAVSO Solar Section (R. Howe, Chair).
- See NGDC Privacy Policy, Disclaimer, and Copyright for NGDC terms of service.
- See AAVSO Solar Section for more information on AAVSO solar data, including terms of use.

\section*{Download Web Page and Files}

MATLAB provides two functions for reading content from RESTful web services: webread and websave. With the webread function, you can read the contents of a web page to a character array in the MATLAB workspace. With the websave function, you can save web page content to a file.

Because it can create a character array in the workspace, the webread function is useful for working with the contents of web pages in MATLAB. The websave function is useful for saving web pages to a local folder.

Note When webread returns HTML as a character array, remember that only the HTML in that specific web page is retrieved. The hyperlink targets, images, and so on, are not retrieved.

If you need to pass parameters to a web page, the webread and websave functions let you define the parameters as Name, Value pair arguments. For more information, see the webread and websave reference pages.

\section*{Example - Use the webread Function}

The following procedure demonstrates how to retrieve the contents of the web page listing the files submitted to the MATLAB Central \({ }^{\mathrm{TM}}\) File Exchange, https:// www.mathworks.com/matlabcentral/fileexchange/. It assigns the results to a character array, fullList:
```

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/';
fullList = webread(filex);

```

Retrieve a list of only those files uploaded to the File Exchange within the past seven days that contain the word Simulink \({ }^{\circledR}\). Set duration and term as parameters that webread passes to the web page.
```

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/';
recent = webread(filex,'duration',7,'term','simulink');

```

\section*{Example - Use the websave Function}

The following example builds on the procedure in the previous section, but saves the content to a file:
```

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'https://www.mathworks.com/matlabcentral/fileexchange/';
% Save the Web content to a file.
recent = websave('contains_simulink.html',filex, ...
'duration',7,'term','simulink');

```

MATLAB saves the web page as contains_simulink.html. The output argument recent contains the full path to contains_simulink.html. Call the web function to display contains_simulink.html in a browser.
web (recent)
This page has links to files uploaded to the MATLAB Central File Exchange.

\section*{Call Web Services from Functions}

You can call webread from functions you define. Best practice is to allow your function to pass HTTP request options to webread.

This code sample shows how to download climate data for a country. The sample defines a function in a file named worldBankTemps.m that downloads annual temperatures from the World Bank and converts them to degrees Fahrenheit. You can pass additional HTTP request parameters with the options input argument. options is a weboptions object that worldBankTemps passes to webread. You can call worldBankTemps with a country name only when you do not need to define any other HTTP request parameters.
```

function temperatures = worldBankTemps(country,options)
%Get World Bank temperatures for a country, for example, 'USA'.
api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1/';
api = [api 'country/cru/tas/year/'];
country = [api country];
% The options object contains additional HTTP
% request parameters. If worldBankTemps was
% not passed options as an input argument,
% create a default weboptions object.
if ~exist('options','var')
options = weboptions;
end
s = webread(country,options);
% Convert data to arrays
temperatures = struct('Years',[],'DegreesInFahrenheit',[]);
temperatures(1).Years = [s.year];
temperatures(1).DegreesInFahrenheit = [s.data];
% Convert temperatures to Fahrenheit
temperatures(1).DegreesInFahrenheit = temperatures(1).DegreesInFahrenheit * 9/5 + 32;
end

```

To get temperature data for the USA, call worldBankTemps. If the connection to the World Bank web service times out, the service returns an error message.
```

S = worldBankTemps('USA')
Error using webread (line 112)
The connection to
URL 'http://climatedataapi.worldbank.org/climateweb/rest/vl/country/cru/tas/year/USA'
timed out after 5.0 seconds. Set options.Timeout to a higher value.

```

If you create options and set its Timeout property to 60 seconds, then you can call worldBankTemps again with options as an input argument. worldBankTemps passes options to webread as an input argument. This time webread keeps the connection open for a maximum of 60 seconds.
```

options = weboptions('Timeout',60);
S = worldBankTemps('USA',options)
S =

```
    Years: [1x112 double]
DegreesInFahrenheit: [1x112 double]

If your code does not allow you to pass request options to webread, that limits your ability to respond to error messages returned by web services.

\section*{Error Messages Concerning Web Service Options}

When you use a web service function in MATLAB the function might return an error message that advises you to set a property of options, such as options. Timeout. This table shows some typical error messages that refer to options properties and actions you can take in response.
\begin{tabular}{|c|c|}
\hline Error Message Contains Phrase & Action To Be Taken \\
\hline Set options.Timeout to a higher value. & ```
options =
weboptions('Timeout',60)
data = webread(url,options)
``` \\
\hline Set options.ContentType to 'json'. & ```
options =
weboptions('ContentType','json')
data = webread(url,options)
``` \\
\hline the provided authentication parameters, options.Username and options.Password, are incorrect. & ```
options =
weboptions('Username','your
username','Password','your
password')
data = webread(url,options)
``` \\
\hline
\end{tabular}

\section*{Send Email}

To send an email from MATLAB, use the sendmail function. You can also attach files to an email, which lets you mail files directly from MATLAB. To use sendmail, set up your email address and your SMTP server information with the setpref function.

The setpref function defines two mail-related preferences:
- Email address: This preference sets your email address that will appear on the message.
```

setpref('Internet','E_mail','youraddress@yourserver.com');

```
- SMTP server: This preference sets your outgoing SMTP server address, which can be almost any email server that supports the Post Office Protocol (POP) or the Internet Message Access Protocol (IMAP).
```

setpref('Internet','SMTP_Server','mail.server.network');

```

Find your outgoing SMTP server address in your email account settings in your email client application. You can also contact your system administrator for the information.

Once you have properly configured MATLAB, you can use the sendmail function. The sendmail function requires at least two arguments: the recipient's email address and the email subject.
```

sendmail('recipient@someserver.com','Hello From MATLAB!');

```

You can supply multiple email addresses using a cell array of character vectors.
```

sendmail({'recipient@someserver.com','recipient2@someserver.com'}, ...
'Hello From MATLAB!');

```

You can specify a message body.
```

sendmail('recipient@someserver.com','Hello From MATLAB!', ...

```
 'Thanks for using sendmail.');

You can attach files to an email.
```

sendmail('recipient@someserver.com','Hello from MATLAB!', ...
'Thanks for using sendmail.','C:\yourFileSystem\message.txt');

```

You cannot attach a file without including a message. However, the message can be empty.

You can attach multiple files to an email.
sendmail('recipient@someserver.com','Hello from MATLAB!',
'Thanks for using sendmail.',\{'C:\yourFileSystem\message.txt', ... 'C:\yourFileSystem\message2.txt'\});

\section*{See Also}
sendmail| setpref

\section*{Perform FTP File Operations}

This example shows how to use an FTP object to connect to an FTP server and perform remote file operations. To perform any file operation on an FTP server, follow these steps:

1 Connect to the server using the ftp function.
2 Perform operations using the appropriate MATLAB® FTP functions, such as the cd, dir, and mget functions. Specify the FTP object for all operations.
3 When you finish work on the server, close the connection using the close function.
The National Centers for Environmental Information (NCEI) maintain an anonymous FTP service providing public access to geophysical data. Access the FTP server to list its contents, download a file, and list contents of a subfolder.

First, open the connection.
```

ftpobj = ftp('ftp.ngdc.noaa.gov')
ftpobj =
FTP Object
host: ftp.ngdc.noaa.gov
user: anonymous
dir: /
mode: binary

```

List the contents of the top-level folder on the FTP server.
```

dir(ftpobj)

```

DMSP
INDEX.txt
README.txt
STP
Snow_Ice

Solid_Earth
coastwatch
dmsp4alan
ftp.html
geomag
google12c4c939d7b90761.html hazards
index.html
international
ionosonde

Download the file named INDEX. txt using the mget function. mget copies the file to the current MATLAB folder on your local machine. To view the contents of your copy of the file, use the type function.
```

mget(ftpobj,'INDEX.txt');
type INDEX.txt
National Centers for Environmental Information (NCEI),
formerly the National Geophysical Data Center (NGDC)
INDEX of anonymous ftp area
ftp.ngdc.noaa.gov
DIRECTORY/FILE DESCRIPTION OF CONTENTS
pub/ Public access area
DMSP/ Defense Meteorological Satellite Data Archive
geomag/ Geomagnetism and geomagnetics models
hazards/ Natural Hazards data, volcanoes, tsunamis, earthquakes
international/ International program information on IAGA/Oersted/wdc
ionosonde/ Ionosonde data
mgg/ Limited Marine Geology and Geophysics (most data in http area)
OD/ Office of the Director
Snow Ice/ Snow and Ice Data Center
Solid_Earth/ Historic Solid Earth Geophysics
STP/ Solar-Terrestrial Physics
tmp/ Pickup area for temporary outgoing data
wdc/ World Data Service for Geophysics, formerly World Data Centers
Please see file README.txt in this directory for more information and how to
contact NCEI. Direct E-mail inquiries to ncei.info@noaa.gov
Also see our web site: http://www.ngdc.noaa.gov/
NCEI is part of the:
U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA),
National Environmental Satellite, Data and Information Service (NESDIS)

```

Change to the subfolder named pub on the FTP server.
```

cd(ftpobj,'pub')

```
ans =
'/pub'

List the contents. pub is now the current folder on the FTP server. However, note that the current MATLAB folder on your local machine has not changed. When you specify an FTP object using functions such as cd and dir, the operations take place on the FTP server, not your local machine.
```

dir(ftpobj)

```
```

WebCD coast glac_lib krm outgoing results rgon

```

Close the connection to the FTP server.
close(ftpobj)
FTP service courtesy of the NCEI. See the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI terms of service.

\section*{See Also}
cd|close|dir|ftp|mget

\section*{Related Examples}
- "Download Data from Web Service" on page 11-8
- "Download Web Page and Files" on page 11-14
- "Send Email" on page 11-18
- "Web Browsers and MATLAB"

\section*{Display Hyperlinks in the Command Window}

\section*{In this section...}
"Create Hyperlinks to Web Pages" on page 11-23
"Transfer Files Using FTP" on page 11-23

\section*{Create Hyperlinks to Web Pages}

When you create a hyperlink to a Web page, append a full hypertext address on a single line as input to the disp or fprintf command. For example, the following command:
```

disp('<a href = "https://www.mathworks.com">The MathWorks Web Site</a>')

```
displays the following hyperlink in the Command Window:

\section*{The MathWorks Web Site}

When you click this hyperlink, a MATLAB Web browser opens and displays the requested page.

\section*{Transfer Files Using FTP}

To create a link to an FTP site, enter the site address as input to the disp command as follows:
```

disp('<a href = "ftp://ftp.mathworks.com">The MathWorks FTP Site</a>')

```

This command displays the following as a link in the Command Window:

\section*{The MathWorks FTP Site}

When you click the link, a MATLAB browser opens and displays the requested FTP site.

\section*{Large Data}
- "Getting Started with MapReduce" on page 12-3
- "Write a Map Function" on page 12-10
- "Write a Reduce Function" on page 12-15
- "Speed Up and Deploy MapReduce Using Other Products" on page 12-20
- "Build Effective Algorithms with MapReduce" on page 12-22
- "Debug MapReduce Algorithms" on page 12-25
- "Analyze Big Data in MATLAB Using MapReduce" on page 12-32
- "Find Maximum Value with MapReduce" on page 12-43
- "Compute Mean Value with MapReduce" on page 12-46
- "Compute Mean by Group Using MapReduce" on page 12-50
- "Create Histograms Using MapReduce" on page 12-56
- "Simple Data Subsetting Using MapReduce" on page 12-64
- "Using MapReduce to Compute Covariance and Related Quantities" on page 12-72
- "Compute Summary Statistics by Group Using MapReduce" on page 12-79
- "Using MapReduce to Fit a Logistic Regression Model" on page 12-87
- "Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce" on page 12-95
- "Compute Maximum Average HSV of Images with MapReduce" on page 12-101
- "Getting Started with Datastore" on page 12-109
- "Select Datastore for File Format or Application" on page 12-114
- "Work with Remote Data" on page 12-118
- "Read and Analyze Large Tabular Text File" on page 12-125
- "Read and Analyze Image Files" on page 12-128
- "Read and Analyze MAT-File with Key-Value Data" on page 12-133
- "Read and Analyze Hadoop Sequence File" on page 12-137
- "Develop Custom Datastore" on page 12-139
- "Testing Guidelines for Custom Datastores" on page 12-148
- "Set Up Datastore for Processing on Different Machines or Clusters" on page 12-159
- "Apache Parquet Data Type Mappings" on page 12-163
- "Tall Arrays for Out-of-Memory Data" on page 12-167
- "Deferred Evaluation of Tall Arrays" on page 12-175
- "Index and View Tall Array Elements" on page 12-181
- "Histograms of Tall Arrays" on page 12-192
- "Visualization of Tall Arrays" on page 12-198
- "Grouped Statistics Calculations with Tall Arrays" on page 12-207
- "Extend Tall Arrays with Other Products" on page 12-215
- "Analyze Big Data in MATLAB Using Tall Arrays" on page 12-217
- "Develop Custom Tall Array Algorithms" on page 12-228

\section*{Getting Started with MapReduce}

As the number and type of data acquisition devices grows annually, the sheer size and rate of data being collected is rapidly expanding. These big data sets can contain gigabytes or terabytes of data, and can grow on the order of megabytes or gigabytes per day. While the collection of this information presents opportunities for insight, it also presents many challenges. Most algorithms are not designed to process big data sets in a reasonable amount of time or with a reasonable amount of memory. MapReduce allows you to meet many of these challenges to gain important insights from large data sets.

\section*{In this section...}
"What Is MapReduce?" on page 12-3
"MapReduce Algorithm Phases" on page 12-4
"Example MapReduce Calculation" on page 12-5

\section*{What Is MapReduce?}

MapReduce is a programming technique for analyzing data sets that do not fit in memory. You may be familiar with Hadoop \({ }^{\circledR}\) MapReduce, which is a popular implementation that works with the Hadoop Distributed File System (HDFS \({ }^{\text {TM }}\)). MATLAB provides a slightly different implementation of the MapReduce technique with the mapreduce function.
mapreduce uses a datastore to process data in small blocks that individually fit into memory. Each block goes through a Map phase, which formats the data to be processed. Then the intermediate data blocks go through a Reduce phase, which aggregates the intermediate results to produce a final result. The Map and Reduce phases are encoded by map and reduce functions, which are primary inputs to mapreduce. There are endless combinations of map and reduce functions to process data, so this technique is both flexible and extremely powerful for tackling large data processing tasks.
mapreduce lends itself to being extended to run in several environments. For more information about these capabilities, see "Speed Up and Deploy MapReduce Using Other Products" on page 12-20.

The utility of the mapreduce function lies in its ability to perform calculations on large collections of data. Thus, mapreduce is not well-suited for performing calculations on normal sized data sets which can be loaded directly into computer memory and analyzed with traditional techniques. Instead, use mapreduce to perform a statistical or analytical calculation on a data set that does not fit in memory.

Each call to the map or reduce function by mapreduce is independent of all others. For example, a call to the map function cannot depend on inputs or results from a previous call to the map function. It is best to break up such calculations into multiple calls to mapreduce.

\section*{MapReduce Algorithm Phases}
mapreduce moves each block of data in the input datastore through several phases before reaching the final output. The following figure outlines the phases of the algorithm for mapreduce.

The algorithm has the following steps:
1 mapreduce reads a block of data from the input datastore using [data,info] = read (ds), and then calls the map function to work on that block.
2 The map function receives the block of data, organizes it or performs a precursory calculation, and then uses the add and addmulti functions to add key-value pairs to an intermediate data storage object called a KeyValueStore. The number of calls to the map function by mapreduce is equal to the number of blocks in the input datastore.
3 After the map function works on all of the blocks of data in the datastore, mapreduce groups all of the values in the intermediate KeyValueStore object by unique key.
4 Next, mapreduce calls the reduce function once for each unique key added by the map function. Each unique key can have many associated values. mapreduce passes
the values to the reduce function as a ValueIterator object, which is an object used to iterate over the values. The ValueIterator object for each unique key contains all the associated values for that key.
5 The reduce function uses the hasnext and getnext functions to iterate through the values in the ValueIterator object one at a time. Then, after aggregating the intermediate results from the map function, the reduce function adds final key-value pairs to the output using the add and addmulti functions. The order of the keys in the output is the same as the order in which the reduce function adds them to the final KeyValueStore object. That is, mapreduce does not explicitly sort the output.

Note The reduce function writes the final key-value pairs to a final KeyValueStore object. From this object, mapreduce pulls the key-value pairs into the output datastore, which is a KeyValueDatastore object by default.

\section*{Example MapReduce Calculation}

This example uses a simple calculation (the mean travel distance in a set of flight data) to illustrate the steps needed to run mapreduce.

\section*{Prepare Data}

The first step to using mapreduce is to construct a datastore for the data set. Along with the map and reduce functions, the datastore for a data set is a required input to mapreduce, since it allows mapreduce to process the data in blocks.
mapreduce works with most types of datastores. For example, create a TabularTextDatastore object for the airlinesmall.csv data set.
```

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA')
ds =
TabularTextDatastore with properties:
Files: {
, ...\matlab\toolbox\matlab\demos\airlinesmall.csv'
}
FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
ReadVariableNames: true
VariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
DatetimeLocale: en_US

```
 Text Format Properties:
 NumHeaderLines: 0
 Delimiter: ',
```

            RowDelimiter: '\r\n'
            TreatAsMissing: 'NA
            MissingValue: NaN
    Advanced Text Format Properties:
TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle: ''
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false
Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ... and 26 more}
SelectedFormats: {'%f', '%f', '%f' ... and 26 more}
ReadSize: 20000 rows

```

Several of the previously described options are useful in the context of mapreduce. The mapreduce function executes read on the datastore to retrieve data to pass to the map function. Therefore, you can use the SelectedVariableNames,
SelectedFormats, and ReadSize options to directly configure the block size and type of data that mapreduce passes to the map function.

For example, to select the Distance (total flight distance) variable as the only variable of interest, specify SelectedVariableNames.
ds.SelectedVariableNames = 'Distance';
Now, whenever the read, readall, or preview functions act on ds, they will return only information for the Distance variable. To confirm this, you can preview the first few rows of data in the datastore. This allows you to examine the format of the data that the mapreduce function will pass to the map function.
```

preview(ds)

```
ans =

Distance

308
296
480
296
373
308
447
954

To view the exact data that mapreduce will pass to the map function, use read.
For additional information and a complete summary of the available options, see "Datastore".

\section*{Write Map and Reduce Functions}

The mapreduce function automatically calls the map and reduce functions during execution, so these functions must meet certain requirements to run properly.

1 The inputs to the map function are data, info, and intermKVStore:
- data and info are the result of a call to the read function on the input datastore, which mapreduce executes automatically before each call to the map function.
- intermKVStore is the name of the intermediate KeyValueStore object to which the map function needs to add key-value pairs. The add and addmulti functions use this object name to add key-value pairs. If none of the calls to the map function add key-value pairs to intermKVStore, then mapreduce does not call the reduce function and the resulting datastore is empty.

A simple example of a map function is:
```

function MeanDistMapFun(data, info, intermKVStore)
distances = data.Distance(~isnan(data.Distance));
sumLenValue = [sum(distances) length(distances)];
add(intermKVStore, 'sumAndLength', sumLenValue);
end

```

This map function has only three lines, which perform some straightforward roles. The first line filters out all NaN values in the block of distance data. The second line creates a two-element vector with the total distance and count for the block, and the third line adds that vector of values to intermKVStore with the key, ' sumAndLength '. After this map function runs on all of the blocks of data in ds, the intermKVStore object contains the total distance and count for each block of distance data.

Save this function in your current folder as MeanDistMapFun.m.
2 The inputs to the reduce function are intermKey, intermValIter, and outKVStore:
- intermKey is for the active key added by the map function. Each call to the reduce function by mapreduce specifies a new unique key from the keys in the intermediate KeyValueStore object.
- intermValIter is the ValueIterator associated with the active key, intermKey. This ValueIterator object contains all of the values associated with the active key. Scroll through the values using the hasnext and getnext functions.
- outKVStore is the name for the final KeyValueStore object to which the reduce function needs to add key-value pairs. mapreduce takes the output key-value pairs from outKVStore and returns them in the output datastore, which is a KeyValueDatastore object by default. If none of the calls to the reduce function add key-value pairs to outKVStore, then mapreduce returns an empty datastore.

A simple example of a reduce function is:
```

function MeanDistReduceFun(intermKey, intermValIter, outKVStore)
sumLen = [0 0];
while hasnext(intermValIter)
sumLen = sumLen + getnext(intermValIter);
end
add(outKVStore, 'Mean', sumLen(1)/sumLen(2));
end

```

This reduce function loops through each of the distance and count values in intermValIter, keeping a running total of the distance and count after each pass. After this loop, the reduce function calculates the overall mean flight distance with a simple division, and then adds a single key to outKVStore.

Save this function in your current folder as MeanDistReduceFun.m.
For information about writing more advanced map and reduce functions, see "Write a Map Function" on page 12-10 and "Write a Reduce Function" on page 12-15.

\section*{Run mapreduce}

After you have a datastore, a map function, and a reduce function, you can call mapreduce to perform the calculation. To calculate the average flight distance in the data set, call mapreduce using ds, MeanDistMapFun, and MeanDistReduceFun.
```

outds = mapreduce(ds, @MeanDistMapFun, @MeanDistReduceFun);
*********************************

* MAPREDUCE PROGRESS *

```
\begin{tabular}{lrlr}
Map & \(0 \%\) & Reduce & \(0 \%\) \\
Map & \(16 \%\) & Reduce & \(0 \%\) \\
Map & \(32 \%\) & Reduce & \(0 \%\) \\
Map & \(48 \%\) & Reduce & \(0 \%\) \\
Map & \(65 \%\) & Reduce & \(0 \%\) \\
Map & \(81 \%\) & Reduce & \(0 \%\) \\
Map & \(97 \%\) & Reduce & \(0 \%\) \\
Map & \(100 \%\) & Reduce & \(100 \%\)
\end{tabular}

By default, the mapreduce function displays progress information at the command line and returns a KeyValueDatastore object that points to files in the current folder. You can adjust all three of these options using the Name, Value pair arguments for 'OutputFolder', 'OutputType', and 'Display'. For more information, see the reference page for mapreduce.

\section*{View Results}

Use the readall function to read the key-value pairs from the output datastore.
```

readall(outds)

```
ans =
\begin{tabular}{ll}
Key & \\
'Mean' & \\
\end{tabular}

\section*{See Also}
datastore|mapreduce

\section*{Related Examples}
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Write a Map Function}

\section*{In this section...}
"Role of Map Function in MapReduce" on page 12-10
"Requirements for Map Function" on page 12-11
"Sample Map Functions" on page 12-12

\section*{Role of Map Function in MapReduce}
mapreduce requires both an input map function that receives blocks of data and that outputs intermediate results, and an input reduce function that reads the intermediate results and produces a final result. Thus, it is normal to break up a calculation into two related pieces for the map and reduce functions to fulfill separately. For example, to find the maximum value in a data set, the map function can find the maximum value in each block of input data, and then the reduce function can find the single maximum value among all of the intermediate maxima.

This figure shows the Map phase of the mapreduce algorithm.

The Map phase of the mapreduce algorithm has the following steps:
1 mapreduce reads a single block of data using the read function on the input datastore, then calls the map function to work on the block.
2 The map function then works on the individual block of data and adds one or more key-value pairs to the intermediate KeyValueStore object using the add or addmulti functions.

3 mapreduce repeats this process for each of the blocks of data in the input datastore, so that the total number of calls to the map function is equal to the number of blocks of data. The ReadSize property of the datastore determines the number of data blocks.

The Map phase of the mapreduce algorithm is complete when the map function processes each of the blocks of data in the input datastore. The result of this phase of the mapreduce algorithm is a KeyValueStore object that contains all of the key-value pairs added by the map function. After the Map phase, mapreduce prepares for the Reduce phase by grouping all the values in the KeyValueStore object by unique key.

\section*{Requirements for Map Function}
mapreduce automatically calls the map function for each block of data in the input datastore. The map function must meet certain basic requirements to run properly during these automatic calls. These requirements collectively ensure the proper movement of data through the Map phase of the mapreduce algorithm.

The inputs to the map function are data, info, and intermKVStore:
- data and info are the result of a call to the read function on the input datastore, which mapreduce executes automatically before each call to the map function.
- intermKVStore is the name of the intermediate KeyValueStore object to which the map function needs to add key-value pairs. The add and addmulti functions use this object name to add key-value pairs. If the map function does not add any key-value pairs to the intermKVStore object, then mapreduce does not call the reduce function and the resulting datastore is empty.

In addition to these basic requirements for the map function, the key-value pairs added by the map function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be NaN, complex, logical, or sparse.

2 All keys added by the map function must have the same class.
3 Values can be any MATLAB object, including all valid MATLAB data types.

Note The above key-value pair requirements may differ when using other products with mapreduce. See the documentation for the appropriate product to get product-specific key-value pair requirements.

\section*{Sample Map Functions}

Here are a few illustrative map functions used in mapreduce examples.

\section*{Identity Map Function}

A map function that simply returns what mapreduce passes to it is called an identity mapper. An identity mapper is useful to take advantage of the grouping of values by unique key before doing calculations in the reduce function. The identityMapper mapper file is one of the mappers used in the example "Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce" on page 12-95.
```

function identityMapper(data, info, intermKVStore)
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore,'Identity', x);
end

```

\section*{Simple Map Function}

One of the simplest examples of a nonidentity mapper is maxArrivalDelayMapper, which is the mapper for the example "Find Maximum Value with MapReduce" on page 1243. For each chunk of input data, this mapper calculates the maximum arrival delay and adds a key-value pair to the intermediate KeyValueStore.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

```

\section*{Advanced Map Function}

A more advanced example of a mapper is statsByGroupMapper, which is the mapper for the example "Compute Summary Statistics by Group Using MapReduce" on page 12-
79. This mapper uses a nested function to calculate several statistical quantities (count, mean, variance, and so on) for each chunk of input data, and then adds several key-value pairs to the intermediate KeyValueStore object. Also, this mapper uses four input arguments, whereas mapreduce only accepts a map function with three input arguments. To get around this, pass in the extra parameter using an anonymous function during the call to mapreduce, as outlined in the example.
```

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first
delays = data.ArrDelay;
groups = data.(groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);
% Find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');
% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);
function out = grpstatsfun(x)
n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).^2)/n; % variance
s = sum((x-m).^3)/n; % skewness without normalization
k = sum((x-m).^4)/n; % kurtosis without normalization
out = {[n, m, v, s, k]};
end
end

```

More Map Functions
For more information about common programming patterns in map or reduce functions, see "Build Effective Algorithms with MapReduce" on page 12-22.

\section*{See Also}
add | addmulti|datastore|mapreduce

\section*{More About}
- KeyValueStore
- "Write a Reduce Function" on page 12-15
- "Getting Started with MapReduce" on page 12-3

\section*{Write a Reduce Function}
```

In this section...
"Role of the Reduce Function in MapReduce" on page 12-15
"Requirements for Reduce Function" on page 12-16
"Sample Reduce Functions" on page 12-17

```

\section*{Role of the Reduce Function in MapReduce}
mapreduce requires both an input map function that receives blocks of data and that outputs intermediate results, and an input reduce function that reads the intermediate results and produces a final result. Thus, it is normal to break up a calculation into two related pieces for the map and reduce functions to fulfill separately. For example, to find the maximum value in a data set, the map function can find the maximum value in each block of input data, and then the reduce function can find the single maximum value among all of the intermediate maxima.

This figure shows the Reduce phase of the mapreduce algorithm.

The Reduce phase of the mapreduce algorithm has the following steps:

1 The result of the Map phase of the mapreduce algorithm is an intermediate KeyValueStore object that contains all of the key-value pairs added by the map function. Before calling the reduce function, mapreduce groups the values in the intermediate KeyValueStore object by unique key. Each unique key in the intermediate KeyValueStore object results in a single call to the reduce function.
2 For each key, mapreduce creates a ValueIterator object that contains all of the values associated with that key.
3 The reduce function scrolls through the values from the ValueIterator object using the hasnext and getnext functions, which are typically used in a while loop.
4 After performing a summary calculation, the reduce function adds one or more keyvalue pairs to the final KeyValueStore object using the add and addmulti functions.

The Reduce phase of the mapreduce algorithm is complete when the reduce function processes all of the unique intermediate keys and their associated values. The result of this phase of the mapreduce algorithm (similar to the Map phase) is a KeyValueStore object containing all of the final key-value pairs added by the reduce function. After the Reduce phase, mapreduce pulls the key-value pairs from the KeyValueStore and returns them in a datastore (a KeyValueDatastore object by default). The key-value pairs in the output datastore are not in sorted order; they appear in the same order as they were added by the reduce function.

\section*{Requirements for Reduce Function}
mapreduce automatically calls the reduce function for each unique key in the intermediate KeyValueStore object, so the reduce function must meet certain basic requirements to run properly during these automatic calls. These requirements collectively ensure the proper movement of data through the Reduce phase of the mapreduce algorithm.

The inputs to the reduce function are intermKey, intermValIter, and outKVStore:
- intermKey is one of the unique keys added by the map function. Each call to the reduce function by mapreduce specifies a new unique key from the keys in the intermediate KeyValueStore object.
- intermValIter is the ValueIterator object associated with the active key, intermKey. This ValueIterator object contains all of the values associated with the active key. Scroll through the values using the hasnext and getnext functions.
- outKVStore is the name for the final KeyValueStore object to which the reduce function needs to add key-value pairs. The add and addmulti functions use this object name to add key-value pairs to the output. mapreduce takes the output keyvalue pairs from outKVStore and returns them in the output datastore, which is a KeyValueDatastore object by default. If the reduce function does not add any keyvalue pairs to outKVStore, then mapreduce returns an empty datastore.

In addition to these basic requirements for the reduce function, the key-value pairs added by the reduce function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be NaN, logical, complex, or sparse.
2 All keys added by the reduce function must have the same class, but that class may differ from the class of the keys added by the map function.
3 If the OutputType argument of mapreduce is 'Binary' (the default), then a value added by the reduce function can be any MATLAB object, including all valid MATLAB data types.
4 If the OutputType argument of mapreduce is 'TabularText', then a value added by the reduce function can be a numeric scalar, character vector, or string. In this case, the value cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products with mapreduce. See the documentation for the appropriate product to get product-specific key-value pair requirements.

\section*{Sample Reduce Functions}

Here are a few illustrative reduce functions used in mapreduce examples.

\section*{Simple Reduce Function}

One of the simplest examples of a reducer is maxArrivalDelayReducer, which is the reducer for the example "Find Maximum Value with MapReduce" on page 12-43. The map function in this example finds the maximum arrival delay in each chunk of input data. Then the reduce function finishes the task by finding the single maximum value among all of the intermediate maxima. To find the maximum value, the reducer scrolls through the values in the ValueIterator object and compares each value to the current maximum. mapreduce only calls this reducer function once, since the mapper adds a single unique
key to the intermediate KeyValueStore object. The reduce function adds a single keyvalue pair to the output.
```

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = - Inf;
while hasnext(intermValIter)
maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add(outKVStore,'MaxArrivalDelay',maxVal);
end

```

\section*{Advanced Reduce Function}

A more advanced example of a reducer is statsByGroupReducer, which is the reducer for the example "Compute Summary Statistics by Group Using MapReduce" on page 1279. The map function in this example groups the data in each input using an extra parameter (airline carrier, month, and so on), and then calculates several statistical quantities for each group of data. The reduce function finishes the task by retrieving the statistical quantities and concatenating them into long vectors, and then using the vectors to calculate the final statistical quantities for count, mean, variance, skewness, and kurtosis. The reducer stores these values as fields in a structure, so that each unique key has a structure of statistical quantities in the output.
```

function statsByGroupReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the StatisticsByGroupMapReduceExample.
% Copyright 2014 The MathWorks, Inc.
n = [];
m = [];
v = [];
s = [];
k = [];
% get all sets of intermediate statistics
while hasnext(intermValIter)
value = getnext(intermValIter);
n = [n; value(1)];
m = [m; value(2)];
v = [v; value(3)];
s = [s; value(4)];
k = [k; value(5)];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the
% CovarianceMapReduceExample for an alternative pairwise reduction approach
% combine the intermediate results

```
```

count = sum(n);
meanVal = sum(n.*m)/count;
d = m - meanVal;
variance = (sum(n.*v) + sum(n.*d.^2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);
outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
Skewness',skewnessVal, 'Kurtosis',kurtosisVal);
% add results to the output datastore
add(outKVStore,intermKey,outValue);

```

\section*{More Reduce Functions}

For more information about common programming patterns in map or reduce functions, see "Build Effective Algorithms with MapReduce" on page 12-22.

\section*{See Also}
add | addmulti|datastore | getnext | hasnext | mapreduce

\section*{More About}
- KeyValueStore
- ValueIterator
- "Write a Map Function" on page 12-10
- "Getting Started with MapReduce" on page 12-3

\section*{Speed Up and Deploy MapReduce Using Other Products}

\author{
In this section... \\ "Execution Environment" on page 12-20 \\ "Running in Parallel" on page 12-20 \\ "Application Deployment" on page 12-20
}

\section*{Execution Environment}

To use mapreduce with Parallel Computing Toolbox \({ }^{\text {TM }}\), MATLAB Parallel Server \({ }^{\text {TM }}\), or MATLAB Compiler \({ }^{\text {TM }}\), use the mapreducer configuration function to change the execution environment for mapreduce. This enables you to start small to verify your map and reduce functions, then quickly scale up to run larger calculations.

\section*{Running in Parallel}

Parallel Computing Toolbox can immediately speed up your mapreduce algorithms by using the full processing power of multicore computers to execute applications with a parallel pool of workers. If you already have Parallel Computing Toolbox installed, then you probably do not need to do anything special to take advantage of these capabilities. For more information about using mapreduce with Parallel Computing Toolbox, see "Run mapreduce on a Parallel Pool" (Parallel Computing Toolbox).

MATLAB Parallel Server enables you to run the same applications on a remote computer cluster. For more information, including how to configure MATLAB Parallel Server to support Hadoop clusters, see "Tall Arrays and mapreduce" (Parallel Computing Toolbox).

\section*{Application Deployment}

MATLAB Compiler enables you to create standalone mapreduce applications or deployable archives, which you can share with colleagues or deploy to production Hadoop systems.

For more information, see "MapReduce Applications on Hadoop Clusters" (MATLAB Compiler).

\section*{See Also}
gcmr | mapreducer

\section*{Build Effective Algorithms with MapReduce}

The mapreduce example files that ship with MATLAB illustrate different programming techniques. You can use these examples as a starting point to quickly prototype similar mapreduce calculations.

Note The associated files for these examples are all in the toolbox/matlab/demos/ folder.
\begin{tabular}{|l|l|l|l|}
\hline Example Link & Primary File & Description & \begin{tabular}{l}
Notable \\
Programming \\
Techniques
\end{tabular} \\
\hline \begin{tabular}{l}
"Find Maximum \\
Value with \\
MapReduce" on page \\
\(12-43\)
\end{tabular} & \begin{tabular}{l}
MaxMapReduceExam \\
ple.m
\end{tabular} & \begin{tabular}{l}
Find maximum \\
arrival delay
\end{tabular} & \begin{tabular}{l}
One intermediate key \\
and minimal \\
computation.
\end{tabular} \\
\hline \begin{tabular}{l}
"Compute Mean \\
Value with \\
MapReduce" on page \\
\(12-46\)
\end{tabular} & \begin{tabular}{l}
MeanMapReduceExa \\
mple.m
\end{tabular} & \begin{tabular}{l}
Find mean arrival \\
delay
\end{tabular} & \begin{tabular}{l}
One intermediate key \\
with intermediate \\
state (accumulating \\
intermediate sum \\
and count).
\end{tabular} \\
\hline \begin{tabular}{l}
"Create Histograms \\
Using MapReduce" \\
on page 12-56
\end{tabular} & \begin{tabular}{l}
VisualizationMap \\
ReduceExample.m
\end{tabular} & histograms \\
hisualize data using & \begin{tabular}{l}
Low-volume \\
summaries of data, \\
sufficient to generate \\
a graphic and gain \\
preliminary insights.
\end{tabular} \\
\hline \begin{tabular}{l}
"Compute Mean by \\
Group Using \\
MapReduce" on page \\
12-50
\end{tabular} & \begin{tabular}{l}
MeanByGroupMapRe \\
duceExample.m
\end{tabular} & \begin{tabular}{l}
Compute mean \\
arrival delay for each \\
day of the week
\end{tabular} & \begin{tabular}{l}
Perform simple \\
computations on \\
subgroups of input \\
data using several \\
intermediate keys.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|}\hline \text { Example Link } & \text { Primary File } & \text { Description } & \begin{array}{l}\text { Notable } \\
\text { Programming } \\
\text { Techniques }\end{array} \\
\hline \begin{array}{l}\text { "Compute Maximum } \\
\text { Iverage HSV of } \\
\text { Images with } \\
\text { MapReduce" on page } \\
\text { 12-101 }\end{array} & \begin{array}{l}\text { HueSaturationVal } \\
\text { ueExample.m }\end{array} & \begin{array}{l}\text { Determine average } \\
\text { maximum hue, } \\
\text { saturation, and } \\
\text { brightness in an } \\
\text { image collection }\end{array} & \begin{array}{l}\text { Analyzes an image } \\
\text { datastore using three } \\
\text { intermediate keys. } \\
\text { The outputs are } \\
\text { filenames, which can } \\
\text { be used to view the } \\
\text { images. }\end{array} \\
\hline \begin{array}{l}\text { "Simple Data } \\
\text { Subsetting Using } \\
\text { MapReduce" on page } \\
\text { 12-64 }\end{array} & \begin{array}{l}\text { SubsettingMapRed } \\
\text { uceExample.m }\end{array} & \begin{array}{l}\text { Create single table } \\
\text { from subset of large } \\
\text { data set }\end{array} & \begin{array}{l}\text { Extraction of subset } \\
\text { of large data set to } \\
\text { look for patterns. } \\
\text { The procedure is } \\
\text { generalized using a }\end{array} \\
\text { parameterized map } \\
\text { function to pass in }\end{array}\right\}\)\begin{tabular}{l}
the subsetting \\
criteria.
\end{tabular}\(|\)
\begin{tabular}{|l|l|l|l|}
\hline Example Link & Primary File & Description & \begin{tabular}{l}
Notable \\
Programming \\
Techniques
\end{tabular} \\
\hline \begin{tabular}{l}
"Compute Summary \\
Statistics by Group \\
Using MapReduce" \\
on page 12-79
\end{tabular} & \begin{tabular}{l}
StatisticsByGrou \\
pMapReduceExampl \\
e.m
\end{tabular} & \begin{tabular}{l}
Compute summary \\
statistics organized \\
by group
\end{tabular} & \begin{tabular}{l}
Use an anonymous \\
function to pass an \\
extra grouping \\
parameter to a \\
parameterized map \\
function. This \\
parameterization \\
allows you to quickly \\
recalculate statistics \\
using different \\
grouping variables.
\end{tabular} \\
\hline \begin{tabular}{l}
"Using MapReduce \\
to Fit a Logistic \\
Regression Model" \\
on page 12-87
\end{tabular} & ample.m & & \begin{tabular}{l}
LogitMapReduceEx \\
Chain multiple \\
mapreduce calls to \\
carry out an iterative \\
regression algorithm. \\
An anonymous \\
function passes \\
information from one \\
iteration to the next
\end{tabular} \\
fo supply information \\
directly to the map
\end{tabular}\(|\)

\section*{Debug MapReduce Algorithms}

This example shows how to debug your mapreduce algorithms in MATLAB using a simple example file, MaxMapReduceExample.m. Debugging enables you to follow the movement of data between the different phases of mapreduce execution and inspect the state of all intermediate variables.

\section*{In this section...}
"Set Breakpoint" on page 12-25
"Execute mapreduce" on page 12-26
"Step Through Map Function" on page 12-26
"Step Through Reduce Function" on page 12-28

\section*{Set Breakpoint}

Set one or more breakpoints in your map or reduce function files so you can examine the variable values where you think the problem is. For more information, see "Set Breakpoints".

Open the file maxArrivalDelayMapper.m.
```

edit maxArrivalDelayMapper.m

```

Set a breakpoint on line 9. This breakpoint causes execution of mapreduce to pause right before each call to the map function adds a key-value pair to the intermediate KeyValueStore object, named intermKVStore.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MaxMapreduceExample.
% Copyright 1984-2014 The MathWorks, Inc.
% Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
% the return of read is a table object.
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);

```

\section*{Execute mapreduce}

Run the mapreduce example file MaxMapReduceExample.m. Specify mapreducer(0) to ensure that the algorithm does not run in parallel, since parallel execution of mapreduce using Parallel Computing Toolbox ignores breakpoints.
```

mapreducer(0);
MaxMapReduceExample

```

MATLAB stops execution of the file when it encounters the breakpoint in the map function. During the pause in execution, you can hover over the different variable names in the map function, or type one of the variable names at the command line to inspect the values.

In this case, the display indicates that, as yet, there are no key-value pairs in intermKVStore.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MaxMapreduceExample.
% Copyright 1984-2014 The MathWorks, Inc.
% Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
% the return of read is a table object.
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
intermKVStore: 1x1 matlab.mapreduce.KeyValueStore =
KeyValueStore with no key-value pairs.
Keys must be numeric scalars or strings, and values may be any type.
Use add or addmulti to add more key-value pairs.

```

\section*{Step Through Map Function}

1 Continue past the breakpoint. You can use dbstep to execute a single line, or dbcont to continue execution until MATLAB encounters another breakpoint.
Alternatively, you can click Step or Continue in the Editor tab. For more information about all the available options, see "Debug a MATLAB Program".

In this case, use dbstep (or click Step) to execute only line 9, which adds a keyvalue pair to intermKVStore. Inspect the new display for intermKVStore.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MaxMapreduceExample.
% Copyright 1984-2014 The MathWorks, Inc.
% Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
% the return of read is a table object.
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
intermKVStore: 1x1 matlab.mapreduce.KeyValueStore =

```

2
Now, use dbcont (or click Continue) to continue execution of mapreduce. During the next call to the map function, MATLAB halts again on line 9. The new display for intermKVStore indicates that it does not contain any key-value pairs, because the display is meant to show only the most recent key-value pairs that are added in the current call to the map (or reduce) function.
3
Step past line 9 again using dbstep (or click Step) to add the next key-value pair to intermKVStore, and inspect the new display for the variable. MATLAB displays only the key-value pair added during the current call to the map function.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
% Mapper function for the MaxMapreduceExample.
% Copyright 1984-2014 The MathWorks, Inc.
% Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
% the return of read is a table object.
partMax = max(data.ArrDelay);
-add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
|intermKVStore: 1x1 matlab.mapreduce.KeyValueStore =

```

4 Complete the debugging of the map function by removing the breakpoint and closing the file maxArrivalDelayMapper.m.

\section*{Step Through Reduce Function}

1 You can use the same process to set breakpoints and step through execution of a reduce function. The reduce function for this example is maxArrivalDelayReducer.m. Open this file for editing.
edit maxArrivalDelayReducer.m
2 Set two breakpoints: one on line 10, and one on line 13. This enables you to inspect the ValueIterator and the final key-value pairs added to the output, outKVStore.
3 Run the main example file.
MaxMapReduceExample
4 The execution of the example will pause when the breakpoint on line 10 is encountered. The debug display for the ValueIterator indicates the active key and whether any values remain to be retrieved.
```

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the MaxMapreduceExample.

* Copyright 2014 The MathWorks, Inc.
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -inf;
While hasnext (intermValIter)
maxVal = max (getnext (intermValIter), maxVal);
end
% The key-value pair add
add(outKVStore, 'MaxArriv
ValueIterator with properties:
Key: 'PartialMaxArrivalDelay
One or more values are available
Use hasnext to check if more values are available. Use getnext to get the next value.

```

5
Now, remove the breakpoint on line 10 and use dbcont (or click
Continue) to continue execution of the example until the next breakpoint is reached (on line 13). Since this reduce function continually compares each new value from the ValueIterator to the global maximum, mapreduce execution ends by adding a single key-value pair to outKVStore.
6
Use dbstep (or click Step) to execute line 13 only. The display for outKVStore shows the global maximum value that mapreduce will return as the final answer.
```

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% Reducer function for the MaxMapreduceExample.
% Copyright 2014 The MathWorks, Inc.
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -inf;
while hasnext (intermValIter)
maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add (butKVStore, 'MaxArrivalDelay',maxVal) ;

```
```

outKVStore: 1x1 matlab.mapreduce.KeyValueStore =

```
outKVStore: 1x1 matlab.mapreduce.KeyValueStore =
KeyValueStore containing string keys.
KeyValueStore containing string keys.
Keys must be strings, and values may be any type.
Keys must be strings, and values may be any type.
Last 1 key-value pair added:
Last 1 key-value pair added:
 Key Value
 Key Value
 'MaxArrivalDelay' [1014]
 'MaxArrivalDelay' [1014]
Use add or addmulti to add more key-value pairs.
```

Use add or addmulti to add more key-value pairs.

```

7
Now use dbcont (or click Continue) to advance execution, enabling the example to finish running. mapreduce returns the final results.

Map 100\% Reduce 100\%
ans =
\begin{tabular}{cc}
Key & Value \\
'MaxArrivalDelay' & [1014]
\end{tabular}

For a complete guide to debugging in MATLAB, see "Debugging and Analysis".

\section*{See Also}
mapreduce

\section*{More About}
- KeyValueStore
- ValueIterator
- "Getting Started with MapReduce" on page 12-3

\section*{Analyze Big Data in MATLAB Using MapReduce}

This example shows how to use the datastore and mapreduce functions to process a large amount of file-based data. The MapReduce algorithm is a mainstay of many modern "big data" applications. This example operates on a single computer, but the code can scale up to use Hadoop \({ }^{\circledR}\).

Throughout this example, the data set is a collection of records for USA domestic airline flights between 1987 and 2008. If you have experimented with "big data" before, you may already be familiar with this data set. The full data set can be downloaded from https:// stat-computing.org/dataexpo/2009/the-data.html. A small subset of the data set is also included with MATLAB® to allow you to run this and other examples without downloading the entire data set.

\section*{Introduction to datastore}

Creating a datastore allows you to access a collection of data in a block-based manner. A datastore can process arbitrarily large amounts of data, and the data can even be spread across multiple files. You can create a datastore for many file types, including a collection of tabular text files (demonstrated here), a SQL database (Database Toolbox \({ }^{\text {TM }}\) required) or a Hadoop® Distributed File System (HDFS \({ }^{\mathrm{TM}}\)).

Create a datastore for a collection of tabular text files and preview the contents.
```

ds = datastore('airlinesmall.csv');
dsPreview = preview(ds);
dsPreview(:,10:15)
ans=8\times6 table (aitNum ActualElapsedTime CRSElapsedTime AirTime
L
1503 {'NA'} 5
1550 {'NA'} 6
1589 {'NA'} 83 82 {'NA'}
1655 {'NA'}
1702 {'NA'} 77 72 {'NA'}
1729 {'NA'} 6
1763 {'NA'} 84
1800 {'NA'} 155 143 {'NA'}
5 3
57 {'NA'}
{'NA'}
1589 {'NA'} 83 82 {'NA'}
{'NA'}
1702 {'NA'} 77 72 {'NA'}
65 {'NA'} 59
{'NA'}
1800 {'NA'} 155 143 {'NA'}
53 57
6 1 ~ 6 5
The datastore automatically parses the input data and makes a best guess as to the type of data in each column. In this case, use the 'TreatAsMissing ' Name-Value pair

```593
11
argument to have datastore replace the missing values correctly. For numeric variables (such as 'AirTime'), datastore replaces every instance of 'NA' with a NaN value, which is the IEEE arithmetic representation for Not-a-Number.
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'CancellationCode')} = '%s';
dsPreview = preview(ds);
dsPreview(:,{'AirTime','TaxiIn','TailNum','CancellationCode'})
ans=8\times4 table
AirTime TaxiIn TailNum CancellationCode

NaN	NaN	\{'NA'\}	\{'NA'\}
NaN	NaN	\{'NA'\}	\{'NA'\}
NaN	NaN	\{ 'NA' \}	\{'NA'\}
NaN	NaN	\{'NA'\}	\{'NA'\}
NaN	NaN	\{ 'NA' $\}$	\{'NA'\}
NaN	NaN	\{ 'NA' \}	\{'NA'\}
NaN	NaN	\{'NA'\}	\{'NA'\}
NaN	NaN	\{'NA' \}	\{'NA'\}

```

\section*{Scan for rows of interest}
datastore objects contain an internal pointer to keep track of which block of data the read function returns next. Use the hasdata and read functions to step through the entire data set, and filter the data set to only the rows of interest. In this case, the rows of interest are flights on United Airlines ("UA") departing from Boston ("BOS").
```

subset = [];
while hasdata(ds)
t = read(ds);
t = t(strcmp(t.UniqueCarrier, 'UA') \& strcmp(t.Origin, 'BOS'), :);
subset = vertcat(subset, t);
end
subset(1:10,[9,10,15:17])
ans=10\times5 table
UniqueCarrier FlightNum ArrDelay DepDelay Origin

```
\begin{tabular}{|c|c|c|c|c|}
\hline \{'UA'\} & 121 & -9 & 0 & \{'BOS'\} \\
\hline \{'UA'\} & 1021 & -9 & -1 & \{'BOS'\} \\
\hline \{'UA'\} & 519 & 15 & 8 & \{'BOS'\} \\
\hline \{'UA'\} & 354 & 9 & 8 & \{'BOS'\} \\
\hline \{'UA'\} & 701 & -17 & 0 & \{'BOS'\} \\
\hline \{'UA' \} & 673 & -9 & -1 & \{'BOS'\} \\
\hline \{'UA' \} & 91 & -3 & 2 & \{'BOS'\} \\
\hline \{'UA'\} & 335 & 18 & 4 & \{'BOS'\} \\
\hline \{'UA'\} & 1429 & 1 & -2 & \{'BOS'\} \\
\hline \{'UA'\} & 53 & 52 & 13 & \{'BOS'\} \\
\hline
\end{tabular}

\section*{Introduction to mapreduce}

MapReduce is an algorithmic technique to "divide and conquer" big data problems. In MATLAB, mapreduce requires three input arguments:

\section*{1 A datastore to read data from}

2 A "mapper" function that is given a subset of the data to operate on. The output of the map function is a partial calculation. mapreduce calls the mapper function one time for each block in the datastore, with each call operating independently.
3 A "reducer" function that is given the aggregate outputs from the mapper function. The reducer function finishes the computation begun by the mapper function, and outputs the final answer.

This is an over-simplification to some extent, since the output of a call to the mapper function can be shuffled and combined in interesting ways before being passed to the reducer function. This will be examined later in this example.

\section*{Use mapreduce to perform a computation}

A simple use of mapreduce is to find the longest flight time in the entire airline data set. To do this:

1 The "mapper" function computes the maximum of each block from the datastore.
2 The "reducer" function then computes the maximum value among all of the maxima computed by the calls to the mapper function.

First, reset the datastore and filter the variables to the one column of interest.
```

reset(ds);
ds.SelectedVariableNames = {'ActualElapsedTime'};

```

Write the mapper function, maxTimeMapper.m. It takes three input arguments:
1 The input data, which is a table obtained by applying the read function to the datastore.

2 A collection of configuration and contextual information, info. This can be ignored in most cases, as it is here.

3 An intermediate data storage object, which records the results of the calculations from the mapper function. Use the add function to add Key/Value pairs to this intermediate output. In this example, the name of the key ('MaxElapsedTime') is arbitrary.

Save the following mapper function (maxTimeMapper.m) in your current folder.
```

function maxTimeMapper(data, ~, intermKVStore)
maxElapsedTime = max(data{:,:});
add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end

```

Next, write the reducer function. It also takes three input arguments:
1 A set of input "keys". Keys will be discussed further below, but they can be ignored in some simple problems, as they are here.
2 An intermediate data input object that map reduce passes to the reducer function. This data is in the form of Key/Value pairs, and you use the hasnext and getnext functions to iterate through the values for each key.
3 A final output data storage object. Use the add and addmulti functions to directly add Key/Value pairs to the output.

Save the following reducer function (maxTimeReducer.m) in your current folder.
```

function maxTimeReducer(~, intermValsIter, outKVStore)
maxElapsedTime = -Inf;
while(hasnext(intermValsIter))
maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));
end
add(outKVStore, "MaxElapsedTime", maxElapsedTime);
end

```

Once the mapper and reducer functions are written and saved in your current folder, you can call mapreduce using the datastore, mapper function, and reducer function. If you have Parallel Computing Toolbox (PCT), MATLAB will automatically start a pool and
parallelize execution. Use the readall function to display the results of the MapReduce algorithm.
```

result = mapreduce(ds, @maxTimeMapper, @maxTimeReducer);
********************************

* MAPREDUCE PROGRESS
********
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%
readall(result)
ans=1\times2 table
Key Value
{'MaxElapsedTime'} {[1650]}

```

\section*{Use of keys in mapreduce}

The use of keys is an important and powerful feature of mapreduce. Each call to the mapper function adds intermediate results to one or more named "buckets", called keys. The number of calls to the mapper function by mapreduce corresponds to the number of blocks in the datastore.

If the mapper function adds values to multiple keys, this leads to multiple calls to the reducer function, with each call working on only one key's intermediate values. The mapreduce function automatically manages this data movement between the map and reduce phases of the algorithm.

This flexibility is useful in many contexts. The example below uses keys in a relatively obvious way for illustrative purposes.

\section*{Calculating group-wise metrics with mapreduce}

The behavior of the mapper function in this application is more complex. For every flight carrier found in the input data, use the add function to add a vector of values. This vector is a count of the number of flights for that carrier on each day in the 21+ years of data. The carrier code is the key for this vector of values. This ensures that all of the data for each carrier will be grouped together when mapreduce passes it to the reducer function.

Save the following mapper function (countFlightsMapper.m) in your current folder.
```

function countFlightsMapper(data, ~, intermKVStore)
dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987,1(
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
[airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');
for i = 1:numel(airlineName)
dayTotals = accumarray(dayNumber(airlineIndex==i), 1, [daysSinceEpoch, 1]);
add(intermKVStore, airlineName{i}, dayTotals);
end
end

```

The reducer function is less complex. It simply iterates over the intermediate values and adds the vectors together. At completion, it outputs the values in this aggregate vector. Note that the reducer function does not need to sort or examine the intermediateKeysIn values; each call to the reducer function by mapreduce only passes the values for one airline carrier.

Save the following reducer function (countFlightsReducer.m) in your current folder.
```

function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
dayArray = zeros(daysSinceEpoch, 1);
while hasnext(intermValsIter)
dayArray = dayArray + getnext(intermValsIter);
end
add(outKVStore, intermKeysIn, dayArray);
end

```

Reset the datastore and select the variables of interest. Once the mapper and reducer functions are written and saved in your current folder, you can call mapreduce using the datastore, mapper function, and reducer function.
```

reset(ds);
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier'};
result = mapreduce(ds, @countFlightsMapper, @countFlightsReducer);
********************************

* MAPREDUCE PROGRESS
********************************
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%
result = readall(result);

```

In case this example was run with only the sample data set, load the results of the mapreduce algorithm run on the entire data set.

\section*{load airlineResults}

\section*{Visualizing the results}

Using only the top 7 carriers, apply a filter to the data to smooth out the effects of weekend travel. This would otherwise clutter the visualization.
```

lines = result.Value;
lines = horzcat(lines{:});
[~,sortOrder] = sort(sum(lines), 'descend');
lines = lines(:,sortOrder(1:7));
result = result(sortOrder(1:7),:);
lines(lines==0) = nan;

```
```

for carrier=1:size(lines,2)
lines(:,carrier) = filter(repmat(1/7, [7 1]), 1, lines(:,carrier));
end

```

Plot the data.
```

figure('Position',[1 1 800 600]);
plot(datetime(1987,10,1):caldays(1):datetime(2008,12,31),lines)
title ('Domestic airline flights per day per carrier')
xlabel('Date')
ylabel('Flights per day (7-day moving average)')
legend(result.Key, 'Location', 'South')

```


The plot shows the emergence of Southwest Airlines (WN) during this time period.

\section*{Learning more}

This example only scratches the surface of what is possible with mapreduce. See the documentation for mapreduce for more information, including information on using it with Hadoop and MATLAB® Parallel Server \({ }^{\mathrm{Tm}}\).

\section*{Local Functions}

Listed here are the local functions that mapreduce applies to the data.
```

function maxTimeMapper(data, ~, intermKVStore)
maxElapsedTime = max(data{:,:});
add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end
%-------------------------------------------------------
maxElapsedTime = - Inf;
while(hasnext(intermValsIter))
maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));
end
add(outKVStore, "MaxElapsedTime", maxElapsedTime);
end
%--------------------------------------------------
dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987,1
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
[airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');
for i = 1:numel(airlineName)
dayTotals = accumarray(dayNumber(airlineIndex==i), 1, [daysSinceEpoch, 1]);
add(intermKVStore, airlineName{i}, dayTotals);
end
end
%---------------------------------------------------------------------------
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
dayArray = zeros(daysSinceEpoch, 1);
while hasnext(intermValsIter)
dayArray = dayArray + getnext(intermValsIter);
end
add(outKVStore, intermKeysIn, dayArray);
end
%-

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Find Maximum Value with MapReduce}

This example shows how to find the maximum value of a single variable in a data set using mapreduce. It demonstrates the simplest use of mapreduce since there is only one key and minimal computation.

\section*{Prepare Data}

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, select ArrDelay (flight arrival delay) as the variable of interest.
```

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

```

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variable of interest, which you can verify using preview.
```

preview(ds)
ans=8\times1 table
ArrDelay
8
8
2 1
1 3
4
5 9
3
1 1

```

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper finds the maximum arrival delay in each block of data. The mapper then stores these maximum values as the intermediate values associated with the key 'PartialMaxArrivalDelay'.

Display the map function file.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

```

The reducer receives a list of the maximum arrival delays for each block and finds the overall maximum arrival delay from the list of values. mapreduce only calls this reducer once, since the mapper only adds a single unique key. The reducer uses add to add a final key-value pair to the output.

Display the reduce function file.
```

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = - Inf;
while hasnext(intermValIter)
maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add(outKVStore,'MaxArrivalDelay',maxVal);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

maxDelay = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer);

```

* MAPREDUCE PROGRESS *
\(* *\)
Map 0\% Reduce 0\%
Map 16\% Reduce 0\%
Map 32\% Reduce 0\%
Map 48\% Reduce 0\%
Map 65\% Reduce 0\%
Map 81\% Reduce 0\%
Map 97\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 100\%
mapreduce returns a datastore, maxDelay, with files in the current folder.
Read the final result from the output datastore, maxDelay.
```

readall(maxDelay)
ans=1\times2 table

```

Key
\{'MaxArrivalDelay'\} \{[1014]\}

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end
%------------------------------------------------------------------
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = - Inf;
while hasnext(intermValIter)
maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add(outKVStore,'MaxArrivalDelay',maxVal);
end

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Compute Mean Value with MapReduce}

This example shows how to compute the mean of a single variable in a data set using mapreduce. It demonstrates a simple use of mapreduce with one key, minimal computation, and an intermediate state (accumulating intermediate sum and count).

\section*{Prepare Data}

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, select ArrDelay (flight arrival delay) as the variable of interest.
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

```

The datastore treats ' NA' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variable of interest, which you can verify using preview.
```

preview(ds)
ans=8\times1 table
ArrDelay
8
8
2 1
1 3
4
5 9
3
1 1

```

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper finds the count and sum of the arrival delays in each block of data. The mapper then stores these values as the intermediate values associated with the key "PartialCountSumDelay".

Display the map function file.
```

function meanArrivalDelayMapper (data, info, intermKVStore)
% Data is an n-by-1 table of the ArrDelay. Remove missing values first:
data(isnan(data.ArrDelay),:) = [];
% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, "PartialCountSumDelay",partCountSum);
end

```

The reducer accepts the count and sum for each block stored by the mapper. It sums up the values to obtain the total count and total sum. The overall mean arrival delay is a simple division of the values. mapreduce only calls this reducer once, since the mapper only adds a single unique key. The reducer uses add to add a single key-value pair to the output.

Display the reduce function file.
```

function meanArrivalDelayReducer(intermKey, intermValIter, outKVStore)
count = 0;
sum = 0;
while hasnext(intermValIter)
countSum = getnext(intermValIter);
count = count + countSum(1);
sum = sum + countSum(2);
end
meanDelay = sum/count;
% The key-value pair added to outKVStore will become the output of mapreduce
add(outKVStore,"MeanArrivalDelay",meanDelay);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

meanDelay = mapreduce(ds, @meanArrivalDelayMapper, @meanArrivalDelayReducer);
*********************************

* MAPREDUCE PROGRESS *
*********************************

```
\begin{tabular}{lrlr}
Map & \(0 \%\) & Reduce & \(0 \%\) \\
Map & \(16 \%\) & Reduce & \(0 \%\) \\
Map & \(32 \%\) & Reduce & \(0 \%\) \\
Map & \(48 \%\) & Reduce & \(0 \%\) \\
Map & \(65 \%\) & Reduce & \(0 \%\) \\
Map & \(81 \%\) & Reduce & \(0 \%\) \\
Map & \(97 \%\) & Reduce & \(0 \%\) \\
Map & \(100 \%\) & Reduce & \(0 \%\) \\
Map & \(100 \%\) & Reduce & \(100 \%\)
\end{tabular}
mapreduce returns a datastore, meanDelay, with files in the current folder.
Read the final result from the output datastore, meanDelay.
```

readall(meanDelay)
ans=1\times2 table
Key
{'MeanArrivalDelay'}

```

Value
\{[7.1201]\}

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function meanArrivalDelayMapper (data, info, intermKVStore)
% Data is an n-by-1 table of the ArrDelay. Remove missing values first:
data(isnan(data.ArrDelay),:) = [];
% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, "PartialCountSumDelay",partCountSum);
end
%---------------------------------------------------------------------------
function meanArrivalDelayReducer(intermKey, intermValIter, outKVStore)
count = 0;
sum = 0;
while hasnext(intermValIter)
countSum = getnext(intermValIter);
count = count + countSum(1);
sum = sum + countSum(2);
end
meanDelay = sum/count;

```
```

    % The key-value pair added to outKVStore will become the output of mapreduce
    add(outKVStore,"MeanArrivalDelay",meanDelay);
    end

```
\%-

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Compute Mean by Group Using MapReduce}

This example shows how to compute the mean by group in a data set using mapreduce. It demonstrates how to do computations on subgroups of data.

\section*{Prepare Data}

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, select DayOfWeek and ArrDelay (flight arrival delay) as the variables of interest.
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'DayOfWeek'};

```

The datastore treats ' NA ' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variables of interest, which you can verify using preview.
```

preview(ds)
ans=8\times2 table
ArrDelay DayOfWeek
_-_

8	3
8	1
21	5
13	5
4	4
59	3
3	4
11	6

```

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper computes the count and sum of delays by the day of week in each block of data, and then stores the results as intermediate key-value pairs. The keys
are integers (1 to 7) representing the days of the week and the values are two-element vectors representing the count and sum of the delay of each day.

Display the map function file.
```

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Data is an n-by-2 table: first column is the DayOfWeek and the second
% is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.Day0fWeek;
notNaN = ~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);
% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');
% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore,intermKeys,intermVals);
function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, s]};
end
end

```

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key (in this case, day of the week). Thus, each call to the reducer works on the values associated with one day of the week. The reducer receives a list of the intermediate count and sum of delays for the day specified by the input key (intermKey) and sums up the values into the total count, n and total sum s . Then, the reducer calculates the overall mean, and adds one final key-value pair to the output. This key-value pair represents the mean flight arrival delay for one day of the week.

Display the reduce function file.
```

function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
n = 0;
s = 0;
% get all sets of intermediate results
while hasnext(intermValIter)

```
```

            intermValue = getnext(intermValIter);
            n = n + intermValue(1);
            s = s + intermValue(2);
    end
    % accumulate the sum and count
    mean = s/n;
    % add results to the output datastore
    add(outKVStore,intermKey,mean);
    end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

meanDelayByDay = mapreduce(ds, @meanArrivalDelayByDayMapper, ...

```
 @meanArrivalDelayByDayReducer);
\(* ~\)
* MAPREDUCE PROGRESS *
\(* ~\)
Map 0\% Reduce 0\%
Map 16\% Reduce 0\%
Map 32\% Reduce 0\%
Map 48\% Reduce 0\%
Map 65\% Reduce 0\%
Map 81\% Reduce 0\%
Map 97\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 14\%
Map 100\% Reduce 29\%
Map 100\% Reduce 43\%
Map 100\% Reduce 57\%
Map 100\% Reduce 71\%
Map 100\% Reduce 86\%
Map 100\% Reduce 100\%
mapreduce returns a datastore, meanDelayByDay, with files in the current folder.
Read the final result from the output datastore, meanDelayByDay.
```

result = readall(meanDelayByDay)
result=7\times2 table
Key Value

```
```

{[7.0038]}
{[7.0833]}
{[9.4193]}
{[9.3185]}
{[4.2095]}
{[5.8569]}
{[6.5241]}

```

\section*{Organize Results}

The integer keys (1 to 7) represent the days of the week. To organize the results more, convert the keys to a categorical array, retrieve the numeric values from the single element cells, and rename the variable names of the resulting table.
```

result.Key = categorical(result.Key, 1:7, ...
{'Mon','Tue','Wed','Thu','Fri','Sat','Sun'});
result.Value = cell2mat(result.Value);
result.Properties.VariableNames = {'DayOfWeek', 'MeanArrDelay'}
result=7\times2 table
DayOfWeek MeanArrDelay
Wed 7.0038
Mon 7.0833
Fri 9.4193
Thu 9.3185
Sat 4.2095
Tue 5.8569
Sun 6.5241

```

Sort the rows of the table by mean flight arrival delay. This reveals that Saturday is the best day of the week to travel, whereas Friday is the worst.
```

result = sortrows(result,'MeanArrDelay')
result=7\times2 table
DayOfWeek MeanArrDelay
Sat 4.2095
Tue 5.8569
Sun 6.5241

```
\begin{tabular}{ll}
Wed & 7.0038 \\
Mon & 7.0833 \\
Thu & 9.3185 \\
Fri & 9.4193
\end{tabular}

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Data is an n-by-2 table: first column is the DayOfWeek and the second
% is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN = ~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);
% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');
% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore,intermKeys,intermVals);
function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, s]};
end
end
%--
function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
n = 0;
s = 0;
% get all sets of intermediate results
while hasnext(intermValIter)
intermValue = getnext(intermValIter);
n = n + intermValue(1);
s = s + intermValue(2);
end
% accumulate the sum and count

```
```

    mean = s/n;
    % add results to the output datastore
    add(outKVStore,intermKey,mean);
    end

```


\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Create Histograms Using MapReduce}

This example shows how to visualize patterns in a large data set without having to load all of the observations into memory simultaneously. It demonstrates how to compute lower volume summaries of the data that are sufficient to generate a graphic.

Histograms are a common visualization technique that give an empirical estimate of the probability density function (pdf) of a variable. Histograms are well-suited to a big data environment, because they can reduce the size of raw input data to a vector of counts. Each count is the number of observations that falls within each of a set of contiguous, numeric intervals or bins.

The mapreduce function computes counts separately on multiple blocks of the data. Then mapreduce sums the counts from all blocks. The map function and reduce function are both extremely simple in this example. Nevertheless, you can build flexible visualizations with the summary information that they collect.

\section*{Prepare Data}

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, select ArrDelay (flight arrival delay) as the variable of interest.
```

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

```

The datastore treats ' NA ' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variable of interest, which you can verify using preview.
```

preview(ds)
ans=8\times1 table
ArrDelay
8
8
21
1 3
4
5 9

```

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper collects the counts of flights with various amounts of arrival delay by accumulating the arrival delays into bins. The bins are defined by the fourth input argument to the map function, edges.

Display the map function file.
```

function visualizationMapper(data, ~, intermKVStore, edges)
% Count how many flights have arrival delay in each interval specified by
% the EDGES vector, and add these counts to INTERMKVSTORE.
counts = histc(data.ArrDelay, edges);
add(intermKVStore, 'Null', counts);
end

```

The bin size of the histogram is important. Bins that are too wide can obscure important details in the data set. Bins that are too narrow can lead to a noisy histogram. When working with very large data sets, it is best to avoid making multiple passes over the data to try out different bin widths. A simple way to avoid making multiple passes is to collect counts with bins that are narrow. Then, to get wider bins, you can aggregate adjacent bin counts without reprocessing the raw data. The flight arrival delays are reported in 1minute increments, so define 1-minute bins from - 60 minutes to 599 minutes.
```

edges = -60:599;

```

Create an anonymous function to configure the map function to use the bin edges. The anonymous function allows you to specialize the map function by specifying a particular value for its fourth input argument. Then, you can call the map function via the anonymous function, using only the three input arguments that the mapreduce function expects.
```

ourVisualizationMapper = ...

```
 @(data, info, intermKVstore) visualizationMapper(data, info, intermKVstore, edges)

Display the reduce function file. The reducer sums the counts stored by the mapper.
```

function visualizationReducer(~, intermValList, outKVStore)
if hasnext(intermValList)
outVal = getnext(intermValList);
else
outVal = [];
end
while hasnext(intermValList)
outVal = outVal + getnext(intermValList);
end
add(outKVStore, 'Null', outVal);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

result = mapreduce(ds, ourVisualizationMapper, @visualizationReducer);

```

* MAPREDUCE PROGRESS *

Map 0\% Reduce 0\%
Map 16\% Reduce 0\%
Map 32\% Reduce 0\%
Map 48\% Reduce 0\%
Map 65\% Reduce 0\%
Map 81\% Reduce 0\%
Map 97\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 100\%
mapreduce returns an output datastore, result, with files in the current folder.

\section*{Organize Results}

Read the final bin count results from the output datastore.
```

r = readall(result);
counts = r.Value{1};

```

\section*{Visualize Results}

Plot the raw bin counts using the whole range of the data (apart from a few outliers excluded by the mapper).
bar(edges, counts, 'hist');
title('Distribution of Flight Delay')
```

xlabel('Arrival Delay (min)')
ylabel('Flight Counts')

```


The histogram has long tails. Look at a restricted bin range to better visualize the delay distribution of the majority of flights. Zooming in a bit reveals there is a reporting artifact; it is common to round delays to 5-minute increments.
```

xlim([-50,50]);
grid on
grid minor

```


Smooth the counts with a moving average filter to remove the 5-minute recording artifact.
```

smoothCounts = filter( (1/5)*ones(1,5), 1, counts);
figure
bar(edges, smoothCounts, 'hist')
xlim([-50,50]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Flight Counts')
grid on
grid minor

```


To give the graphic a better balance, do not display the top \(1 \%\) of most-delayed flights. You can tailor the visualization in many ways without reprocessing the complete data set, assuming that you collected the appropriate information during the full pass through the data.
```

empiricalCDF = cumsum(counts);
empiricalCDF = empiricalCDF / empiricalCDF(end);
quartile99 = find(empiricalCDF>0.99, 1, 'first');
low99 = 1:quartile99;
figure
empiricalPDF = smoothCounts(low99) / sum(smoothCounts);
bar(edges(low99), empiricalPDF, 'hist');

```
```

xlim([-60,edges(quartile99)]);
ylim([0, max(empiricalPDF)*1.05]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)')
ylabel('Probability Density')

```

Distribution of Flight Delay

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function visualizationMapper(data, ~, intermKVStore, edges)
% Count how many flights have arrival delay in each interval specified by
% the EDGES vector, and add these counts to INTERMKVSTORE.
counts = histc(data.ArrDelay, edges);

```
```

    add(intermKVStore, 'Null', counts);
    end
%-------------------------------------------------------------------
function visualizationReducer(~, intermValList, outKVStore)
if hasnext(intermValList)
outVal = getnext(intermValList);
else
outVal = [];
end
while hasnext(intermValList)
outVal = outVal + getnext(intermValList);
end
add(outKVStore, 'Null', outVal);
end
%-

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Simple Data Subsetting Using MapReduce}

This example shows how to extract a subset of a large data set.
There are two aspects of subsetting, or performing a query. One is selecting a subset of the variables (columns) in the data set. The other is selecting a subset of the observations, or rows.

In this example, the selection of variables takes place in the definition of the datastore. (The map function could perform a further sub-selection of variables, but that is not within the scope of this example). In this example, the role of the map function is to perform the selection of observations. The role of the reduce function is to concatenate the subsetted records extracted by each call to the map function. This approach assumes that the data set can fit in memory after the Map phase.

\section*{Prepare Data}

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. This example uses 15 variables out of the 29 variables available in the data.
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = ds.VariableNames([1 2 5 9 12 13 15 16 17 ...
18 20 21 25 26 27]);
ds.SelectedVariableNames
ans = 1x15 cell array
Columns 1 through 4
{'Year'} {'Month'} {'DepTime'} {'UniqueCarrier'}
Columns 5 through 8
{'ActualElapsedTime'} {'CRSElapsedTime'} {'ArrDelay'} {'DepDelay'}
Columns 9 through 13
{'Origin'} {'Dest'} {'TaxiIn'} {'TaxiOut'} {'CarrierDelay'}
Columns 14 through 15
{'WeatherDelay'} {'NASDelay'}

```

The datastore treats 'NA ' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the specified variables of interest, which you can verify using preview.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { ans }=8 \times 15 \\
\text { Year }
\end{array}
\] & table Month & DepTime & UniqueCarrier & ActualElapsedTime & CRSElapsedTime \\
\hline 1987 & 10 & 642 & \{'PS'\} & 53 & 57 \\
\hline 1987 & 10 & 1021 & \{'PS'\} & 63 & 56 \\
\hline 1987 & 10 & 2055 & \{'PS'\} & 83 & 82 \\
\hline 1987 & 10 & 1332 & \{'PS'\} & 59 & 58 \\
\hline 1987 & 10 & 629 & \{'PS'\} & 77 & 72 \\
\hline 1987 & 10 & 1446 & \{'PS'\} & 61 & 65 \\
\hline 1987 & 10 & 928 & \{'PS'\} & 84 & 79 \\
\hline 1987 & 10 & 859 & \{'PS'\} & 155 & 143 \\
\hline
\end{tabular}

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper receives a table with the variables described by the SelectedVariableNames property in the datastore. Then, the mapper extracts flights that had a high amount of delay after pushback from the gate. Specifically, it identifies flights with a duration exceeding 2.5 times the length of the scheduled duration. The mapper ignores flights prior to 1995, because some of the variables of interest for this example were not collected before that year.

Display the map function file.
```

function subsettingMapper(data, ~, intermKVStore)
% Select flights from 1995 and later that had exceptionally long
% elapsed flight times (including both time on the tarmac and time in
% the air).
idx = data.Year > 1994 \& (data.ActualElapsedTime - data.CRSElapsedTime)...
> 1.50 * data.CRSElapsedTime;
intermVal = data(idx,:);
add(intermKVStore,'Null',intermVal);
end

```

The reducer receives the subsetted observations obtained from the mapper and simply concatenates them into a single table. The reducer returns one key (which is relatively meaningless) and one value (the concatenated table).

Display the reduce function file.
```

function subsettingReducer(~, intermValList, outKVStore)
% get all intermediate results from the list
outVal = {};
while hasnext(intermValList)
outVal = [outVal; getnext(intermValList)];
end
% Note that this approach assumes the concatenated intermediate values (the
% subset of the whole data) fit in memory.
add(outKVStore, 'Null', outVal);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

result = mapreduce(ds, @subsettingMapper, @subsettingReducer);

```

* MAPREDUCE PROGRESS *

Map 0\% Reduce 0\%
Map 16\% Reduce 0\%
Map 32\% Reduce 0\%
Map 48\% Reduce 0\%
Map 65\% Reduce 0\%
Map 81\% Reduce 0\%
Map 97\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 100\%
mapreduce returns an output datastore, result, with files in the current folder.

\section*{Display Results}

Look for patterns in the first 10 variables that were pulled from the data set. These variables identify the airline, the destination, and the arrival airports, as well as some basic delay information.
```

r = readall(result);
tbl = r.Value{1};
tbl(:,1:10)

Year	Month	DepTime	UniqueCarrier	ActualElapsedTime	CRSElapsedTime
1995	6	1601	\{'US'\}	162	58
1996	6	1834	\{'CO'\}	241	75
1997	1	730	\{'DL'\}	110	43
1997	4	1715	\{'UA' \}	152	57
1997	9	2232	\{ 'NW' \}	143	50
1997	10	1419	\{'CO'\}	196	58
1998	3	2156	\{'DL'\}	139	49
1998	10	1803	\{'NW'\}	291	81
2000	5	830	\{'WN'\}	140	55
2000	8	1630	\{'CO'\}	357	123
2002	6	1759	\{'US'\}	260	67
2003	3	1214	\{'XE'\}	214	84
2003	3	604	\{'XE'\}	175	60
2003	4	1556	\{'MQ'\}	142	52
2003	5	1954	\{'US'\}	127	48
2003	7	1250	\{'FL'\}	261	95

```

Looking at the first record, a U.S. Air flight departed the gate 14 minutes after its scheduled departure time and arrived 118 minutes late. The flight experienced a delay of 104 minutes after pushback from the gate which is the difference between ActualElapsedTime and CRSElapsedTime.

There is one anomalous record. In February of 2006, a JetBlue flight had a departure time of 3:24 a.m. and an elapsed flight time of 1650 minutes, but an arrival delay of only 415 minutes. This might be a data entry error.

Otherwise, there are no clear cut patterns concerning when and where these exceptionally delayed flights occur. No airline, time of year, time of day, or single airport dominates. Some intuitive patterns, such as O'Hare (ORD) in the winter months, are certainly present.

\section*{Delay Patterns}

Beginning in 1995, the airline system performance data began including measurements of how much delay took place in the taxi phases of a flight. Then, in 2003, the data also began to include certain causes of delay.

Examine these two variables in closer detail.

For these exceptionally delayed flights, the great majority of delay occurs during taxi out, on the tarmac. Moreover, the major cause of the delay is NASDelay. NAS delays are holds imposed by the national aviation authorities on departures headed for an airport that is forecast to be unable to handle all scheduled arrivals at the time the flight is scheduled to arrive. NAS delay programs in effect at any given time are posted at https:// www.fly.faa.gov/ois/.

Preferably, when NAS delays are imposed, boarding of the aircraft is simply delayed. Such a delay would show up as a departure delay. However, for most of the flights selected for this example, the delays took place largely after departure from the gate, leading to a taxi delay.

\section*{Rerun MapReduce}

The previous map function had the subsetting criteria hard-wired in the function file. A new map function would have to be written for any new query, such as flights departing San Francisco on a given day.

A generic mapper can be more adaptive by separating out the subsetting criteria from the map function definition and using an anonymous function to configure the mapper for each query. This generic mapper uses a fourth input argument that supplies the desired query variable.

Display the generic map function file.
```

function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)
intermKey = 'Null';
intermVal = data(subsetter(data), :);
add(intermKVStore,intermKey,intermVal);
end

```

Create an anonymous function that performs the same selection of rows that is hardcoded in subsettingMapper.
```

inFlightDelay150percent = ...
@(data) data.Year > 1994 \& ...
(data.ActualElapsedTime-data.CRSElapsedTime) > 1.50*data.CRSElapsedTime;

```

Since the mapreduce function requires the map and reduce functions to accept exactly three inputs, use another anonymous function to specify the fourth input to the mapper, subsettingMapperGeneric. Subsequently, you can use this anonymous function to call subsettingMapperGeneric using only three arguments (the fourth is implicit).
```

configuredMapper = ...
@(data, info, intermKVStore) subsettingMapperGeneric(data, info, ...
intermKVStore, inFlightDelay150percent);

```

Use mapreduce to apply the generic map function to the input datastore.
```

result2 = mapreduce(ds, configuredMapper, @subsettingReducer);
********************************

* MAPREDUCE PROGRESS *
********************************
Map 0% Reduce 0%
Map 16% Reduce 0%

```
\begin{tabular}{lrlr}
Map & \(32 \%\) & Reduce & \(0 \%\) \\
Map & \(48 \%\) & Reduce & \(0 \%\) \\
Map & \(65 \%\) & Reduce & \(0 \%\) \\
Map & \(81 \%\) & Reduce & \(0 \%\) \\
Map & \(97 \%\) & Reduce & \(0 \%\) \\
Map & \(100 \%\) & Reduce & \(0 \%\) \\
Map & \(100 \%\) & Reduce & \(100 \%\)
\end{tabular}
mapreduce returns an output datastore, result2, with files in the current folder.

\section*{Verify Results}

Confirm that the generic mapper gets the same result as with the hard-wired subsetting logic.
```

r2 = readall(result2);
tbl2 = r2.Value{1};
if isequaln(tbl, tbl2)
disp('Same results with the configurable mapper.')
else
disp('Oops, back to the drawing board.')
end
Same results with the configurable mapper.

```

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function subsettingMapper(data, ~, intermKVStore)
% Select flights from 1995 and later that had exceptionally long
% elapsed flight times (including both time on the tarmac and time in
% the air).
idx = data.Year > 1994 \& (data.ActualElapsedTime - data.CRSElapsedTime)...
> 1.50 * data.CRSElapsedTime;
intermVal = data(idx,:);
add(intermKVStore,'Null',intermVal);
end
%---------------------------------------------------------------------------
function subsettingReducer(~, intermValList, outKVStore)
% get all intermediate results from the list
outVal = {};

```
```

    while hasnext(intermValList)
        outVal = [outVal; getnext(intermValList)];
    end
    % Note that this approach assumes the concatenated intermediate values (the
    % subset of the whole data) fit in memory.
    add(outKVStore, 'Null', outVal);
    end
%----------------------------------------------------------------------------
function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)
intermKey = 'Null';
intermVal = data(subsetter(data), :);
add(intermKVStore,intermKey,intermVal);
end
%-

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Using MapReduce to Compute Covariance and Related Quantities}

This example shows how to compute the mean and covariance for several variables in a large data set using mapreduce. It then uses the covariance to perform several follow-up calculations that do not require another iteration over the entire data set.

\section*{Prepare Data}

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, select ActualElapsedTime (total flight time), Distance (total flight distance), DepDelay (flight departure delay), and ArrDelay (flight arrival delay) as the variables of interest.
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ActualElapsedTime', 'Distance', ...
'DepDelay', 'ArrDelay'};

```

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variables of interest, which you can verify using preview.
```

preview(ds)
ans=8\times4 table
ActualElapsedTime Distance DepDelay ArrDelay
_ _ _ _ _ _ _

53	308	12	8
63	296	1	8
83	480	20	21
59	296	12	13
77	373	-1	4
61	308	63	59
84	447	-2	3
155	954	-1	11

```

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper computes the count, mean, and covariance for the variables in each block of data in the datastore, ds. Then, the mapper stores the computed values for each block as an intermediate key-value pair consisting of a single key with a cell array containing the three computed values.

Display the map function file.
```

function covarianceMapper(t,~,intermKVStore)
% Get data from input table and remove any rows with missing values
x = t{:,:};
x = x(~any(isnan(x),2),:);
% Compute and save the count, mean, and covariance
n = size(x,1);
m = mean(x,1);
c = cov(x,1);
% Store values as a single item in the intermediate key/value store
add(intermKVStore,'key',{n m c})
end

```

The reducer combines the intermediate results for each block to obtain the count, mean, and covariance for each variable of interest in the entire data set. The reducer stores the final key-value pairs for the keys 'count', 'mean', and 'cov' with the corresponding values for each variable.

Display the reduce function file.
```

function covarianceReducer(~,intermValIter,outKVStore)
% We will combine results computed in the mapper for different chunks of
% the data, updating the count, mean, and covariance each time we add a new
% chunk.
% First, initialize everything to zero (scalar 0 is okay)
n1 = 0; % no rows so far
m1 = 0; % mean so far
cl = 0; % covariance so far

```
```

    while hasnext(intermValIter)
    % Get the next chunk, and extract the count, mean, and covariance
    t = getnext(intermValIter);
    n2 = t{1};
    m2 = t{2};
    c2 = t{3};
    % Use weighting formulas to update the values so far
    n = n1+n2; % new count
    m = (n1*m1 + n2*m2) / n; % new mean
    % New covariance is a weighted combination of the two covariance, plus
    % additional terms that relate to the difference in means
    c1 = (n1*c1 + n2*c2 + n1*(m1-m)'*(m1-m) + n2*(m2-m)'*(m2-m))/ n;
    % Store the new mean and count for the next iteration
    m1 = m;
    n1 = n;
    end
% Save results in the output key/value store
add(outKVStore,'count',n1);
add(outKVStore,'mean',m1);
add(outKVStore,'cov',c1);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

outds = mapreduce(ds, @covarianceMapper, @covarianceReducer);

```
```

*********************************

```
* MAPREDUCE PROGRESS
\(* *\)
Map 0\% Reduce 0\%
Map 16\% Reduce 0\%
Map 32\% Reduce 0\%
Map 48\% Reduce 0\%
Map 65\% Reduce 0\%
Map 81\% Reduce 0\%
Map \(97 \%\) Reduce \(0 \%\)
Map 100\% Reduce 0\%
Map 100\% Reduce 100\%
mapreduce returns a datastore, outds, with files in the current folder.

View the results of the mapreduce call by using the readall function on the output datastore.
```

results = readall(outds)
results=3\times2 table
Key Value
{'count'} {[ 120664]}
{'mean' } {1x4 double}
{'cov' } {4x4 double}
Count = results.Value{1};
MeanVal = results.Value{2};
Covariance = results.Value{3};

```

\section*{Compute Correlation Matrix}

The covariance, mean, and count values are useful to perform further calculations.
Compute a correlation matrix by finding the standard deviations and normalizing them to correlation form.
```

s = sqrt(diag(Covariance));
Correlation = Covariance ./ (s*s')
Correlation = 4×4

1.0000	0.9666	0.0278	0.0902
0.9666	1.0000	0.0216	0.0013
0.0278	0.0216	1.0000	0.8748
0.0902	0.0013	0.8748	1.0000

```

The elapsed time (first column) and distance (second column) are highly correlated, since Correlation \((2,1)=0.9666\). The departure delay (third column) and arrival delay (fourth column) are also highly correlated, since Correlation \((4,3)=0.8748\).

\section*{Compute Regression Coefficients}

Compute some regression coefficients to predict the arrival delay, ArrDelay, using the other three variables as predictors.
```

slopes = Covariance(1:3,1:3)\Covariance(1:3,4);
intercept = MeanVal(4) - MeanVal(1:3)*slopes;

```
```

b = table([intercept; slopes], 'VariableNames', {'Estimate'}, ...
'RowNames', {'Intercept','ActualElapsedTime','Distance','DepDelay'})
b=4\times1 table

```
```

                                    Estimate
    ```

Intercept
ActualElapsedTime Distance DepDelay
- 19.912
0.56278
-0.068721
0.94689

\section*{Perform PCA}

Use svd to perform PCA (principal components analysis). PCA is a technique for finding a lower dimensional summary of a data set. The following calculation is a simplified version of PCA, but more options are available from the pca and pcacov functions in Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\).

You can carry out PCA using either the covariance or correlation. In this case, use the correlation since the difference in scale of the variables is large. The first two components capture most of the variance.
```

[~,latent,pcacoef] = svd(Correlation);
latent = diag(latent)
latent = 4×1

```
2.0052
1.8376
0.1407
0.0164

Display the coefficient matrix. Each column of the coefficients matrix describes how one component is defined as a linear combination of the standardized original variables. The first component is mostly an average of the first two variables, with some additional contribution from the other variables. Similarly, the second component is mostly an average of the last two variables.
pcacoef
pcacoef \(=4 \times 4\)
\begin{tabular}{rrrr}
-0.6291 & 0.3222 & -0.2444 & -0.6638 \\
-0.6125 & 0.3548 & 0.2591 & 0.6572 \\
-0.3313 & -0.6244 & 0.6673 & -0.2348 \\
-0.3455 & -0.6168 & -0.6541 & 0.2689
\end{tabular}

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function covarianceMapper(t,~,intermKVStore)
% Get data from input table and remove any rows with missing values
x = t{:,:};
x = x(~any(isnan(x),2),:);
% Compute and save the count, mean, and covariance
n = size(x,1);
m = mean(x,1);
c = cov(x,1);
% Store values as a single item in the intermediate key/value store
add(intermKVStore,'key',{n m c})
end
%-
function covarianceReducer(~,intermValIter,outKVStore)
% We will combine results computed in the mapper for different chunks of
% the data, updating the count, mean, and covariance each time we add a new
% chunk.
% First, initialize everything to zero (scalar 0 is okay)
n1 = 0; % no rows so far
m1 = 0; % mean so far
cl = 0; % covariance so far
while hasnext(intermValIter)
% Get the next chunk, and extract the count, mean, and covariance
t = getnext(intermValIter);
n2 = t{1};
m2 = t{2};
c2 = t{3};
% Use weighting formulas to update the values so far
n = n1+n2; % new count
m = (n1*m1 + n2*m2) / n; % new mean

```
```

            % New covariance is a weighted combination of the two covariance, plus
            % additional terms that relate to the difference in means
            c1 = (n1*c1 + n2*c2 + n1*(m1-m)'*(m1-m) + n2*(m2-m)'*(m2-m))/ n;
            % Store the new mean and count for the next iteration
            m1 = m;
            n1 = n;
    end
    % Save results in the output key/value store
    add(outKVStore,'count',n1);
    add(outKVStore,'mean',m1);
    add(outKVStore,'cov',c1);
    end
%--

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Compute Summary Statistics by Group Using MapReduce}

This example shows how to compute summary statistics organized by group using mapreduce. It demonstrates the use of an anonymous function to pass an extra grouping parameter to a parameterized map function. This parameterization allows you to quickly recalculate the statistics using a different grouping variable.

\section*{Prepare Data}

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. For this example, select Month, UniqueCarrier (airline carrier ID), and ArrDelay (flight arrival delay) as the variables of interest.
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'Month', 'UniqueCarrier', 'ArrDelay'};

```

The datastore treats ' NA ' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variables of interest, which you can verify using preview.
```

preview(ds)
ans=8\times3 table
Month UniqueCarrier ArrDelay

| 10 | \{'PS'\} | 8 |
| :---: | :---: | :---: |
| 10 | \{'PS'\} | 8 |
| 10 | \{'PS'\} | 21 |
| 10 | \{'PS'\} | 13 |
| 10 | \{'PS'\} | 4 |
| 10 | \{'PS'\} | 59 |
| 10 | \{'PS'\} | 3 |
| 10 | \{'PS'\} | 11 |

```

\section*{Run MapReduce}

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper computes the grouped statistics for each block of data and stores the statistics as intermediate key-value pairs. Each intermediate key-value pair has a key for the group level and a cell array of values with the corresponding statistics.

This map function accepts four input arguments, whereas the map reduce function requires the map function to accept exactly three input arguments. The call to mapreduce (below) shows how to pass in this extra parameter.

Display the map function file.
```

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first
delays = data.ArrDelay;
groups = data.(groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);
% Find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');
% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);
function out = grpstatsfun(x)
n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).^2)/n; % variance
s = sum((x-m).^3)/n; % skewness without normalization
k = sum((x-m).^4)/n; % kurtosis without normalization
out = {[n, m, v, s, k]};
end
end

```

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key (in this case, the airline carrier ID), so each call to the reduce function works on the values associated with one airline. The reducer receives a list of the intermediate statistics for the airline specified by the input key (intermKey) and combines the statistics into separate vectors: \(n, m, v, s\), and \(k\). Then, the reducer uses these vectors to calculate the count, mean, variance, skewness, and kurtosis for a single airline. The final key is the airline carrier code, and the associated values are stored in a structure with five fields.

Display the reduce function file.
```

function statsByGroupReducer(intermKey, intermValIter, outKVStore)
n = [];
m = [];
v = [];
S = [];
k = [];
% Get all sets of intermediate statistics
while hasnext(intermValIter)
value = getnext(intermValIter);
n = [n; value(1)];
m = [m; value(2)];
v = [v; value(3)];
s = [s; value(4)];
k = [k; value(5)];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the
% CovarianceMapReduceExample for an alternative pairwise reduction approach
% Combine the intermediate results
count = sum(n);
meanVal = sum(n.*m)/count;
d = m - meanVal;
variance = (sum(n.*v) + sum(n.*d.^2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);
outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);
% Add results to the output datastore
add(outKVStore,intermKey,outValue);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds. Since the parameterized map function accepts four inputs, use an anonymous function to pass in the airline carrier IDs as the fourth input.
```

outds1 = mapreduce(ds, ...
@(data,info,kvs)statsByGroupMapper(data,info,kvs,'UniqueCarrier'), ...
@statsByGroupReducer);

```
```

*********************************

* MAPREDUCE PROGRESS *
********************************
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

```
mapreduce returns a datastore, outds1, with files in the current folder.
Read the final results from the output datastore.
```

r1 = readall(outdsl)

```
\begin{tabular}{|c|c|}
\hline Key & Value \\
\hline \{'PS' & \{1x1 struct \(\}\) \\
\hline \{'TW' & \{1x1 struct \(\}\) \\
\hline \{'UA' & \{1x1 struct \(\}\) \\
\hline \{'WN' \} & \{1x1 struct \(\}\) \\
\hline \{'EA' & \{1x1 struct \(\}\) \\
\hline \{'HP' \} & \{1x1 struct \(\}\) \\
\hline \{'NW' \} & \{1x1 struct \(\}\) \\
\hline \{'PA (1)'\} & \{1x1 struct \(\}\) \\
\hline \{'PI' \} & \{1x1 struct \(\}\) \\
\hline \{'CO' \} & \{1x1 struct \(\}\) \\
\hline \{'DL' \} & \{1x1 struct \(\}\) \\
\hline \{'AA' \} & \{1x1 struct \(\}\) \\
\hline \{'US' & \{1x1 struct \(\}\) \\
\hline
\end{tabular}
```

{'AS' } {1x1 struct}
{'ML (1)'} {1x1 struct}
{'AQ' } {1x1 struct}

```

\section*{Organize Results}

To organize the results better, convert the structure containing the statistics into a table and use the carrier IDs as the row names. mapreduce returns the key-value pairs in the same order as they were added by the reduce function, so sort the table by carrier ID.
```

statsByCarrier = struct2table(cell2mat(r1.Value), 'RowNames', r1.Key);
statsByCarrier = sortrows(statsByCarrier, 'RowNames')
statsByCarrier=29\times5 table

```

Count Mean
\(\qquad\)
50
1457
8.0771
11.936
7.048
7.575
7.4971
8.2434
10.028
8.4849
9.5144
\(-1.5387\)
7.5897
0.15942
8.8591

Variance
Skewness
\(\qquad\)

\section*{Change Grouping Parameter}

The use of an anonymous function to pass in the grouping variable allows you to quickly recalculate the statistics with a different grouping.

For this example, recalculate the statistics and group the results by Month, instead of by the carrier IDs, by simply passing the Month variable into the anonymous function.
```

outds2 = mapreduce(ds,
@(data,info,kvs)statsByGroupMapper(data,info,kvs,'Month'), ...
@statsByGroupReducer);

```

* MAPREDUCE PROGRESS

Map \(0 \%\) Reduce \(0 \%\)
Map 16\% Reduce 0\%
Map 32\% Reduce 0\%
Map 48\% Reduce 0\%
Map 65\% Reduce 0\%
Map 81\% Reduce 0\%
Map 97\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 17\%
Map 100\% Reduce 33\%
Map 100\% Reduce 50\%
Map 100\% Reduce 67\%
Map 100\% Reduce 83\%
Map 100\% Reduce 100\%

Read the final results and organize them into a table.
```

r2 = readall(outds2);
r2 = sortrows(r2,'Key');
statsByMonth = struct2table(cell2mat(r2.Value));
mon = {'Jan','Feb','Mar','Apr','May','Jun', ...
'Jul','Aug','Sep','Oct','Nov','Dec'};
statsByMonth.Properties.RowNames = mon

```
statsByMonth=12×5 table
Count Mean
\(\qquad\)
\begin{tabular}{lrrrrr}
Jan & 9870 & 8.5954 & 973.69 & 4.1142 & 35.152 \\
Feb & 9160 & 7.3275 & 911.14 & 4.7241 & 45.03 \\
Mar & 10219 & 7.5536 & 976.34 & 5.1678 & 63.155 \\
Apr & 9949 & 6.0081 & 1077.4 & 8.9506 & 170.52 \\
May & 10180 & 5.2949 & 737.09 & 4.0535 & 30.069 \\
Jun & 10045 & 10.264 & 1266.1 & 4.8777 & 43.5 \\
Jul & 10340 & 8.7797 & 1069.7 & 5.1428 & 64.896 \\
Aug & 10470 & 7.4522 & 908.64 & 4.1959 & 29.66 \\
Sep & 9691 & 3.6308 & 664.22 & 4.6573 & 38.964 \\
Oct & 10590 & 4.6059 & 684.94 & 5.6407 & 74.805
\end{tabular}
\begin{tabular}{llllll}
Nov & 10071 & 5.2835 & 808.65 & 8.0297 & 186.68 \\
Dec & 10281 & 10.571 & 1087.6 & 3.8564 & 28.823
\end{tabular}

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first
delays = data.ArrDelay;
groups = data.(groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);
% Find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');
% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);
function out = grpstatsfun(x)
n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).^2)/n; % variance
s = sum((x-m).^3)/n; % skewness without normalization
k = sum((x-m).^4)/n; % kurtosis without normalization
out = {[n, m, v, s, k]};
end
end
%---------------------------------------------------------------------
function statsByGroupReducer(intermKey, intermValIter, outKVStore)
n = [];
m = [];
v = [];
s = [];
k = [];
% Get all sets of intermediate statistics
while hasnext(intermValIter)
value = getnext(intermValIter);
n = [n; value(1)];
m = [m; value(2)];

```
```

        v = [v; value(3)];
        s = [s; value(4)];
        k = [k; value(5)];
    end
    % Note that this approach assumes the concatenated intermediate values fit
    % in memory. Refer to the reducer function, covarianceReducer, of the
    % CovarianceMapReduceExample for an alternative pairwise reduction approach
    % Combine the intermediate results
    count = sum(n);
    meanVal = sum(n.*m)/count;
    d = m - meanVal;
    variance = (sum(n.*v) + sum(n.*d.^2))/count;
    skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.^2)))./(count*variance^(1.5));
    kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.^3)))./(count*variance^2);
    outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
    'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);
    % Add results to the output datastore
    add(outKVStore,intermKey,outValue);
    end
%--------------------------------------------------------------------------

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Using MapReduce to Fit a Logistic Regression Model}

This example shows how to use mapreduce to carry out simple logistic regression using a single predictor. It demonstrates chaining multiple map reduce calls to carry out an iterative algorithm. Since each iteration requires a separate pass through the data, an anonymous function passes information from one iteration to the next to supply information directly to the mapper.

\section*{Prepare Data}

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, the variables of interest are ArrDelay (flight arrival delay) and Distance (total flight distance).
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'Distance'};

```

The datastore treats ' NA' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the specified variables of interest, which you can verify using preview.
```

preview(ds)
ans=8\times2 table
ArrDelay Distance

```
\(\qquad\)
```

            8 308
            8 296
            21 480
            13 296
            4 373
            59 308
            3 447
            11 954
    ```

\section*{Perform Logistic Regression}

Logistic regression is a way to model the probability of an event as a function of another variable. In this example, logistic regression models the probability of a flight being more than 20 minutes late as a function of the flight distance, in thousands of miles.

To accomplish this logistic regression, the map and reduce functions must collectively perform a weighted least-squares regression based on the current coefficient values. The mapper computes a weighted sum of squares and cross product for each block of input data.

Display the map function file.
```

function logitMapper(b,t,~,intermKVStore)
% Get data input table and remove any rows with missing values
y = t.ArrDelay;
x = t.Distance;
t = ~isnan(x) \& ~isnan(y);
y = y(t)>20; % late by more than 20 min
x = x(t)/1000; % distance in thousands of miles
% Compute the linear combination of the predictors, and the estimated mean
% probabilities, based on the coefficients from the previous iteration
if ~isempty(b)
% Compute xb as the linear combination using the current coefficient
% values, and derive mean probabilities mu from them
xb = b(1)+b(2)*x;
mu = 1./(1+exp(-xb));
else
% This is the first iteration. Compute starting values for mu that are
% 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.
mu = (y+.5)/2;
xb = log(mu./(1-mu));
end
% To perform weighted least squares, compute a sum of squares and cross
% products matrix:
% (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn),
% where X = [X1;X2;...;Xn] and W = [W1;W2;...;Wn].
%
% The mapper receives one chunk at a time and computes one of the terms on
% the right hand side. The reducer adds all of the terms to get the
% quantity on the left hand side, and then performs the regression.
w = (mu.*(1-mu)); % weights
z = xb + (y - mu) .* 1./w; % adjusted response
X = [ones(size(x)),x,z]; % matrix of unweighted data
wss = X' * bsxfun(@times,w,X); % weighted cross-products X1'*W1*X1
% Store the results for this part of the data.

```
```

    add(intermKVStore, 'key', wss);
    end

```

The reducer computes the regression coefficient estimates from the sums of squares and cross products.

Display the reduce function file.
```

function logitReducer(~,intermValIter,outKVStore)
% We will operate over chunks of the data, updating the count, mean, and
% covariance each time we add a new chunk
old = 0;
% We want to perform weighted least squares. We do this by computing a sum
% of squares and cross products matrix
% M = (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
% where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].
%
% The mapper has computed the terms on the right hand side. Here in the
% reducer we just add them up.
while hasnext(intermValIter)
new = getnext(intermValIter);
old = old+new;
end
M = old; % the value on the left hand side
% Compute coefficients estimates from M. M is a matrix of sums of squares
% and cross products for [X Y] where X is the design matrix including a
% constant term and Y is the adjusted response for this iteration. In other
% words, Y has been included as an additional column of X. First we
% separate them by extracting the X'*W*X part and the X'*W*Y part.
XtWX = M(1:end-1,1:end-1);
XtWY = M(1:end-1,end);
% Solve the normal equations.
b = XtWX\XtWY;
% Return the vector of coefficient estimates.
add(outKVStore, 'key', b);
end

```

\section*{Run MapReduce}

Run mapreduce iteratively by enclosing the calls to mapreduce in a loop. The loop runs until the convergence criteria are met, with a maximum of five iterations.
```

% Define the coefficient vector, starting as empty for the first iteration.
b = [];
for iteration = 1:5
b_old = b;
iteration
% Here we will use an anonymous function as our mapper. This function
% definition includes the value of b computed in the previous
% iteration.
mapper = @(t,ignore,intermKVStore) logitMapper(b,t,ignore,intermKVStore);
result = mapreduce(ds, mapper, @logitReducer, 'Display', 'off');
tbl = readall(result);
b = tbl.Value{1}
% Stop iterating if we have converged.
if ~isempty(b old) \&\& ...
~any(abs(b-b_old) > 1e-6 * abs(b_old))
break
end
end
iteration = 1
b = 2×1

```
\(-1.7674\)
0.1209
```

iteration = 2

```
b \(=2 \times 1\)
-1.8327
0.1807
iteration = 3
```

b = 2x1
-1.8331
0.1806
iteration = 4
b = 2\times1
-1.8331
0.1806

```

\section*{View Results}

Use the resulting regression coefficient estimates to plot a probability curve. This curve shows the probability of a flight being more than 20 minutes late as a function of the flight distance.
```

xx = linspace(0,4000);
yy = 1./(1+exp(-b(1)-b(2)*(xx/1000)));
plot(xx,yy);
xlabel('Distance');
ylabel('Prob[Delay>20]')

```


\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function logitMapper(b,t,~,intermKVStore)
% Get data input table and remove any rows with missing values
y = t.ArrDelay;
x = t.Distance;
t = ~isnan(x) \& ~isnan(y);
y = y(t)>20; % late by more than 20 min
x = x(t)/1000; %distance in thousands of miles

```
 \% Compute the linear combination of the predictors, and the estimated mean
 \% probabilities, based on the coefficients from the previous iteration
```

    if ~isempty(b)
        % Compute xb as the linear combination using the current coefficient
        % values, and derive mean probabilities mu from them
        xb = b(1)+b(2)*x;
        mu = 1./(1+exp(-xb));
    else
        % This is the first iteration. Compute starting values for mu that are
        % 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.
        mu = (y+.5)/2;
        xb = log(mu./(1-mu));
    end
    % To perform weighted least squares, compute a sum of squares and cross
    % products matrix:
    % (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn),
    % where X = [X1;X2;...;Xn] and W = [W1;W2;...;Wn].
    %
    % The mapper receives one chunk at a time and computes one of the terms on
    % the right hand side. The reducer adds all of the terms to get the
    % quantity on the left hand side, and then performs the regression.
    w = (mu.*(1-mu)); %weights
    z = xb + (y - mu) .* 1./w; % adjusted response
    X = [ones(size(x)),x,z]; % matrix of unweighted data
    wss = X' * bsxfun(@times,w,X); % weighted cross-products X1'*W1*X1
    % Store the results for this part of the data.
    add(intermKVStore, 'key', wss);
    end
function logitReducer(~,intermValIter,outKVStore)
% We will operate over chunks of the data, updating the count, mean, and
% covariance each time we add a new chunk
old = 0;
% We want to perform weighted least squares. We do this by computing a sum
% of squares and cross products matrix
% M = (X'*W*X) = (X1'*W1*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
% where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].
%
% The mapper has computed the terms on the right hand side. Here in the
% reducer we just add them up.
while hasnext(intermValIter)

```
```

        new = getnext(intermValIter);
        old = old+new;
    end
    M = old; % the value on the left hand side
    % Compute coefficients estimates from M. M is a matrix of sums of squares
    % and cross products for [X Y] where X is the design matrix including a
    % constant term and Y is the adjusted response for this iteration. In other
    % words, Y has been included as an additional column of X. First we
    % separate them by extracting the X'*W*X part and the X'*W*Y part.
    XtWX = M(1:end-1,1:end-1);
    XtWY = M(1:end-1,end);
    % Solve the normal equations.
    b = XtWX\XtWY;
    % Return the vector of coefficient estimates.
    add(outKVStore, 'key', b);
    end
%--

```

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce}

This example shows how to compute a tall skinny QR (TSQR) factorization using mapreduce. It demonstrates how to chain mapreduce calls to perform multiple iterations of factorizations, and uses the info argument of the map function to compute numeric keys.

\section*{Prepare Data}

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, the variables of interest are ArrDelay (flight arrival delay), DepDelay (flight departure delay) and Distance (total flight distance).
```

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.ReadSize = 1000;
ds.SelectedVariableNames = {'ArrDelay', 'DepDelay', 'Distance'};

```

The datastore treats ' NA ' values as missing and replaces the missing values with NaN values by default. The ReadSize property lets you specify how to partition the data into blocks. Additionally, the SelectedVariableNames property allows you to work with only the specified variables of interest, which you can verify using preview.
```

preview(ds)
ans=8\times3 table
ArrDelay DepDelay Distance

8	12	308
8	1	296
21	20	480
13	12	296
4	-1	373
59	63	308
3	-2	447
11	-1	954

```

\section*{Chain MapReduce Calls}

The implementation of the multi-iteration TSQR algorithm needs to chain consecutive mapreduce calls. To demonstrate the general chaining design pattern, this example uses two mapreduce iterations. The output from the map function calls is passed into a large set of reducers, and then the output of these reducers becomes the input for the next mapreduce iteration.

\section*{First MapReduce Iteration}

In the first iteration, the map function, tsqrMapper, receives one block (the ith) of data, which is a table of size \(N_{i} \times 3\). The mapper computes the \(R\) matrix of this block of data and stores it as an intermediate result. Then, mapreduce aggregates the intermediate results by unique key before sending them to the reduce function. Thus, mapreduce sends all intermediate \(R\) matrices with the same key to the same reducer.

Since the reducer uses qr, which is an in-memory MATLAB function, it's best to first make sure that the \(R\) matrices fit in memory. This example divides the dataset into eight partitions. The mapreduce function reads the data in blocks and passes the data along with some meta information to the map function. The info input argument is the second input to the map function and it contains the read offset and file size information that are necessary to generate the key,
```

key = ceil(offset/fileSize/numPartitions).

```

Display the map function file.
```

function tsqrMapper(data, info, intermKVStore)
x = data{:,:};
x(any(isnan(x),2),:) = [];% Remove missing values
[~, r] = qr(x,0);
% intermKey = randi(4); % random integer key for partitioning intermediate results
intermKey = computeKey(info, 8);
add(intermKVStore,intermKey, r);
function key = computeKey(info, numPartitions)
fileSize = info.FileSize; % total size of the underlying data file
partitionSize = fileSize/numPartitions; % size in bytes of each partition
offset = info.Offset; % offset in bytes of the current read
key = ceil(offset/partitionSize);
end
end

```

The reduce function receives a list of the intermediate \(R\) matrices, vertically concatenates them, and computes the \(R\) matrix of the concatenated matrix.

Display the reduce function file.
```

function tsqrReducer(intermKey, intermValIter, outKVStore)
x = [];
while (intermValIter.hasnext)
x = [x;intermValIter.getnext];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Consider increasing the number of reduce tasks (increasing the
% number of partitions in the tsqrMapper) and adding more iterations if it
% does not fit in memory.
[~, r] =qr(x,0);
add(outKVStore,intermKey,r);
end

```

Use mapreduce to apply the map and reduce functions to the datastore, ds.
```

outds1 = mapreduce(ds, @tsqrMapper, @tsqrReducer);

```

* MAPREDUCE PROGRESS *

Map 0\% Reduce 0\%
Map 10\% Reduce 0\%
Map 20\% Reduce 0\%
Map 30\% Reduce 0\%
Map 40\% Reduce 0\%
Map 50\% Reduce 0\%
Map 60\% Reduce 0\%
Map 70\% Reduce 0\%
Map 80\% Reduce 0\%
Map 90\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 11\%
Map 100\% Reduce 22\%
Map 100\% Reduce 33\%
Map 100\% Reduce 44\%
Map 100\% Reduce 56\%
Map 100\% Reduce 67\%
```

Map 100% Reduce 78%
Map 100% Reduce 89%
Map 100% Reduce 100%

```
mapreduce returns an output datastore, outds1, with files in the current folder.

\section*{Second MapReduce Iteration}

The second iteration uses the output of the first iteration, outds1, as its input. This iteration uses an identity mapper, identityMapper, which simply copies over the data using a single key, 'Identity'.

Display the identity mapper file.
```

function identityMapper(data, info, intermKVStore)
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore,'Identity', x);
end

```

The reducer function is the same in both iterations. The use of a single key by the map function means that mapreduce only calls the reduce function once in the second iteration.

Use mapreduce to apply the identity mapper and the same reducer to the output from the first mapreduce call.
```

outds2 = mapreduce(outds1, @identityMapper, @tsqrReducer);
*********************************

* MAPREDUCE PROGRESS
*********************************
Map 0% Reduce 0%
Map 11% Reduce 0%
Map 22% Reduce 0%
Map 33% Reduce 0%
Map 44% Reduce 0%
Map 55% Reduce 0%
Map 66% Reduce 0%
Map 77% Reduce 0%
Map 88% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

```

\section*{View Results}

Read the final results from the output datastore.
```

r = readall(outds2);
r.Value{:}
ans = 3\times3
105 x

0.1091	0.0893	0.5564
0	-0.0478	-0.4890
0	0	3.0130

```

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function tsqrMapper(data, info, intermKVStore)
x = data{:,:};
x(any(isnan(x),2),:) = [];% Remove missing values
[~, r] = qr(x,0);
% intermKey = randi(4); % random integer key for partitioning intermediate results
intermKey = computeKey(info, 8);
add(intermKVStore,intermKey, r);
function key = computeKey(info, numPartitions)
fileSize = info.FileSize; % total size of the underlying data file
partitionSize = fileSize/numPartitions; % size in bytes of each partition
offset = info.Offset; % offset in bytes of the current read
key = ceil(offset/partitionSize);
end
end
function tsqrReducer(intermKey, intermValIter, outKVStore)
x = [];
while (intermValIter.hasnext)
x = [x;intermValIter.getnext];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Consider increasing the number of reduce tasks (increasing the
% number of partitions in the tsqrMapper) and adding more iterations if it

```
```

    % does not fit in memory.
    [~, r] =qr(x,0);
    add(outKVStore,intermKey,r);
    end
%-----------------------------------------------
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore,'Identity', x);
end

```
\%

\section*{Reference}

1 Paul G. Constantine and David F. Gleich. 2011. Tall and skinny QR factorizations in MapReduce architectures. In Proceedings of the Second International Workshop on MapReduce and Its Applications (MapReduce '11). ACM, New York, NY, USA, 43-50. DOI=10.1145/1996092.1996103 https://doi.acm.org/10.1145/1996092.1996103

\section*{See Also}
datastore|mapreduce

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22

\section*{Compute Maximum Average HSV of Images with MapReduce}

This example shows how to use ImageDatastore and mapreduce to find images with maximum hue, saturation and brightness values in an image collection.

\section*{Prepare Data}

Create a datastore using the images in toolbox/matlab/demos and toolbox/matlab/ imagesci. The selected images have the extensions.jpg, .tif and .png.
```

demoFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'demos');
imsciFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'imagesci');

```

Create a datastore using the folder paths, and filter which images are included in the datastore using the FileExtensions Name-Value pair.
```

ds = imageDatastore({demoFolder, imsciFolder}, ...
'FileExtensions', {'.jpg', '.tif', '.png'});

```

\section*{Find Average Maximum HSV from All Images}

One way to find the maximum average hue, saturation, and brightness values in the collection of images is to use readimage within a for-loop, processing the images one at a time. For an example of this method, see "Read and Analyze Image Files" on page 12128.

This example uses mapreduce to accomplish the same task, however, the mapreduce method is highly scalable to larger collections of images. While the for-loop method is reasonable for small collections of images, it does not scale well to a large collection of images.

\section*{Scale to MapReduce}
- The mapreduce function requires a map function and a reduce function as inputs.
- The map function receives blocks of data and outputs intermediate results.
- The reduce function reads the intermediate results and produces a final result.

\section*{Map function}
- In this example, the map function stores the image data and the average HSV values as intermediate values.
- The intermediate values are associated with 3 keys, 'Average Hue', 'Average Saturation' and 'Average Brightness'.
function hueSaturationValueMapper(data, info, intermKVStore) if ~ismatrix(data)
hsv = rgb2hsv(data);
\% Extract Hue values
h = hsv(:,:,1);
\% Extract Saturation values
s = hsv(:,:, 2);
\% Extract Brightness values
v = hsv(:,:, 3);
\% Find average of HSV values
avgH = mean(h(:));
\(\operatorname{avg} S=\) mean(s(:));
\(\operatorname{avg} V=\operatorname{mean}(v(:)) ;\)
\% Add intermediate key-value pairs
add(intermKVStore, 'Average Hue', struct('Filename', info.Filename, 'Avg', avgH)); add(intermKVStore, 'Average Saturation', struct('Filename', info.Filename, 'Avg', add(intermKVStore, 'Average Brightness', struct('Filename', info.Filename, 'Avg', end
end

\section*{Reduce function}
- The reduce function receives a list of the image file names along with the respective average HSV values and finds the overall maximum values of average hue, saturation and brightness values.
- mapreduce only calls this reduce function 3 times, since the map function only adds three unique keys.
- The reduce function uses add to add a final key-value pair to the output. For example, 'Maximum Average Hue' is the key and the respective file name is the value.
```

function hueSaturationValueReducer(key, intermValIter, outKVSTore)
maxAvg = 0;
maxImageFilename = '';
% Loop over values for each key

```
```

    while hasnext(intermValIter)
        value = getnext(intermValIter);
        % Compare values to determine maximum
        if value.Avg > maxAvg
            maxAvg = value.Avg;
            maxImageFilename = value.Filename;
        end
    end
    % Add final key-value pair
    add(outKVSTore, ['Maximum ' key], maxImageFilename);
    end

```

\section*{Run MapReduce}

Use mapreduce to apply the map and reduce functions to the datastore, ds.
maxHSV = mapreduce(ds, @hueSaturationValueMapper, @hueSaturationValueReducer);
```

********************************

* MAPREDUCE PROGRESS *

```

Map \(0 \%\) Reduce \(0 \%\)
Map 12\% Reduce 0\%
Map 25\% Reduce 0\%
Map 37\% Reduce 0\%
Map 50\% Reduce 0\%
Map 62\% Reduce 0\%
Map 75\% Reduce 0\%
Map 87\% Reduce 0\%
Map 100\% Reduce 0\%
Map 100\% Reduce 33\%
Map 100\% Reduce 67\%
Map 100\% Reduce 100\%
mapreduce returns a datastore, maxHSV, with files in the current folder.
Read and display the final result from the output datastore, maxHSV. Use find and strcmp to find the file index from the Files property.
```

tbl = readall(maxHSV);
for i = 1:height(tbl)
figure;
idx = find(strcmp(ds.Files, tbl.Value{i}));
imshow(readimage(ds, idx), 'InitialMagnification', 'fit');

```
```

        title(tbl.Key{i});
    end

```

Maximum Average Hue

Maximum Average Saturation

\section*{Local Functions}

Listed here are the map and reduce functions that mapreduce applies to the data.
```

function hueSaturationValueMapper(data, info, intermKVStore)
if ~ismatrix(data)
hsv = rgb2hsv(data);
% Extract Hue values
h = hsv(:,:,1);
% Extract Saturation values
s = hsv(:,:,2);

```
```

    % Extract Brightness values
    v = hsv(:,:,3);
    % Find average of HSV values
    avgH = mean(h(:));
    avgS = mean(s(:));
    avgV = mean(v(:));
    % Add intermediate key-value pairs
    add(intermKVStore, 'Average Hue', struct('Filename', info.Filename, 'Avg', avgH));
    add(intermKVStore, 'Average Saturation', struct('Filename', info.Filename, 'Avg',
    add(intermKVStore, 'Average Brightness', struct('Filename', info.Filename, 'Avg',
    end
    end
%----------------------------------------------------------------------
maxAvg = 0;
maxImageFilename = '';
% Loop over values for each key
while hasnext(intermValIter)
value = getnext(intermValIter);
% Compare values to determine maximum
if value.Avg > maxAvg
maxAvg = value.Avg;
maxImageFilename = value.Filename;
end
end
% Add final key-value pair
add(outKVSTore, ['Maximum ' key], maxImageFilename);
end
%-

```

\section*{See Also}
datastore| imageDatastore|mapreduce|tall

\section*{More About}
- "Getting Started with MapReduce" on page 12-3
- "Build Effective Algorithms with MapReduce" on page 12-22
- "Tall Arrays for Out-of-Memory Data" on page 12-167
- "Getting Started with Datastore" on page 12-109

\section*{Getting Started with Datastore}

\author{
In this section... \\ "What Is a Datastore?" on page 12-109 \\ "Create and Read from a Datastore" on page 12-110
}

\section*{What Is a Datastore?}

A datastore is an object for reading a single file or a collection of files or data. The datastore acts as a repository for data that has the same structure and formatting. For example, each file in a datastore must contain data of the same type (such as numeric or text) appearing in the same order, and separated by the same delimiter.

A datastore is useful when:
- Each file in the collection might be too large to fit in memory. A datastore allows you to read and analyze data from each file in smaller portions that do fit in memory.
- Files in the collection have arbitrary names. A datastore acts as a repository for files in one or more folders. The files are not required to have sequential names.

You can create a datastore based on the type of data or application. The different types of datastores contain properties pertinent to the type of data that they support. For example, see the following table for a list of MATLAB datastores. For a complete list of datastores, see "Select Datastore for File Format or Application" on page 12-114.
\begin{tabular}{|l|l|}
\hline Type of File or Data & Datastore Type \\
\hline \begin{tabular}{l}
Text files containing column-oriented data, \\
including CSV files.
\end{tabular} & TabularTextDatastore \\
\hline \begin{tabular}{l}
Image files, including formats that are supported \\
by imread such as JPEG and PNG.
\end{tabular} & ImageDatastore \\
\hline \begin{tabular}{l}
Spreadsheet files with a supported Excel format \\
such as .xlsx.
\end{tabular} & SpreadsheetDatastore \\
\hline \begin{tabular}{l}
Key-value pair data that are inputs to or outputs \\
of mapreduce.
\end{tabular} & KeyValueDatastore \\
\hline Parquet files containing column-oriented data. & ParquetDatastore \\
\hline \begin{tabular}{l}
Custom file formats. Requires a provided \\
function for reading data.
\end{tabular} & FileDatastore \\
\hline Datastore for checkpointing tall arrays. & TallDatastore \\
\hline
\end{tabular}

\section*{Create and Read from a Datastore}

Use the tabularTextDatastore function to create a datastore from the sample file airlinesmall.csv, which contains departure and arrival information about individual airline flights. The result is a TabularTextDatastore object.

```

Advanced Text Format Properties:
TextscanFormats: {'%f', '%f', '%f' ... and 26 more}
ExponentCharacters: 'eEdD'
CommentStyle:
Whitespace: ' \b\t
MultipleDelimitersAsOne: false

```
Properties that control the table returned by preview, read, readall:
 SelectedVariableNames: \{'Year', 'Month', 'DayofMonth' ... and 26 more\}
 SelectedFormats: \{'\%f', '\%f', '\%f' ... and 26 more\}
 ReadSize: 20000 rows

After creating the datastore, you can preview the data without having to load it all into memory. You can specify variables (columns) of interest using the SelectedVariableNames property to preview or read only those variables.

\begin{tabular}{l}
\begin{tabular}{l}
ds. SelectedVariableNames \\
preview(ds)
\end{tabular} \\
ans = \\
DepTime \\
\hline \begin{tabular}{c}
642 \\
1021
\end{tabular} \\
\hline 2055 \\
1332
\end{tabular}

You can specify the values in your data which represent missing values. In airlinesmall.csv, missing values are represented by NA.
ds.TreatAsMissing = 'NA';
If all of the data in the datastore for the variables of interest fit in memory, you can read it using the readall function.

T = readall(ds);
Otherwise, read the data in smaller subsets that do fit in memory, using the read function. By default, the read function reads from a TabularTextDatastore 20000 rows at a time. However, you can change this value by assigning a new value to the ReadSize property.
```

ds.ReadSize = 15000;

```

Reset the datastore to the initial state before re-reading, using the reset function. By calling the read function within a while loop, you can perform intermediate calculations on each subset of data, and then aggregate the intermediate results at the end. This code calculates the maximum value of the DepDelay variable.
```

reset(ds)
X = [];
while hasdata(ds)
T = read(ds);
X(end+1) = max(T.DepDelay);
end
maxDelay = max(X)
maxDelay =
1438

```

If the data in each individual file fits in memory, you can specify that each call to read should read one complete file rather than a specific number of rows.
```

reset(ds)
ds.ReadSize = 'file';
X = [];
while hasdata(ds)
T = read(ds);
X(end+1) = max(T.DepDelay);
end
maxDelay = max(X);

```

In addition to reading subsets of data in a datastore, you can apply map and reduce functions to the datastore using mapreduce. For more information about MapReduce in MATLAB, see "Getting Started with MapReduce" on page 12-3.

\section*{See Also}

KeyValueDatastore|datastore|fileDatastore|imageDatastore|mapreduce | spreadsheetDatastore|tabularTextDatastore|tall

\section*{Related Examples}
- "Select Datastore for File Format or Application" on page 12-114
- "Read and Analyze Large Tabular Text File" on page 12-125
- "Read and Analyze Image Files" on page 12-128

\section*{Select Datastore for File Format or Application}

A datastore is a repository for collections of data that are too large to fit in memory. Each file format and application uses a different type of datastore, which contains properties pertinent to the type of data or application that it supports. MATLAB provides datastores for standard file formats such as Excel files and datastores for specific applications such as Deep Learning. In addition to the existing datastores, if your data is in a proprietary format, then you can develop a customized datastore using the custom datastore framework.

\section*{Datastores for Standard File Formats}

For a collection of data in standard file format use one of these options.
\begin{tabular}{|l|l|}
\hline Datastore & Description \\
\hline TabularTextDatastore & \begin{tabular}{l}
Text files containing column-oriented data, \\
including CSV files
\end{tabular} \\
\hline SpreadsheetDatastore & \begin{tabular}{l}
Spreadsheet files with a supported Excel \\
format such as .xlsx
\end{tabular} \\
\hline ImageDatastore & \begin{tabular}{l}
Image files, including formats that are \\
supported by imread such as JPEG and \\
PNG
\end{tabular} \\
\hline ParquetDatastore & \begin{tabular}{l}
Parquet files containing column-oriented \\
data
\end{tabular} \\
\hline FileDatastore & Files with nonstandard file format \\
Requires a custom file reading function
\end{tabular}

Transform or combine existing datastores.
\begin{tabular}{|l|l|}
\hline Datastore & Description \\
\hline CombinedDatastore & \begin{tabular}{l}
Datastore to combine data read from \\
multiple underlying datastores
\end{tabular} \\
\hline TransformedDatastore & \begin{tabular}{l}
Datastore to transform underlying \\
datastore
\end{tabular} \\
\hline
\end{tabular}

Datastores to integrate with MapReduce and tall arrays.
\begin{tabular}{|l|l|}
\hline Datastore & Description \\
\hline KeyValueDatastore & \begin{tabular}{l}
Key-value pair data that are inputs to or \\
outputs of mapreduce
\end{tabular} \\
\hline TallDatastore & Datastore for checkpointing tall arrays \\
\hline
\end{tabular}

Datastores for audio and database data require additional toolboxes.
\begin{tabular}{|l|l|l|}
\hline Datastore & Description & Toolbox Required \\
\hline AudioDatastore & \begin{tabular}{l}
Datastore for collection of \\
audio files
\end{tabular} & Audio Toolbox \(^{\mathrm{TM}}\) \\
\hline DatabaseDatastore & \begin{tabular}{l}
Datastore for collections of \\
data in a relational database
\end{tabular} & Database Toolbox \\
\hline
\end{tabular}

\section*{Datastores for Specific Applications}

Based on your application use one of these datastores.
\begin{tabular}{|l|l|l|l|}
\hline Application & Datastore & Description & Toolbox Required \\
\hline Simulink Model Data & \begin{tabular}{l}
SimulationDatast \\
ore
\end{tabular} & \begin{tabular}{l}
Datastore for \\
simulation input and \\
output data that you \\
use with a Simulink \\
model
\end{tabular} & Simulink \\
\hline \begin{tabular}{l}
Simulation Ensemble \\
and Predictive \\
Maintenance Data
\end{tabular} & \begin{tabular}{l}
SimulationEnsemb \\
leDatastore
\end{tabular} & \begin{tabular}{l}
Datastore to manage \\
simulation ensemble \\
data
\end{tabular} & \begin{tabular}{l}
Predictive \\
Maintenance \\
Toolbox \({ }^{\mathrm{TM}}\)
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
FileEnsembleData \\
store
\end{tabular} & \begin{tabular}{l}
Datastore to manage \\
ensemble data in \\
custom file format
\end{tabular} & \begin{tabular}{l}
Predictive \\
Maintenance Toolbox
\end{tabular} \\
\hline \begin{tabular}{l}
Measurement Data \\
Format (MDF) Files
\end{tabular} & MDFDatastore & \begin{tabular}{l}
Datastore for \\
collection of MDF \\
files
\end{tabular} & \begin{tabular}{l}
Vehicle Network \\
Toolbox \({ }^{\mathrm{TM}}\)
\end{tabular} \\
\cline { 1 - 4 } & MDFDatastore & \begin{tabular}{l}
Datastore for \\
collection of MDF \\
files
\end{tabular} & \begin{tabular}{l}
Powertrain \\
Blockset \({ }^{\mathrm{TM}}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Application & Datastore & Description & Toolbox Required \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Deep Learning \\
Datastores for preprocessing image or sequence data
\end{tabular}} & PixelLabelDatast ore & Datastore for pixel label data & Computer Vision Toolbox \({ }^{\mathrm{TM}}\) and Deep Learning Toolbox \({ }^{\text {TM }}\) \\
\hline & PixelLabelImageD atastore & \begin{tabular}{l}
Datastore for training semantic segmentation networks \\
Datastore is nondeterministic
\end{tabular} & Computer Vision Toolbox and Deep Learning Toolbox \\
\hline & boxLabelDatastor e & Datastore for bounding box label data & Computer Vision Toolbox and Deep Learning Toolbox \\
\hline & RandomPatchExtra ctionDatastore & \begin{tabular}{l}
Datastore for extracting random patches from images or pixel label images \\
Datastore is nondeterministic
\end{tabular} & Image Processing Toolbox \({ }^{\mathrm{TM}}\) and Deep Learning Toolbox \\
\hline & DenoisingImageDa tastore & \begin{tabular}{l}
Datastore to train an image denoising deep neural network \\
Datastore is nondeterministic
\end{tabular} & Image Processing Toolbox and Deep Learning Toolbox \\
\hline & AugmentedImageDa tastore & \begin{tabular}{l}
Datastore for resizing and augmenting training images \\
Datastore is nondeterministic
\end{tabular} & Deep Learning Toolbox \\
\hline
\end{tabular}

\section*{Custom File Formats}

For a collection of data in a custom file format, if each individual file fits in memory, use FileDatastore along with your custom file reading function. Otherwise, develop your own fully customized datastore for custom or proprietary data using the matlab.io. Datastore class. See "Develop Custom Datastore" on page 12-139.

\section*{Nondeterministic Datastores}

Datastores that do not return the exact same data for a call to the read function after a call to the reset function are nondeterministic datastores. Do not use nondeterministic datastores with tall arrays, mapreduce, or any other code that requires reading the data more than once.

Some applications require data that is randomly augmented or transformed. For example, the AugmentedImageDatastore datastore, from the deep learning application augments training image data with randomized preprocessing operations to help prevent the network from overfitting and memorizing the exact details of the training images. The output of this datastore is different every time you perform a read operation after a call to reset.

\section*{See Also}

FileDatastore|ImageDatastore|SpreadsheetDatastore| TabularTextDatastore|TallDatastore|tall

\section*{More About}
- "Getting Started with Datastore" on page 12-109
- "Tall Arrays for Out-of-Memory Data" on page 12-167
- "Develop Custom Datastore" on page 12-139

\section*{Work with Remote Data}

In MATLAB, you can read and write data to and from a remote location, such as cloud storage in Amazon S3 (Simple Storage Service), Microsoft Azure Storage Blob, and Hadoop Distributed File System (HDFS).

You can access remote data using datastore objects. Use the datastore to examine part of your data from your desktop version of MATLAB. Then, after prototyping your code locally, you can scale up to a cluster or cloud. Scaling up improves execution efficiency as it is more efficient to run large calculations in the same location as the data. To write data to a remote location, you can use the write function on a tall or distributed array.

\section*{Amazon S3}

MATLAB enables you to use Amazon S3 as an online file storage web service offered by Amazon Web Services. You can use data stored on Amazon S3 with the datastore function, or a specific datastore object, such as an ImageDatastore, FileDatastore, SpreadsheetDatastore, or TabularTextDatastore. When you specify the location of the data, you must specify the full path to the files or folders using a uniform resource locator (URL) of the form
s3://bucketname/path_to_file
bucketname is the name of the container and path_to_file is the path to the file or folders.

Amazon S3 provides data storage through web services interfaces. You can use a bucket as a container to store objects in Amazon S3.

\section*{Set Up Access}

To work with remote data in Amazon S3, you must set up access first:
1 Sign up for an Amazon Web Services (AWS) root account. See Amazon Web Services: Account.
2 Using your AWS root account, create an IAM (Identity and Access Management) user. See Creating an IAM User in Your AWS Account.
3 Generate an access key to receive an access key ID and a secret access key. See Managing Access Keys for IAM Users.

4 Configure your machine with the AWS access key ID, secret access key, and region using the AWS Command Line Interface tool from https://aws.amazon.com/cli/. Alternatively, set the environment variables directly by using setenv:
- AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY - Authenticate and enable use of Amazon S3 services. (You generated this pair of access key variables in step 3.)
- AWS_REGION (optional) - Select the geographic region of your bucket. The value of this environment variable is typically determined automatically, but the bucket owner might require that you set it manually.

If you are using Parallel Computing Toolbox, you must ensure the cluster has been configured to access S3 services. You can copy your client environment variables to the workers on a cluster by setting EnvironmentVariables in parpool, batch, createJob or in the Cluster Profile Manager.

\section*{Read Data from Amazon S3}

You can read data from Amazon S3 using datastore objects. For example, create an ImageDatastore, read a specified image from the datastore, and then display the image to screen.
```

setenv('AWS_ACCESS_KEY_ID', 'YOUR_AWS_ACCESS_KEY_ID');
setenv('AWS_SECRET_ACCE\overline{-_S_KEY', 'Y}\0UR_AWS_SE\overline{CRET_ACCESS_KEY');}
ds = imageDatastore('s3://bucketname/image datastore/jpegfiles', ...
'IncludeSubfolders', true, 'LabelSource', 'foldernames');
img = ds.readimage(1);
imshow(img)

```

\section*{Write Data to Amazon S3}

To write data to Amazon S3, call the write function on a distributed or tall array, and provide the full path to a folder in the cloud storage. The following example shows how to read tabular data from Amazon S3 into a tall array, preprocess it by removing missing entries and sorting, and then write it back to Amazon S3.
```

setenv('AWS_ACCESS_KEY_ID', 'YOUR_AWS_ACCESS_KEY_ID');
setenv('AWS_SECRET_ACCESSS_KEY', 'YOUR_AWS_SECRET_ACCESS_KEY');
ds = tabularTextDatastore('s3://bucketname/dataset/airlinesmall.csv', ...
'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});
tt = tall(ds);
tt = sortrows(rmmissing(tt));
write('s3://bucketname/preprocessedData/',tt);

```

To read your tall data back, use the datastore function.
```

ds = datastore('s3://bucketname/preprocessedData/');
tt = tall(ds);

```

\section*{Microsoft Azure Storage Blob}

MATLAB enables you to use Windows Azure \({ }^{\circledR}\) Storage Blob (WASB) as an online file storage web service offered by Microsoft. You can use data stored on Azure with the datastore function, or a specific datastore object, such as an ImageDatastore, FileDatastore, SpreadsheetDatastore, or TabularTextDatastore. When you specify the location of the data, you must specify the full path to the files or folders using a uniform resource locator (URL) of the form
wasbs://container@account/path_to_file/file.ext
container@account is the name of the container and path_to_file is the path to the file or folders.

Azure provides data storage through web services interfaces. You can use a blob to store data files in Azure. See Introduction to Azure for more information.

\section*{Set Up Access}

To work with remote data in Azure storage, you must set up access first:
1 Sign up for a Microsoft Azure account, see Microsoft Azure Account.
2 Set up your authentication details by setting exactly one of the two following environment variables using setenv:
- MW_WASB_SAS_TOKEN - Authentication via Shared Access Signature (SAS)

Obtain an SAS. For details, see the "Get the SAS for a blob container" section in Manage Azure Blob Storage resources with Storage Explorer.

In MATLAB, set MW_WASB_SAS_TOKEN to the SAS query string. For example, setenv MW_WASB_SAS_TOKEN '?st=2017-04-11T09\%3A45\%3A00Z\&se=2017-05-12T09\%3A45\%3A00Z\&sp=rl\&sv=2015-12-

You must set this string to a valid SAS token generated from the Azure Storage web UI or Explorer.
- MW_WASB_SECRET_KEY - Authentication via one of the Account's two secret keys

Each Storage Account has two secret keys that permit administrative privilege access. This same access can be given to MATLAB without having to create an SAS token by setting the MW_WASB_SECRET_KEY environment variable. For example:
setenv MW_WASB_SECRET_KEY '1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF'
If you are using Parallel Computing Toolbox, you must copy your client environment variables to the workers on a cluster by setting EnvironmentVariables in parpool, batch, createJob or in the Cluster Profile Manager.

For more information, see Use Azure storage with Azure HDInsight clusters.

\section*{Read Data from Azure}

To read data from a WASB location, use a datastore object. To produce the file location, start with the filename file.ext, and prefix it with the file path /path_to_file and your account name wasbs://container@account/. The complete data location uses the following syntax:
wasbs://container@account/path_to_file/file.ext
container@account is the name of the container and path_to_file is the path to the file or folders.

For example, if you have a file airlinesmall.csv in a folder /airline on a test storage account wasbs://
blobContainer@storageAccount.blob.core.windows.net/, then you can create a datastore by using:
```

location = 'wasbs://blobContainer@storageAccount.blob.core.windows.net/airline/airlinesmall.csv';
ds = tabularTextDatastore(location, 'TreatAsMissing', 'NA', ...
'SelectedVariableNames', {'ArrDelay'});

```

You can use Azure for all calculations datastore supports, including direct reading, mapreduce, tall arrays and deep learning. For example, create an ImageDatastore, read a specified image from the datastore, and then display the image to screen.
```

setenv('MW WASB SAS TOKEN', 'YOUR WASB SAS TOKEN');
ds = imageDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/', ...
'IncludeSubfolders', true, 'LabelSource', 'foldernames');
img = ds.readimage(1);
imshow(img)

```

\section*{Write Data to Azure}

To write data to Azure, call the write function on a distributed or tall array, and provide the full path to a folder in the cloud storage. The following example shows how to read tabular data from Azure into a tall array, preprocess it by removing missing entries and sorting, and then write it back to Azure.
```

setenv('MW_WASB_SAS_TOKEN', 'YOUR_WASB_SAS_TOKEN');
ds = tabularTextDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/data
'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});
tt = tall(ds);
tt = sortrows(rmmissing(tt));
write('wasbs://YourContainer@YourAccount.blob.core.windows.net/preprocessedData/',tt);

```

To read your tall data back, use the datastore function.
ds = datastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/preprocessedData/');
tt = tall(ds);

\section*{Hadoop Distributed File System}

\section*{Specify Location of Data}

You also can create a datastore for a collection of text files or sequence files that reside on the Hadoop Distributed File System (HDFS) using the datastore function. When you specify the location of the data, you must specify the full path to the files or folders using a uniform resource locator (URL) of one of these forms:
```

hdfs:/path_to_file
hdfs:///path_to_file
hdfs://hostname/path_to_file

```
hostname is the name of the host or server and path_to_file is the path to the file or folders. Specifying the hostname is optional. When you do not specify the hostname, Hadoop uses the default host name associated with the Hadoop Distributed File System (HDFS) installation in MATLAB.

For example, both these commands create a datastore for the file, filel.txt, in a folder named data located at a host named myserver:
- ds = datastore('hdfs:///data/file1.txt')
- ds = datastore('hdfs://myserver/data/filel.txt')

If hostname is specified, it must correspond to the namenode defined by the fs. default. name property in the Hadoop XML configuration files for your Hadoop cluster.

Optionally, you can include the port number. For example, this location specifies a host named myserver with port 7867, containing the file filel.txt in a folder named data:
'hdfs://myserver:7867/data/file1.txt'
The specified port number must match the port number set in your HDFS configuration.

\section*{Set Hadoop Environment Variable}

Before reading from HDFS, use the setenv function to set the appropriate environment variable to the folder where Hadoop is installed. This folder must be accessible from the current machine.
- Hadoop v1 only - Set the HADOOP_HOME environment variable.
- Hadoop v2 only - Set the HADOOP_PREFIX environment variable.
- If you work with both Hadoop v1 and Hadoop v2, or if the HADOOP_HOME and HADOOP PREFIX environment variables are not set, then set the MATLAB_HADOOP_INSTALL environment variable.

For example, use this command to set the HADOOP_HOME environment variable. hadoopfolder is the folder where Hadoop is installed, and /mypath/ is the path to that folder.
```

setenv('HADOOP HOME','/mypath/hadoop-folder');

```

\section*{HDFS data on Hortonworks or Cloudera}

If your current machine has access to HDFS data on Hortonworks or Cloudera \({ }^{\circledR}\), then you do not have to set the HADOOP HOME or HADOOP PREFIX environment variables. MATLAB automatically assigns these environment variables when using Hortonworks or Cloudera application edge nodes.

\section*{Prevent Clearing Code from Memory}

When reading from HDFS or when reading Sequence files locally, the datastore function calls the javaaddpath command. This command does the following:
- Clears the definitions of all Java classes defined by files on the dynamic class path
- Removes all global variables and variables from the base workspace
- Removes all compiled scripts, functions, and MEX-functions from memory

To prevent persistent variables, code files, or MEX-files from being cleared, use the mlock function.

\section*{Write Data to HDFS}

Use the write function to write your tall and distributed arrays to a Hadoop Distributed File System. When you call this function on a distributed or tall array, you must specify the full path to a HDFS folder. The following example shows how to read tabular data from HDFS into a tall array, preprocess it by removing missing entries and sorting, and then write it back to HDFS.
```

ds = tabularTextDatastore('hdfs://myserver/some/path/dataset/airlinesmall.csv', ...
'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});
tt = tall(ds);
tt = sortrows(rmmissing(tt));
write('hdfs://myserver/some/path/preprocessedData/',tt);

```

To read your tall data back, use the datastore function.
```

ds = datastore('hdfs://myserver/some/path/preprocessedData/');

```
tt = tall(ds);

\section*{See Also}
datastore|imageDatastore|imread|imshow|javaaddpath|mlock|setenv| write

\section*{Related Examples}
- "Read and Analyze Hadoop Sequence File" on page 12-137
- "Upload Deep Learning Data to the Cloud" (Parallel Computing Toolbox)

\section*{Read and Analyze Large Tabular Text File}

This example shows how to create a datastore for a large text file containing tabular data, and then read and process the data one block at a time or one file at a time.

\section*{Create a Datastore}

Create a datastore from the sample file airlinesmall.csv using the datastore function. When you create the datastore, you can specify that the text, NA, in the data is treated as missing data.
```

ds = datastore('airlinesmall.csv','TreatAsMissing','NA');

```
datastore returns a TabularTextDatastore. The datastore function automatically determines the appropriate type of datastore to create based on the file extension.

You can modify the properties of the datastore by changing its properties. Modify the MissingValue property to specify that missing values are treated as 0 .
ds.MissingValue = 0;
In this example, select the variable for the arrival delay, ArrDelay, as the variable of interest.
ds.SelectedVariableNames = 'ArrDelay';
Preview the data using the preview function. This function does not affect the state of the datastore.
```

data = preview(ds)
data=8\times1 table
ArrDelay

```

\section*{Read Subsets of Data}

By default, read reads from a TabularTextDatastore 20000 rows at a time. To read a different number of rows in each call to read, modify the ReadSize property of ds.
```

ds.ReadSize = 15000;

```

Read subsets of the data from ds using the read function in a while loop. The loop executes until hasdata(ds) returns false.
```

sums = [];
counts = [];
while hasdata(ds)
T = read(ds);
sums(end+1) = sum(T.ArrDelay);
counts(end+1) = length(T.ArrDelay);
end
Compute the average arrival delay
avgArrivalDelay = sum(sums)/sum(counts)
avgArrivalDelay = 6.9670

```

Reset the datastore to allow rereading of the data.
```

reset(ds)

```

\section*{Read One File At a Time}

A datastore can contain multiple files, each with a different number of rows. You can read from the datastore one complete file at a time by setting the ReadSize property to 'file'.
ds.ReadSize = 'file';
When you change the value of ReadSize from a number to 'file' or vice versa, MATLAB resets the datastore.

Read from ds using the read function in a while loop, as before, and compute the average arrival delay.
```

sums = [];
counts = [];

```
```

while hasdata(ds)
T = read(ds);
sums(end+1) = sum(T.ArrDelay);
counts(end+1) = length(T.ArrDelay);
end
avgArrivalDelay = sum(sums)/sum(counts)
avgArrivalDelay = 6.9670

```

\section*{See Also}
datastore| mapreduce| tabularTextDatastore|tall

\section*{Related Examples}
- "Tall Arrays for Out-of-Memory Data" on page 12-167
- "Getting Started with MapReduce" on page 12-3

\section*{Read and Analyze Image Files}

This example shows how to create a datastore for a collection of images, read the image files, and find the images with the maximum average hue, saturation, and brightness (HSV). For a similar example on image processing using the mapreduce function, see "Compute Maximum Average HSV of Images with MapReduce" on page 12-101.

Identify two MATLAB® directories and create a datastore containing images with .jpg, .tif, and .png extensions in those directories.
```

location1 = fullfile(matlabroot,'toolbox','matlab','demos');
location2 = fullfile(matlabroot,'toolbox','matlab','imagesci');
ds = datastore({location1,location2},'Type','image',...
'FileExtensions',{'.jpg','.tif','.png'});

```

Initialize the maximum average HSV values and the corresponding image data.
```

maxAvgH = 0;
maxAvgS = 0;
maxAvgV = 0;
dataH = 0;
dataS = 0;
dataV = 0;

```

For each image in the collection, read the image file and calculate the average HSV values across all of the image pixels. If an average value is larger than that of a previous image, then record it as the new maximum (maxAvgH, maxAvgS, or maxAvgV) and record the corresponding image data (dataH, dataS, or dataV).
```

for i = 1:length(ds.Files)
data = readimage(ds,i); % Read the ith image
if ~ismatrix(data)
hsv = rgb2hsv(data);
h = hsv(:,:,1); % Extract the HSV values
s = hsv(:,:,2);
v = hsv(:,:,3);
avgH = mean(h(:)); % Find the average HSV values across the image
avgS = mean(s(:));
avgV = mean(v(:));

```
```

        if avgH > maxAvgH % Check for new maximum average hue
        maxAvgH = avgH;
        dataH = data;
        end
        if avgS > maxAvgS
        maxAvgS = avgS;
        dataS = data;
        end
        if avgV > maxAvgV % Check for new maximum average brightness
        maxAvgV = avgV;
        dataV = data;
        end
    end
    end

```

View the images with the largest average hue, saturation, and brightness.
imshow(dataH,'InitialMagnification','fit');
title('Maximum Average Hue')

Maximum Average Hue

figure
imshow(dataS,'InitialMagnification','fit'); title('Maximum Average Saturation');

\section*{Maximum Average Saturation}

figure
imshow(dataV,'InitialMagnification','fit');
title('Maximum Average Brightness');

\section*{See Also}
datastore|imageDatastore|mapreduce|tall

\section*{Related Examples}
- "Tall Arrays for Out-of-Memory Data" on page 12-167
- "Getting Started with MapReduce" on page 12-3
- "Compute Maximum Average HSV of Images with MapReduce" on page 12-101

\section*{Read and Analyze MAT-File with Key-Value Data}

This example shows how to create a datastore for key-value pair data in a MAT-file that is the output of mapreduce. Then, the example shows how to read all the data in the datastore and sort it. This example assumes that the data in the MAT-file fits in memory.

Create a datastore from the sample file, mapredout.mat, using the datastore function. The sample file contains unique keys representing airline carrier codes and corresponding values that represent the number of flights operated by that carrier.
```

ds = datastore('mapredout.mat');

```
datastore returns a KeyValueDatastore. The datastore function automatically determines the appropriate type of datastore to create.

Preview the data using the preview function. This function does not affect the state of the datastore.
```

preview(ds)
ans=1\times2 table
Key Value
{'AA'} {[14930]}

```

Read all of the data in ds using the readall function. The readall function returns a table with two columns, Key and Value.
```

T = readall(ds)

```

\begin{tabular}{|c|c|}
\hline PA (1) '\} & \{[\(\left.\begin{array}{ll}{[818}\end{array}\right]\) \\
\hline \{'PI' & \{[\(\left.\left.{ }_{[} 871\right]\right\}\) \\
\hline \{'PS' & \{[83] \\
\hline \{'TW' & \{[3805]\} \\
\hline \{'UA' & \{[13286]\} \\
\hline \{'US' & \{[13997]\} \\
\hline \{'WN' & \{[15931]\} \\
\hline \{'AQ' & \{[154]\} \\
\hline
\end{tabular}

T contains all the airline and flight data from the datastore in the same order in which the data was read. The table variables, Key and Value, are cell arrays.

Convert Value to a numeric array.
T.Value = cell2mat(T.Value)
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\mathrm{T}=29 \times 2 \text { table } \\
\text { Key }
\end{gathered}
\] & Value \\
\hline \{'AA' \} & 14930 \\
\hline \{'AS' \} & 2910 \\
\hline \{'CO' \} & 8138 \\
\hline \{'DL' \} & 16578 \\
\hline \{'EA' \} & 920 \\
\hline \{'HP' \} & 3660 \\
\hline \{'ML (1)'\} & 69 \\
\hline \{'NW' \} & 10349 \\
\hline \{'PA (1)'\} & 318 \\
\hline \{'PI' \} & 871 \\
\hline \{'PS' \} & 83 \\
\hline \{'TW' \} & 3805 \\
\hline \{'UA' \} & 13286 \\
\hline \{'US' \} & 13997 \\
\hline \{'WN' \} & 15931 \\
\hline \{'AQ' & 154 \\
\hline
\end{tabular}

Assign new names to the table variables.
```

T.Properties.VariableNames = \{'Airline','NumFlights'\};

```

Sort the data in T by the number of flights.
```

T = sortrows(T,'NumFlights','descend')
T=29\times2 table
Airline NumFlights
{'DL'} 16578
{'WN'} 15931
{'AA'} 14930
{'US'} 13997
{'UA'} 13286
{'NW'} 10349
{'CO'} }813
{'MQ'} }396
{'TW'} 3805
{'HP'} 3660
{'00'} 3090
{'AS'} 2910
{'XE'} 2357
{'EV'} 1699
{'OH'} 1457
{'FL'} 1263

```

View a summary of the sorted table.

\section*{summary (\(T\))}

Variables:

\section*{Airline: 29x1 cell array of character vectors}

NumFlights: 29x1 double
Values:

Min 69
Median 1457
Max 16578
Reset the datastore to allow rereading of the data.
```

reset(ds)

```

\section*{See Also}

KeyValueDatastore|datastore|mapreduce|tall

\section*{Related Examples}
- "Tall Arrays for Out-of-Memory Data" on page 12-167
- "Getting Started with MapReduce" on page 12-3

\section*{Read and Analyze Hadoop Sequence File}

This example shows how to create a datastore for a Sequence file containing key-value data. Then, you can read and process the data one block at a time. Sequence files are outputs of mapreduce operations that use Hadoop.

Set the appropriate environment variable to the location where Hadoop is installed. In this case, set the MATLAB_HADOOP_INSTALL environment variable.
```

setenv('MATLAB_HADOOP_INSTALL','/mypath/hadoop-folder')

```
hadoop-folder is the folder where Hadoop is installed and mypath is the path to that folder.

Create a datastore from the sample file, mapredout.seq, using the datastore function. The sample file contains unique keys representing airline carrier codes and corresponding values that represent the number of flights operated by that carrier.
```

ds = datastore('mapredout.seq')
ds =
KeyValueDatastore with properties:
Files: {
...\matlab\toolbox\matlab\demos\mapredout.seq'
}
ReadSize: 1 key-value pairs
FileType: 'seq'

```
datastore returns a KeyValueDatastore. The datastore function automatically determines the appropriate type of datastore to create.

Set the ReadSize property to six so that each call to read reads at most six key-value pairs.
```

ds.ReadSize = 6;

```

Read subsets of the data from ds using the read function in a while loop. For each subset of data, compute the sum of the values. Store the sum for each subset in an array named sums. The while loop executes until hasdata(ds) returns false.
```

sums = [];
while hasdata(ds)

```
```

    T = read(ds);
    T.Value = cell2mat(T.Value);
    sums(end+1) = sum(T.Value);
    end

```

View the last subset of key-value pairs read.
```

T
T =

Key	Value
'WN'	15931
'XE'	2357
'YV'	849
'ML (1)'	69
'PA (1)'	318

```

Compute the total number of flights operated by all carriers.
```

numflights = sum(sums)

```
numflights =

123523

\section*{See Also}

KeyValueDatastore|datastore|mapreduce|tall

\section*{Related Examples}
- "Getting Started with MapReduce" on page 12-3
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Develop Custom Datastore}

This example shows how to implement a custom datastore for file-based data. Use this framework only when writing your own custom datastore interface. Otherwise, for standard file formats, such as images or spreadsheets, use an existing datastore from MATLAB. For more information, see "Getting Started with Datastore" on page 12-109.

\section*{Overview}

To build your custom datastore interface, use the custom datastore classes and objects. Then, use the custom datastore to bring your data into MATLAB and leverage the MATLAB big data capabilities such as tall, MapReduce, and Hadoop.

Designing your custom datastore involves inheriting from one or more abstract classes and implementing the required methods. The specific classes and methods you need depend on your processing needs.
\begin{tabular}{|l|l|}
\hline Processing Needs & Classes \\
\hline Datastore for Serial Processing in MATLAB & matlab.io. Datastore \\
& \begin{tabular}{l}
See, "Implement Datastore for Serial \\
Processing" on page 12-140
\end{tabular} \\
\hline \begin{tabular}{l}
Datastore with support for Parallel \\
Computing Toolbox and MATLAB Parallel \\
Server
\end{tabular} & \begin{tabular}{l}
matlab.io. Datastore and \\
matlab.io.datastore.Partitionable \\
See, "Add Support for Parallel Processing" \\
on page 12-143
\end{tabular} \\
\hline Datastore with support for Hadoop & \begin{tabular}{l}
matlab.io. Datastore and \\
matlab.io.datastore. HadoopLocatio \\
nBased
\end{tabular} \\
\hline \begin{tabular}{l}
Datastore with support for shuffling \\
samples in a datastore in random order
\end{tabular} & \begin{tabular}{l}
See, "Add Support for Hadoop" on page 12- \\
144
\end{tabular} \\
\hline matlab.io.Datastore and \\
matlab.io.datastore. Shuffleable \\
See, "Add Support for Shuffling" on page \\
\(12-145\)
\end{tabular}

Start by implementing datastore for serial processing, and then add support for parallel processing, Hadoop, and suffling.

\section*{Implement Datastore for Serial Processing}

To implement a custom datastore named MyDatastore, create a script MyDatastore.m. The script must be on the MATLAB path and should contain code that inherits from the appropriate class and defines the required methods. The code for creating a datastore for serial processing in MATLAB must:
- Inherit from the base class matlab.io. Datastore.
- Define these methods: hasdata, read, reset, and progress.
- Define additional properties and methods based on your data processing and analysis needs.

For a sample implementation, follow these steps.
```

Steps Implementation
Inherit from the base classdef MyDatastore < matlab.io.Datastore
class Datastore.
Add this property to create a datastore on one machine that works seamlessly on another machine or cluster that possibly has a different file system or operating system.
Add methods to get and set this property in the methods section.

```
```

properties (Access = private)

```
properties (Access = private)
 CurrentFileIndex double
 CurrentFileIndex double
 FileSet matlab.io.datastore.DsFileSet
 FileSet matlab.io.datastore.DsFileSet
end
end
% Property to support saving, loading, and processing of
% datastore on different file system machines or clusters.
% In addition, define the methods get.AlternateFileSystemRoot
% and set.AlternateFileSystemRoots() in the methods section.
properties(Dependent)
 AlternateFileSystemRoots
end
```


## Steps

## Implementation

Implement the function MyDatastore that creates the custom datastore.

Implement the hasdata method.

Implement the read method.

This method uses MyFileReader, which is a function that you must create to read your proprietary file format.

See "Create Function to Read Your Proprietary File Format" on page 12143.

Implement the reset method.
methods \% begin methods section

```
 function myds = MyDatastore(location,altRoots)
 myds.FileSet = matlab.io.datastore.DsFileSet(location
 'FileExtensions','.bin', ...
 'FileSplitSize',8*1024);
 myds.CurrentFileIndex = 1;
```

        if nargin == 2
            myds.AlternateFileSystemRoots = altRoots;
        end
    reset(myds);
    end
function tf = hasdata(myds)
\% Return true if more data is available.
tf = hasfile(myds.FileSet);
end
function [data,info] = read(myds)
\% Read data and information about the extracted data.
if ~hasdata(myds)
error(sprintf(['No more data to read. $\ n$ Use the reset ',...
'method to reset the datastore to the start of ' ,...
'the data. \nBefore calling the read method, ',...
'check if data is available to read ',..
'by using the hasdata method.']))
end
fileInfoTbl = nextfile(myds.FileSet);
data $=$ MyFileReader(fileInfoTbl);
info.Size = size(data);
info.FileName = fileInfoTbl.FileName;
info.Offset = fileInfoTbl.Offset;
\% Update CurrentFileIndex for tracking progress
if fileInfoTbl.Offset + fileInfoTbl.SplitSize >= ...
fileInfoTbl.FileSize
myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
end
end
function reset(myds)
\% Reset to the start of the data.
reset(myds.FileSet);
myds.CurrentFileIndex = 1;
end

```
Steps
```

Define the methods to get and set the AlternateFileSyst emRoots property.

You must reset the datastore in the set method.

Implement the progress method.

Implement the copyElement method when you use the DsFileSet object as a property in your datastore.
Implement the
progress method.
Implement the
copyElement method
when you use the
DsFileSet object as a
property in your
datastore.

## Implementation

```
 else
```

            else
                                frac = 1;
                                frac = 1;
            end
            end
        end
        end
    end
    end
    methods (Access = protected)
    methods (Access = protected)
        % If you use the DsFileSet object as a property, then
        % If you use the DsFileSet object as a property, then
        % you must define the copyElement method. The copyElement
        % you must define the copyElement method. The copyElement
        % method allows methods such as readall and preview to
        % method allows methods such as readall and preview to
        % remain stateless
        % remain stateless
        function dscopy = copyElement(ds)
        function dscopy = copyElement(ds)
            dscopy = copyElement@matlab.mixin.Copyable(ds);
            dscopy = copyElement@matlab.mixin.Copyable(ds);
            dscopy.FileSet = copy(ds.FileSet);
            dscopy.FileSet = copy(ds.FileSet);
            end
            end
    end
    end
    End the classdef
end
end
section.

```

\section*{Create Function to Read Your Proprietary File Format}

The implementation of the read method of your custom datastore uses a function called MyFileReader. You must create this function to read your custom or proprietary data. Build this function using DsFileReader object and its methods. For instance, create a function that reads binary files.
```

function data = MyFileReader(fileInfoTbl)
% create a reader object using the FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);
% seek to the offset
seek(reader,fileInfoTbl.Offset,'Origin','start-of-file');
% read fileInfoTbl.SplitSize amount of data
data = read(reader,fileInfoTbl.SplitSize);
end

```

\section*{Add Support for Parallel Processing}

To add support for parallel processing with Parallel Computing Toolbox and MATLAB Parallel Server, update your implementation code in MyDatastore.m to:
- Inherit from an additional class matlab.io.datastore. Partitionable.
- Define two additional methods: maxpartitions and partition.

For a sample implementation, follow these steps.
\begin{tabular}{lcl}
Steps & Implementation \\
\begin{tabular}{l}
Update the classdef \\
section to inherit from
\end{tabular} & classdef MyDatastore < matlab.io.Datastore \& ... \\
\begin{tabular}{l}
the Partitionable
\end{tabular} &. & \\
matlab.io.datastore. Partitionable \\
class. &. &
\end{tabular}
```

Steps Implementation

```

Add the definition for partition to the methods section.

\section*{Implementation}

\section*{methods}
```

    .
    ```
 .
 ·
 ·
 function subds = partition(myds,n,ii)
 function subds = partition(myds,n,ii)
 subds = copy(myds);
 subds = copy(myds);
 subds.FileSet = partition(myds.FileSet,n,ii);
 subds.FileSet = partition(myds.FileSet,n,ii);
 reset(subds);
 reset(subds);
 end
 end
 end
 end
Add definition for methods (Access = protected)
maxpartitions to the
methods section.
 function n = maxpartitions(myds)
 n = maxpartitions(myds.FileSet);
 end
 end
End classdef. end
```


## Add Support for Hadoop

To add support for Hadoop, update your implementation code in MyDatastore.m to:

- Inherit from an additional class matlab.io.datastore. HadoopLocationBased.
- Define two additional methods: getLocation and initializeDatastore.

For a sample implementation, follow these steps.

## Steps <br> Implementation

Update the classdef
classdef MyDatastore < matlab.io.Datastore \& ...
matlab.io.datastore.HadoopLocationBased
the
HadoopLocationBas
ed class.

```
Steps Implementation
```

Add the definition for getLocation, initializeDatasto re, and isfullfile(optional) to the methods section.

## Implementation

```
methods (Hidden = true)
```

methods (Hidden = true)
.
.
.
.
function initializeDatastore(myds,hadoopInfo)
function initializeDatastore(myds,hadoopInfo)
import matlab.io.datastore.DsFileSet;
import matlab.io.datastore.DsFileSet;
myds.FileSet = DsFileSet(hadoopInfo,...
myds.FileSet = DsFileSet(hadoopInfo,...
FileSplitSize',myds.FileSet.FileSplitSize);
FileSplitSize',myds.FileSet.FileSplitSize);
reset(myds);
reset(myds);
end
end
function loc = getLocation(myds)
function loc = getLocation(myds)
loc = myds.FileSet;
loc = myds.FileSet;
end
end
% isfullfile method is optional
% isfullfile method is optional
function tf = isfullfile(myds)
function tf = isfullfile(myds)
tf = isequal(myds.FileSet.FileSplitSize,'file');
tf = isequal(myds.FileSet.FileSplitSize,'file');
end
end
end
end
End the classdef end
section.

```

\section*{Add Support for Shuffling}

To add support for shuffling, update your implementation code in MyDatastore.m to:
- Inherit from an additional class matlab.io.datastore. Shuffleable.
- Define the additional method shuffle.

For a sample implementation, follow these steps.

\section*{Steps}

\section*{Implementation}

Update the classdef section to inherit from the Shuffleable class.

Add the definition for shuffle to the existing methods section.
the Shuffleable

End the classdef
end
section.
```

methods
\% previously defined methods
.
-
function dsNew = shuffle(ds) \% dsNew = shuffle(ds) shuffles the files and the \% corresponding labels in the datastore.
\% Create a copy of datastore dsNew = copy(ds); dsNew.Datastore = copy(ds.Datastore); fds = dsNew.Datastore;
\% Shuffle files and corresponding labels numObservations = dsNew.NumObservations; idx = randperm(num0bservations); fds.Files = fds.Files(idx); dsNew.Labels = dsNew.Labels(idx);
end
end
classdef MyDatastore < matlab.io.Datastore \& ...
matlab.io.datastore.Shuffleable
function dsNew = shuffle(ds)
% corresponding labels in the datastore.
fds = dsNew.Datastore;
% Shuffle files and corresponding labels
dsNew.Labels = dsNew.Labels(idx);
end
end

```

\section*{Validate Custom Datastore}

After following instructions presented here, the implementation step of your custom datastore is complete. Before using this custom datastore, qualify it using the guidelines presented in "Testing Guidelines for Custom Datastores" on page 12-148.

\section*{See Also}
matlab.io.Datastore|matlab.io.datastore.DsFileReader|
matlab.io.datastore.DsFileSet|
matlab.io.datastore.HadoopLocationBased
matlab.io.datastore.Partitionable|matlab.io.datastore.Shuffleable

\section*{More About}
- "Developing Classes - Typical Workflow"
- "Create and Share Toolboxes"
- "Create Help for Classes"

\section*{Testing Guidelines for Custom Datastores}

All datastores that are derived from the custom datastore classes share some common behaviors. This test procedure provides guidelines to test the minimal set of behaviors and functionalities that all custom datastores should have. You will need additional tests to qualify any unique functionalities of your custom datastore.

If you have developed your custom datastore based on instructions in "Develop Custom Datastore" on page 12-139, then follow these test procedures to qualify your custom datastore. First perform the unit tests, followed by the workflow tests:
- Unit tests qualify the datastore constructor and methods.
- Workflow tests qualify the datastore usage.

For all these test cases:
- Unless specified in the test description, assume that you are testing a nonempty datastore ds.
- Verify the test cases on the file extensions, file encodings, and data locations (like Hadoop) that your custom datastore is designed to support.

\section*{Unit Tests}

\section*{Construction}

The unit test guidelines for the datastore constructor are as follows.
\begin{tabular}{ll}
Test Case Description & Expected Output \\
\begin{tabular}{l}
Check if your custom datastore constructor works \\
with the minimal required inputs.
\end{tabular} & \begin{tabular}{l}
Datastore object of your custom \\
datastore type with the minimal \\
expected properties and methods
\end{tabular} \\
\begin{tabular}{l}
Check if your datastore object ds has \\
mat lab.io.Datastore as one of its superclasses.
\end{tabular} & 1 or true \\
Run this command: & \\
isa(ds,'matlab.io.Datastore') &
\end{tabular}

\section*{Test Case Description}

Call your custom datastore constructor with the required inputs and any supported input arguments and name-value pair arguments.

\section*{Expected Output}

Datastore object of your custom datastore type with the minimal expected properties and methods

\section*{read}

Unit test guidelines for the read method

\section*{Test Case Description \\ Expected Output}

Call the read method on a datastore object ds.
\(\mathrm{t}=\mathrm{read}(\mathrm{ds})\);
Data from the beginning of the datastore

If you specify read size, then the size of the returned data is equivalent to read size.
Call the read method again on the datastore object. Data starting from the end point of the previous read operation
\(\mathrm{t}=\mathrm{read}(\mathrm{ds})\);
If you specify read size, then the size of the returned data is equivalent to read size.
Continue calling the read method on the datastore No errors
object in a while loop.
Correct data in the correct format
```

while(hasdata(ds))

```
 \(\mathrm{t}=\mathrm{read}(\mathrm{ds})\);
end

When data is available to read, check the info output (if any) of the read method.

Call a datastore object ds.
[t,info] = read(ds);
When no more data is available to read, call read on the datastore object.

No error
info contains the expected information
t contains the expected data
Either expected output or an error message based on your custom datastore implementation.

\section*{readall}

Unit test guidelines for the readall method

\section*{Test Case Description \\ Expected Output}

Call the readall method on the datastore object.
All data
Call the readall method on the datastore object,
All data when hasdata(ds) is false.

Read from the datastore until hasdata(ds) is false, and then call the readall method.
```

while(hasdata(ds))
t = read(ds);
end

```
readall(ds)

\section*{hasdata}

Unit test guidelines for the hasdata method
Test Case Description Expected OutputCall the hasdata method on the datastore object
true
before making any calls to readCall the hasdata method on the datastore objecttrue
after making a few calls to read, but before all thedata is readWhen more data is available to read, call thetrue
readall method, and then call the hasdatamethod.When no more data is available to read, call thefalsehasdata method.
resetUnit test guidelines for the reset method

\section*{Test Case Description}

Call the reset method on the datastore object before making any calls to the read method.

Verify that the read method returns the appropriate data after a call to the reset method.
```

reset(ds);
t = read(ds);

```

\section*{Expected Output}

No errors
The read returns data from the beginning of the datastore.

If you specify read size, then the size of the returned data is equivalent to read size.
When more data is available to read, call the reset No errors method after making a few calls to the read method.

Verify that the read method returns the appropriate data after making a call to the reset method.

When more data is available to read, call the reset No errors method after making a call to the readall method.

The read method returns data from the beginning of the datastore.

If you specify read size, then the size of the returned data is equivalent to read size.
No errors
The read method returns data from the beginning of the datastore.

If you specify read size, then the size of the returned data is equivalent to read size.

\section*{progress}

Unit test guidelines for the progress method

\section*{Test Case Description}

Call the progress method on the datastore object before making any calls to the read method.

Call the progress method on the datastore object after making a call to readall, but before making any calls to read

\section*{Expected Output}

0 or an expected output based on your custom datastore implementation.
0 or an expected output based on your custom datastore implementation.
```

readall(ds);
progress(ds)

```

Call the progress method on the datastore object after making a few calls to read and while more data is available to read.
Call the progress method on the datastore object when no more data is available to read.

A fraction between 0 and 1 or an expected output based on your custom datastore implementation.
1 or an expected output based on your custom datastore implementation.

\section*{preview}

Unit test guidelines for the preview method

\section*{Test Case Description}

Call preview on the datastore object before making any calls to read.

Call preview on the datastore object after making a few calls to read and while more data is available to read.

Call preview on the datastore object after making a call to readall and while more data is available to read.

\section*{Expected Output}

The preview method returns the expected data from the beginning of the datastore, based on your custom datastore implementation. The preview method returns the expected data from the beginning of the datastore, based on your custom datastore implementation. The preview method returns the expected data from the beginning of the datastore, based on your custom datastore implementation.

\section*{Test Case Description}

Call preview on the datastore object after making a few calls to read and a call to reset.

\section*{Expected Output}

The preview method returns the expected data from the beginning of the datastore, based on your custom datastore implementation.
Call preview on the datastore object when no more The preview method returns the data is available to read.

Call preview after making a few calls to read method and then call read again.

Call preview, and then call readall on the datastore.
While datastore has data available to read, call preview, and then call hasdata. expected data from the beginning of the datastore, based on your custom datastore implementation. The read method returns data starting from the end point of the previous read operation.

If you specify read size, then the size of the returned data is equivalent to read size.
The readall method returns all the data from the datastore.
The hasdata method returns true.

\section*{partition}

Unit test guidelines for the partition method

\section*{Test Case Description}

Call partition on the datastore object ds with a valid number of partitions and a valid partition index.

Call read on a partition of the datastore and verify the data.
```

subds = partition(ds,n,index)
read(subds)

```

Verify that the partition is valid.
isequal(properties(ds), properties(subds)) isequal(methods(ds), methods(subds))

\section*{Expected Output}

The partition method partitions the datastore into n partitions and returns the partition corresponding to the specified index.

The returned partition subds must be a datastore object of your custom datastore.

The partitioned datastore subds must have the same methods and properties as the original datastore.

The isequal statement returns true.

Calling read on the partition returns data starting from the beginning of the partition.

If you specify read size, then the size of the returned data is equivalent to read size.
Call partition on the datastore object ds with number of partitions specified as 1 and index of returned partition specified as 1.

Verify the data returned by calling read and preview on a partition of the partitioned datastore.
```

subds = partition(ds,1,1)
isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))
isequaln(read(subds),read(ds))
isequaln(preview(subds),preview(ds))

```

Call partition on the partition subds with a valid The repartitioning of a partition of number of partitions and a valid partition index.

The partition subds must be a datastore object of your custom datastore.

The partition subds must have the same methods and properties as the original datastore ds.

The isequal and isequaln statements returns true. the datastore should work without errors.

\section*{initializeDatastore}

If your datastore inherits from matlab.io.datastore. HadoopFileBased, then verify the behavior of initializeDatastore using the guidelines in this table.

\section*{Test Case Description}

Call initializeDatastore on the datastore object ds with a valid info struct.

The info struct contains these fields:
- FileName
- Offset
- Size

FileName is of data type char and the fields Offset and Size are of the data type double.

For example, initialize the info struct, and then call initializeDatastore on the datastore object ds.
```

info = struct('FileName','myFileName.ext',...
'Offset',0,'Size',500)
initializeDatastore(ds,info)

```

Verify the initialization by examining the properties of your datastore object.
ds

\section*{getLocation}

If your datastore inherits from matlab.io.datastore. HadoopFileBased, then verify the behavior of getLocation using these guidelines.

\section*{Test Case Description}

Call getLocation on the datastore object.
```

location = getLocation(ds)

```

Based on your custom datastore implementation, the location output is either of these:
- List of files or directories
- a matlab.io.datastore.DsFileSet object

If location is a
matlab.io.datastore. DsFileSet object, then call resolve to verify the files in the location output.
```

```
resolve(location)
```

```
```

```
resolve(location)
```

```

\section*{isfullfile}

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the behavior of isfullfile using these guidelines.

\section*{Test Case Description}

Call isfullfile on the datastore object.

\section*{Expected Output}

Based on your custom datastore implementation, the isfullfile method returns true or false.

\section*{Workflow Tests}

Verify your workflow tests in the appropriate environment.
- If your datastore inherits only from matlab.io. Datastore, then verify all workflow tests in a local MATLAB session.
- If your datastore has parallel processing support (inherits from matlab.io.datastore. Partitionable), then verify your workflow tests in parallel execution environments, such as Parallel Computing Toolbox and MATLAB Parallel Server.
- If your datastore has Hadoop support (inherits from matlab.io.datastore. HadoopFileBased), then verify your workflow tests in a Hadoop cluster.

\section*{Tall Workflow}

Testing guidelines for the tall workflow

\section*{Test Case Description \\ Expected Output}

Create a tall array by calling tall on the datastore object ds.
\(\mathrm{t}=\mathrm{tall}(\mathrm{ds})\)
For this test step, create a datastore object with
The tall function returns an output that is the same data type as the output of the read method of the datastore.
No errors
data that fits in your system memory. Then, create a tall array using this datastore object.
\(\mathrm{t}=\mathrm{tall}(\mathrm{ds})\)
If your data is numeric, then apply an appropriate function like the mean function to both the ds and \(t\), then compare the results.

The function returns an output of the correct data type (not of a tall data type).

The function returns the same result whether it is applied to ds or to t .

If your data is of the data type string or categorical, then apply the unique function on a column of \(d s\) and a column of \(t\), then compare the results.

Apply gather and verify the result.
For examples, see "Big Data Workflow Using Tall Arrays and Datastores" (Parallel Computing Toolbox).

\section*{MapReduce Workflow}

Testing guidelines for the MapReduce workflow

\section*{Test Case Description}

Call mapreduce on the datastore object ds.
outds = mapreduce(ds,@mapper,@reducer)
For more information, see mapreduce.
To support the use of the mapreduce function, the read method of your custom datastore must return both the info and the data output arguments.

\section*{Expected Output}

No error
The MapReduce operation returns the expected result

\section*{Next Steps}

Note This test procedure provides guidelines to test the minimal set of behaviors and functionalities for custom datastores. Additional tests are necessary to qualify any unique functionalities of your custom datastore.

After you complete the implementation and validation of your custom datastore, your custom datastore is ready to use.
- To add help for your custom datastore implementation, see "Create Help for Classes".
- To share your custom datastore with other users, see "Create and Share Toolboxes".

\section*{See Also}
matlab.io.Datastore|matlab.io.datastore.HadoopLocationBased| matlab.io.datastore.Partitionable

\section*{More About}
- "Develop Custom Datastore" on page 12-139
- "Create and Share Toolboxes"
- "Create Help for Classes"

\section*{Set Up Datastore for Processing on Different Machines or Clusters}

You can create and save a datastore on a platform that loads and works seamlessly on a different platform by setting up the 'AlternateFileSystemRoots' property of the datastore. Use this property when:
- You create a datastore on a local machine, and need to access and process the data on another machine (possibly running a different operating system).
- You process your datastore with parallel and distributed computing involving different platforms, cloud or cluster machines.

This example demonstrates the use of the 'AlternateFileSystemRoots ' property for TabularTextDatastore. However, you can use the same syntax for any of these datastores: SpreadsheetDatastore, ImageDatastore, ParquetDatastore, FileDatastore, KeyValueDatastore, and TallDatastore. To use the 'AlternateFileSystemRoots' functionality for custom datastores, see matlab.io.datastore.DsFileSet and "Develop Custom Datastore" on page 12-139.

\section*{Save Datastore and Load on Different File System Platform}

Create a datastore on one file system that loads and works seamlessly on a different machine (possibly of a different operating system). For example, create a datastore on a Windows machine, save it, and then load it on a Linux machine.

First, before you create and save the datastore, identify the root paths for your data on the different platforms. The root paths will differ based on the machine or file system. For instance, if you have data on your local machine and a copy of the data on a cluster, then get the root paths for accessing the data:
- "Z:\DataSet" for your local Windows machine.
- "/nfs-bldg001/DataSet" for your Linux cluster.

Then, associate these root paths by using the 'AlternateFileSystemRoots ' parameter of the datastore.
```

altRoots = ["Z:\DataSet","/nfs-bldg001/DataSet"];
ds = tabularTextDatastore('Z:\DataSet','AlternateFileSystemRoots',altRoots);

```

Examine the Files property of datastore. In this instance, the Files property contains the location of your data as accessed by your Windows machine.
```

ds.Files
ans =
5\times1 cell array
{'Z:\DataSet\datafile01.csv'}
{'Z:\DataSet\datafile02.csv'}
{'Z:\DataSet\datafile03.csv'}
{'Z:\DataSet\datafile04.csv'}
{'Z:\DataSet\datafile05.csv'}

```

Save the datastore.
```

save ds_saved_on_Windows.mat ds

```

Load the datastore on a Linux platform and examine the Files property. Since the root path ' \(Z\) : \DataSet' is not accessible on the Linux cluster, at load time, the datastore function automatically updates the root paths based on the values specified in the 'AlternateFileSystemRoots ' parameter. The Files property of the datastore now contains the updated root paths for your data on the Linux cluster.
```

load ds_saved_on_Windows.mat
ds.Files
ans =
5\times1 cell array
{'/nfs-bldg001/DataSet/datafile01.csv'}
{'/nfs-bldg001/DataSet/datafile02.csv'}
{'/nfs-bldg001/DataSet/datafile03.csv'}
{'/nfs-bldg001/DataSet/datafile04.csv'}
{'/nfs-bldg001/DataSet/datafile05.csv'}

```

You can now process and analyze this datastore on your Linux machine.

\section*{Process Datastore Using Parallel and Distributed Computing}

To process your datastore with parallel and distributed computing that involves different platforms, cloud or cluster machines, you must predefine the
'AlternateFileSystemRoots ' parameter. This example demonstrates how to create a datastore on your local machine, analyze a small portion of the data, and then use Parallel

Computing Toolbox and MATLAB Parallel Server to scale up the analysis to the entire dataset.

Create a datastore and assign a value to the 'AlternateFileSystemRoots' property. To set the value for the 'AlternateFileSystemRoots ' property, identify the root paths for your data on the different platforms. The root paths differ based on the machine or file system. For example, identify the root paths for data access from your machine and your cluster:
- "Z:\DataSet" from your local Windows Machine.
- "/nfs-bldg001/DataSet" from the MATLAB Parallel Server Linux Cluster.

Then, associate these root paths using the AlternateFileSystemRoots property.
```

altRoots = ["Z:\DataSet","/nfs-bldg001/DataSet"];
ds = tabularTextDatastore('Z:\DataSet','AlternateFileSystemRoots',altRoots);

```

Analyze a small portion of the data on your local machine. For instance, get a partitioned subset of the data, clean the data by removing any missing entries, and examine a plot of the variables.
```

tt = tall(partition(ds,100,1));
summary(tt);
% analyze your data
tt = rmmissing(tt);
plot(tt.MyVar1,tt.MyVar2)

```

Scale up your analysis to the entire dataset by using MATLAB Parallel Server cluster (Linux cluster). For instance, start a worker pool using the cluster profile, and then perform analysis on the entire dataset by using parallel and distributed computing capabilities.
```

parpool('MyMjsProfile')
tt = tall(ds);
summary(tt);
% analyze your data
tt = rmmissing(tt);
plot(tt.MyVar1,tt.MyVar2)

```

\section*{See Also}

FileDatastore|ImageDatastore|KeyValueDatastore|SpreadsheetDatastore |TabularTextDatastore|TallDatastore|datastore

\section*{More About}
- "Getting Started with Datastore" on page 12-109
- "Work with Remote Data" on page 12-118

\section*{Apache Parquet Data Type Mappings}

MATLAB represents column-oriented data with tables and timetables. Each variable in a table or timetable can have a different data type and any number of columns. Column vectors are the most common shape of table and timetable variables.

The Apache \({ }^{\mathrm{TM}}\) Parquet file format is used for column-oriented heterogeneous data. Similar to MATLAB tables and timetables, each of the columns in a Parquet file can have different data types.

Despite their similarity, the permitted data types in MATLAB tables and timetables do not always map perfectly to the permitted data types in Parquet files. In some cases, it is necessary for MATLAB to perform data type conversions to retain information in the data (such as missing values). This conversion can sometimes result in a loss of precision in the data.

In general, MATLAB tables and timetables have these behaviors when they are converted to Parquet files:
- Table properties set on the original table are not saved.
- Table row names or timetable row times are converted into a new table variable before being written.
- When reading a variable name from a Parquet file, invalid table variable names are converted to valid table variable names.

The following tables summarize the representable data types in MATLAB tables and timetables, as well as how those variables are represented in Parquet files. These data type mappings can go in both directions (MATLAB \(\rightarrow\) Parquet and Parquet \(\rightarrow\) MATLAB), unless otherwise noted. Parquet files use a small number of primitive (or physical) data types. The logical types extend the physical types by specifying how they should be interpreted. Parquet data types not covered here are not supported for reading from or writing to Parquet files (JSON, BSON, binary, and so on).

Numeric Data Types
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{MATLAB Table or Timetable Variable Type} & \multicolumn{2}{|l|}{Apache Parquet Data Type} & \multirow[t]{2}{*}{Notes} \\
\hline & Physical Type & Logical Type & \\
\hline double & DOUBLE & NONE & MATLAB converts any missing \\
\hline single & FLOAT & NONE & floating-point numbers in a Parquet file into NaN values. \\
\hline int8 & \multirow[t]{6}{*}{INT32} & INT_8 & \multirow[t]{8}{*}{\begin{tabular}{l}
When reading a Parquet file, if an array with integral type contains missing values, then the array is converted into the MATLAB double data type instead of an integer data type. The missing values are set to NaN . \\
For 64-bit integers, this conversion can result in truncation of values that are larger in magnitude than flintmax.
\end{tabular}} \\
\hline uint8 & & UINT_8 & \\
\hline int16 & & INT_16 & \\
\hline uint16 & & UINT_16 & \\
\hline int32 & & NONE & \\
\hline uint32 & & UINT_32 & \\
\hline int64 & \multirow[t]{2}{*}{INT64} & NONE & \\
\hline uint64 & & UINT_64 & \\
\hline logical & B00LEAN & NONE & When reading a Parquet file, if an array with BOOLEAN type contains missing values, then the array is converted into the MATLAB double data type instead of the logical data type. The missing values are set to NaN . \\
\hline
\end{tabular}

\section*{Text Data Types}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
MATLAB Table or \\
Timetable Variable \\
Type
\end{tabular} & \multicolumn{2}{|l|}{ Apache Parquet Data Type } & Notes \\
& Physical Type & Logical Type & \\
\hline categorical & BYTE_ARRAY & UTF8 & \begin{tabular}{l}
Categorical arrays \\
are converted into \\
string arrays when \\
written to Parquet \\
files. Any \\
<undefined> \\
categorical values \\
are converted to \\
<missing> strings \\
before being written.
\end{tabular} \\
\hline string & & \begin{tabular}{l}
string, char, and \\
cellstr are all \\
mapped to the same \\
Parquet data type, \\
and that data type is \\
always read into \\
MATLAB as a string \\
array.
\end{tabular} \\
\hline char & & & \\
\hline \begin{tabular}{l}
cellstr (cell array \\
of character vectors)
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{Date and Time Data Types}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
MATLAB Table or \\
Timetable Variable \\
Type
\end{tabular} & Apache Parquet Data Type & Notes \\
\cline { 2 - 3 } datetime & Physical Type & Logical Type & \\
\cline { 2 - 3 } & INT32 & DATE & \begin{tabular}{l}
MATLAB datetime \\
arrays written to a
\end{tabular} \\
\cline { 2 - 4 } & INT64 & \begin{tabular}{l}
Parquet file use \\
TIMESTAMP_MICROS \\
format and have \\
precision truncated \\
to 1 microsecond. \\
Display format
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
MATLAB Table or \\
Timetable Variable \\
Type
\end{tabular} & Apache Parquet Data Type & Notes \\
\cline { 2 - 3 } & Physical Type & Logical Type & \\
\hline duration & TIMESTAMP_MICROS & \begin{tabular}{l}
settings are not \\
saved.
\end{tabular} \\
\hline & INT32 & TIME_MILLIS & MATLAB duration \\
INT64 & TIME_MICROS & \begin{tabular}{l}
arrays written to a \\
Parquet file use
\end{tabular} \\
\begin{tabular}{l}
TIME_MICROS \\
format and have \\
precision truncated \\
to 1 microsecond. \\
Display format \\
settings are not \\
saved.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
parquetread | parquetwrite|write

\section*{Tall Arrays for Out-of-Memory Data}

Tall arrays are used to work with out-of-memory data that is backed by a datastore. Datastores enable you to work with large data sets in small blocks that individually fit in memory, instead of loading the entire data set into memory at once. Tall arrays extend this capability to enable you to work with out-of-memory data using common functions.

\section*{What is a Tall Array?}

Since the data is not loaded into memory all at once, tall arrays can be arbitrarily large in the first dimension (that is, they can have any number of rows). Instead of writing special code that takes into account the huge size of the data, such as with techniques like MapReduce, tall arrays let you work with large data sets in an intuitive manner that is similar to the way you would work with in-memory MATLAB arrays. Many core operators and functions work the same with tall arrays as they do with in-memory arrays. MATLAB works with small blocks of the data at a time, handling all of the data chunking and processing in the background, so that common expressions, such as \(A+B\), work with big data sets.

\section*{Benefits of Tall Arrays}

Unlike in-memory arrays, tall arrays typically remain unevaluated until you request that the calculations be performed using the gather function. This deferred evaluation allows you to work quickly with large data sets. When you eventually request output using gather, MATLAB combines the queued calculations where possible and takes the minimum number of passes through the data. The number of passes through the data greatly affects execution time, so it is recommended that you request output only when necessary.

Note Since gather returns results as in-memory MATLAB arrays, standard memory considerations apply. MATLAB might run out of memory if the result returned by gather is too large.

\section*{Creating Tall Tables}

Tall tables are like in-memory MATLAB tables, except that they can have any number of rows. To create a tall table from a large data set, you first need to create a datastore for
the data. If the datastore ds contains tabular data, then tall (ds) returns a tall table containing the data. See "Datastore" for more information about creating datastores.

Create a spreadsheet datastore that points to a tabular file of airline flight data. For folders that contain a collection of files, you can specify the entire folder location, or use the wildcard character, ' \(*\). csv', to include multiple files with the same file extension in the datastore. Clean the data by treating 'NA' values as missing data so that datastore replaces them with NaN values. Also, set the format of a few text variables to \%s so that datastore reads them as cell arrays of character vectors.
```

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames,'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames,'CancellationCode')} = '%s';

```

Create a tall table from the datastore. When you perform calculations on this tall table, the underlying datastore reads blocks of data and passes them to the tall table to process. Neither the datastore nor the tall table retain any of the underlying data.
```

tt = tall(ds)
tt =
M×29 tall table

| Year | Month | DayofMonth | Day0fWeek | DepTime | CRSDepTime | ArrTime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | 10 | 21 | 3 | 642 | 630 | 735 |
| 1987 | 10 | 26 | 1 | 1021 | 1020 | 1124 |
| 1987 | 10 | 23 | 5 | 2055 | 2035 | 2218 |
| 1987 | 10 | 23 | 5 | 1332 | 1320 | 1431 |
| 1987 | 10 | 22 | 4 | 629 | 630 | 746 |
| 1987 | 10 | 28 | 3 | 1446 | 1343 | 1547 |
| 1987 | 10 | 8 | 4 | 928 | 930 | 1052 |
| 1987 | 10 | 10 | 6 | 859 | 900 | 1134 |
| : | : | . | : | : | : | : |
| : | : | : | : | : | : | : |

```

The display indicates that the number of rows, \(M\), is currently unknown. MATLAB displays some of the rows, and the vertical ellipses : indicate that more rows exist in the tall table that are not currently being displayed.

\section*{Creating Tall Timetables}

If the data you are working with has a time associated with each row of data, then you can convert the tall table into a tall timetable. There are several ways to create a tall timetable:
- table2timetable - Convert a tall table
- array2timetable - Convert a numeric tall array
- timetable - Construct a tall timetable using existing tall variables

In this case, the tall table \(t t\) has times associated with each row, but they are broken down into several table variables such as Year, Month, DayofMonth, and so on. Combine all of these pieces of datetime information into a single new tall datetime variable Dates, which is based on the departure times DepTime. Create a tall timetable using Dates as the row times. Since Dates is the only datetime variable in the table, the table2timetable function automatically uses it for the row times.
```

hrs = (tt.DepTime - mod(tt.DepTime,100))/100;
mins = mod(tt.DepTime,100);
tt.Dates = datetime(tt.Year, tt.Month, tt.DayofMonth, hrs, mins, 0);
tt(:,1:8) = [];
TT = table2timetable(tt)
TT =

```
M×21 tall timetable

Dates
\begin{tabular}{ll}
21-0ct-1987 & \(06: 42: 00\) \\
\(26-0 c t-1987\) & \(10: 21: 00\) \\
\(23-0 c t-1987\) & \(20: 55: 00\) \\
\(23-0 c t-1987\) & \(13: 32: 00\) \\
\(22-0 c t-1987\) & \(06: 29: 00\) \\
\(28-0 c t-1987\) & \(14: 46: 00\) \\
\(08-0 c t-1987\) & \(09: 28: 00\) \\
\(10-0 c t-1987\) & \(08: 59: 00\) \\
\(\vdots\) &
\end{tabular}

UniqueCarrier
'PS'
'PS'
'PS'
'PS'
'PS'
'PS'
'PS'
'PS'
\(\vdots\)

FlightNum TailNum

1503
1550
1589
1655
1702
1729
1763
1800
:

ActualElapsedTime 'NA' 53
'NA' 63
'NA' 83
'NA' 59
'NA' 77
'NA' 61
'NA' 84
'NA' 155
: :

\section*{Creating Tall Arrays}

When you extract a variable from a tall table or tall timetable, the result is a tall array of the appropriate underlying data type. A tall array can be a numeric, logical, datetime, duration, calendar duration, categorical, string, or cell array. Also, you can convert an inmemory array A into a tall array with \(\mathrm{tA}=\operatorname{tall}(\mathrm{A})\). The in-memory array A must have one of the supported data types.

Extract the arrival delay ArrDelay from the tall timetable TT. This creates a new tall array variable with underlying data type double.
```

a = TT.ArrDelay
a =
M\times1 tall double column vector
8
8
2 1
1 3
4
5 9
3
1 1
:

```

The classUnderlying and isaUnderlying functions are useful to determine the underlying data type of a tall array.

\section*{Deferred Evaluation}

One important aspect of tall arrays is that as you work with them, most operations are not performed immediately. These operations appear to execute quickly, because the actual computation is deferred until you specifically request that the calculations be performed. You can trigger evaluation of a tall array with either the gather function (to bring the result into memory) or the write function (to write the result to disk). This deferred evaluation is important because even a simple command like size \((X)\) executed on a tall array with a billion rows is not a quick calculation.

As you work with tall arrays, MATLAB keeps track of all of the operations to be carried out. This information is then used to optimize the number of passes through the data that
will be required when you request output with the gather function. Thus, it is normal to work with unevaluated tall arrays and request output only when you require it. For more information, see "Deferred Evaluation of Tall Arrays" on page 12-175.

Calculate the mean and standard deviation of the arrival delay. Use these values to construct the upper and lower thresholds for delays that are within one standard deviation of the mean. Notice that the result of each operation indicates that the array has not been calculated yet.
```

m = mean(a,'omitnan')
m =
tall double
?
Preview deferred. Learn more.
s = std(a,'omitnan')
s =
tall
?
Preview deferred. Learn more.
one_sigma_bounds = [m-s m m+s]
one_sigma_bounds =
M\timesN\times... tall array

```
\begin{tabular}{llll}
\(?\) & \(?\) & \(?\) & \(\ldots\) \\
\(?\) & \(?\) & \(?\) & \(\cdots\) \\
\(?\) & \(?\) & \(?\) & \(\cdots\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \\
\(\vdots\) & \(\vdots\) & \(\vdots\) &
\end{tabular}
Preview deferred. Learn more.

\section*{Evaluation with gather}

The benefit of delayed evaluation is that when the time comes for MATLAB to perform the calculations, it is often possible to combine the operations in such a way that the number of passes through the data is minimized. So even if you perform many operations, MATLAB only makes extra passes through the data when absolutely necessary.

The gather function forces evaluation of all queued operations and brings the resulting output into memory. For this reason, you can think of gather as a bridge between tall arrays and in-memory arrays. For example, you cannot control if or while loops using a tall logical array, but once the array is evaluated with gather it becomes an in-memory logical array that you can use in these contexts.

Since gather returns the entire result in MATLAB, you should make sure that the result will fit in memory.

Use gather to calculate one_sigma_bounds and bring the result into memory. In this case, one_sigma_bounds requires several operations to calculate, but MATLAB combines the operations into one pass through the data. Since the data in this example is small, gather executes quickly. However, the elimination of passes through the data becomes more valuable as the size of your data increases.
```

sig1 = gather(one_sigma_bounds)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 1.5 sec
Evaluation completed in 1.8 sec
sig1 =
-23.4572 7.1201 37.6975

```

You can specify multiple inputs and outputs to gather if you want to evaluate several tall arrays at once. This technique is faster than calling gather multiple times. For example, calculate the minimum and maximum arrival delay. Computed separately, each value requires a pass through the data to calculate for a total of two passes. However, computing both values simultaneously requires only one pass through the data.
```

[max_delay, min_delay] = gather(max(a),min(a))
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.1 sec

```
```

max delay =
1 0 1 4
min_delay =
-64

```

These results indicate that on average, most flights arrive about 7 minutes late. But it is within one standard deviation for a flight to be up to 37 minutes late or 23 minutes early. The quickest flight in the data set arrived about an hour early, and the latest flight was delayed by many hours.

\section*{Saving, Loading, and Checkpointing Tall Arrays}

The save function saves the state of a tall array, but does not copy any of the data. The resulting .mat file is typically small. However, the original data files must be available in the same location in order to subsequently use load.

The write function makes a copy of the data and saves the copy as a collection of files, which can consume a large amount of disk space. write executes all pending operations on the tall array to calculate the values prior to writing. Once write copies the data, it is independent of the original raw data. Therefore, you can recreate the tall array from the written files even if the original raw data is no longer available.

You can recreate the tall array from the written files by creating a new datastore that points to the location where the files were written. This functionality enables you to create checkpoints or snapshots of tall array data. Creating a checkpoint is a good way to save the results of preprocessing your data, so that the data is in a form that is more efficient to load.

If you have a tall array TA, then you can write it to the folder location with the command:
```

write(location,TA);

```

Later, to reconstruct TA from the written files, use the commands:
```

ds = datastore(location);
TA = tall(ds);

```

Additionally, you can use the write function to trigger evaluation of a tall array and write the results to disk. This use of write is similar to gather, however, write does not bring any results into memory.

\section*{Supporting Functions}

Most core functions work the same way with tall arrays as they do with in-memory arrays. However, in some cases the way that a function works with tall arrays is special or has limitations. You can tell whether a function supports tall arrays, and if it has any limitations, by looking at the bottom of the reference page for the function in the Extended Capabilities section (for an example, see filloutliers).

For a filtered list of all MATLAB functions that support tall arrays, see Function List (Tall Arrays).

Tall arrays also are supported by several toolboxes, enabling you to do things like write machine learning algorithms, deploy standalone apps, and run calculations in parallel or on a cluster. For more information, see "Extend Tall Arrays with Other Products" on page 12-215.

\section*{See Also}
datastore|gather|mapreducer|table|tall

\section*{More About}
- "Index and View Tall Array Elements" on page 12-181
- "Visualization of Tall Arrays" on page 12-198

\section*{Deferred Evaluation of Tall Arrays}

One of the differences between tall arrays and in-memory MATLAB arrays is that tall arrays typically remain unevaluated until you request that calculations be performed. (The exceptions to this rule include plotting functions like plot and histogram and some statistical fitting functions like fitlm, which automatically evaluate tall array inputs.) While a tall array is in an unevaluated state, MATLAB might not know its size, its data type, or the specific values it contains. However, you can still use unevaluated arrays in your calculations as if the values were known. This allows you to work quickly with large data sets instead of waiting for each command to execute. For this reason, it is recommended that you use gather only when you require output.

MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you enter them. When you eventually call gather to evaluate the queued operations, MATLAB uses the history of unevaluated commands to optimize the calculation by minimizing the number of passes through the data. Used properly, this optimization can save huge amounts of execution time by eliminating unnecessary passes through large data sets.

\section*{Display of Unevaluated Tall Arrays}

The display of unevaluated tall arrays varies depending on how much MATLAB knows about the array and its values. There are three pieces of information reflected in the display:
- Array size - Unknown dimension sizes are represented by the variables M or N in the display. If no dimension sizes are known, then the size appears as MxNx. . . .
- Array data type - If the array has an unknown underlying data type, then its type appears as tall array. If the type is known, it is listed as, for example, tall double array.
- Array values - If the array values are unknown, then they appear as ?. Known values are displayed.

MATLAB might know all, some, or none of these pieces of information about a given tall array, depending on the nature of the calculation.

For example, if the array has a known data type but unknown size and values, then the unevaluated tall array might look like this:
\(M \times N \times .\). tall double array
\begin{tabular}{llll}
\(?\) & \(?\) & \(?\) & \(\ldots\) \\
\(?\) & \(?\) & \(?\) & \(\ldots\) \\
\(?\) & \(?\) & \(?\) & \(\ldots\) \\
\(:\) & \(:\) & \(:\) & \\
\(:\) & \(:\) & \(:\) &
\end{tabular}

If the type and relative size are known, then the display could be:
```

1\timesN tall char array

```
 ? ? ? ...

If some of the data is known, then MATLAB displays the known values:
\(100 \times 3\) tall double matrix
\begin{tabular}{ccc}
0.8147 & 0.1622 & 0.6443 \\
0.9058 & 0.7943 & 0.3786 \\
0.1270 & 0.3112 & 0.8116 \\
0.9134 & 0.5285 & 0.5328 \\
0.6324 & 0.1656 & 0.3507 \\
0.0975 & 0.6020 & 0.9390 \\
0.2785 & 0.2630 & 0.8759 \\
0.5469 & 0.6541 & 0.5502 \\
\(:\) & \(:\) & \(\vdots\) \\
\(:\) & \(:\) & \(:\)
\end{tabular}

\section*{Evaluation with gather}

The gather function is used to evaluate tall arrays. gather accepts tall arrays as inputs and returns in-memory arrays as outputs. For this reason, you can think of this function as a bridge between tall arrays and in-memory arrays. For example, you cannot control if or while loop statements using a tall logical array, but once the array is evaluated with gather it becomes an in-memory logical value that you can use in these contexts.
gather performs all queued operations on a tall array and returns the entire result in memory. Since gather returns results as in-memory MATLAB arrays, standard memory considerations apply. MATLAB might run out of memory if the result returned by gather is too large.

Most of the time you can use gather to see the entire result of a calculation, particularly if the calculation includes a reduction operation such as sum or mean. However, if the result is too large to fit in memory, then you can use gather (head \((X)\)) or
gather(tail (X)) to perform the calculation and look at only the first or last few rows of the result.

\section*{Resolve Errors with gather}

If you enter an erroneous command and gather fails to evaluate a tall array variable, then you must delete the variable from your workspace and recreate the tall array using only valid commands. This is because MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you enter them. The only way to make MATLAB "forget" about an erroneous statement is to reconstruct the tall array from scratch.

\section*{Example: Calculate Size of Tall Array}

This example shows what an unevaluated tall array looks like, and how to evaluate the array.

Create a datastore for the data set airlinesmall.csv. Convert the datastore into a tall table and then calculate the size.
```

varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
'SelectedVariableNames', varnames);
tt = tall(ds)
tt =
M\times4 tall table
ArrDelay DepDelay Origin Dest

| 8 | 12 | 'LAX' | 'SJC' |
| ---: | ---: | :---: | :---: |
| 8 | 1 | 'SJC' | 'BUR' |
| 21 | 20 | 'SAN' | 'SMF' |
| 13 | 12 | 'BUR' | 'SJC' |
| 4 | -1 | 'SMF' | 'LAX' |
| 59 | 63 | 'LAX' | 'SJC' |
| 3 | -2 | 'SAN' | 'SFO' |
| 11 | -1 | SEA' | 'LAX' |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| $:$ | $:$ | $:$ | $:$ |

s = size(tt)

```
```

S =
1\times2 tall double row vector
? ?
Preview deferred. Learn more.

```

Calculating the size of a tall array returns a small answer (a 1-by-2 vector), but the display indicates that an entire pass through the data is still required to calculate the size of \(t\).

Use the gather function to fully evaluate the tall array and bring the results into memory. As the command executes, there is a dynamic progress display in the command window that is particularly helpful with long calculations.

Note Always ensure that the result returned by gather will be able to fit in memory. If you use gather directly on a tall array without reducing its size using a function such as mean, then MATLAB might run out of memory.
```

tableSize = gather(s)
Evaluating tall expression using the Local MATLAB Session:

- Pass l of 1: Completed in 0.42 sec
Evaluation completed in 0.48 sec
tableSize =

```
 123523
 4

\section*{Example: Multi-pass Calculations with Tall Arrays}

This example shows how several calculations can be combined to minimize the total number of passes through the data.

Create a datastore for the data set airlinesmall.csv. Convert the datastore into a tall table.
```

varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
'SelectedVariableNames', varnames);
tt = tall(ds)

```
```

tt =
M×4 tall table

| ArrDelay | DepDelay |  | Origin |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Dest |
|  |  |  |  |  |
| 8 |  |  |  |  |

```

Subtract the mean value of DepDelay from ArrDelay to create a new variable AdjArrDelay. Then calculate the mean value of AdjArrDelay and subtract this mean value from AdjArrDelay. If these calculations were all evaluated separately, then MATLAB would require four passes through the data.
```

AdjArrDelay = tt.ArrDelay - mean(tt.DepDelay,'omitnan');
AdjArrDelay = AdjArrDelay - mean(AdjArrDelay,'omitnan')
AdjArrDelay =
M\times1 tall double column vector
?
?
?
:
Preview deferred. Learn more.

```

Evaluate AdjArrDelay and view the first few rows. Because some calculations can be combined, only three passes through the data are required.
gather(head(AdjArrDelay))
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 3: Completed in 0.4 sec
```

- Pass 2 of 3: Completed in 0.39 sec
- Pass 3 of 3: Completed in 0.23 sec
Evaluation completed in 1.2 sec
ans =
0.8799
0.8799
13.8799
5.8799
-3.1201
51.8799
-4.1201
3.8799

```

\section*{Summary of Behavior and Recommendations}

1 Tall arrays remain unevaluated until you request output using gather.
2 Use gather in most cases to evaluate tall array calculations. If you believe the result of the calculations might not fit in memory, then use gather (head \((X)\)) or gather(tail(X)) instead.
3 Work primarily with unevaluated tall arrays and request output only when necessary. The more queued calculations there are that are unevaluated, the more optimization MATLAB can do to minimize the number of passes through the data.
4 If you enter an erroneous tall array command and gather fails to evaluate a tall array variable, then you must delete the variable from your workspace and recreate the tall array using only valid commands.

\section*{See Also}
gather|write

\section*{More About}
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Index and View Tall Array Elements}

Tall arrays are too large to fit in memory, so it is common to view subsets of the data rather than the entire array. This page shows techniques to extract and view portions of a tall array.

\section*{Extract Top Rows of Array}

Use the head function to extract the first rows in a tall array. head does not force evaluation of the array, so you must use gather to view the result.
```

tt = tall(table(randn(1000,1),randn(1000,1),randn(1000,1)))
tt =
1,000\times3 tall table
Var1 Var2
.
0.6737
0.29617
1.8339 -0.66911 1.2008
-2.2588 -0.40032 1.0902
0.86217 -0.6718 -0.3587
0.31877 0.57563 -0.12993
-1.3077 -0.77809 0.73374
-0.43359 -1.0636 0.12033
0.34262 0.55298 1.1363
t_head = gather(head(tt))
t_head =
8\times3 table
Var1
Var2
Var3

| 0.53767 | 0.6737 | 0.29617 |
| ---: | ---: | ---: |
| 1.8339 | -0.66911 | 1.2008 |
| -2.2588 | -0.40032 | 1.0902 |

```
\begin{tabular}{rrr}
0.86217 & -0.6718 & -0.3587 \\
0.31877 & 0.57563 & -0.12993 \\
-1.3077 & -0.77809 & 0.73374 \\
-0.43359 & -1.0636 & 0.12033 \\
0.34262 & 0.55298 & 1.1363
\end{tabular}

\section*{Extract Bottom Rows of Array}

Similarly, you can use the tail function to extract the bottom rows in a tall array.
```

t_tail = gather(tail(tt))
t_tail =
8×3 table
Var1
Var2
Var3
0.64776
0.47349
-0.27077
-0.31763
1.3656
0.43966
1.769 -1.6378 -0.50614
1.5106 2.0237 -0.18435
0.16401 0.77779 0.402
-0.28276 -0.5489 0.53923
1.1522 -0.12601 -0.73359
-1.1465 0.29958 -0.26837

```

\section*{Indexing Tall Arrays}

All tall arrays support parentheses indexing. When you index a tall array using parentheses, such as \(T(A)\) or \(T(A, B)\), the result is a new tall array containing only the specified rows and columns (or variables). Like most other operations on tall arrays, indexing expressions are not evaluated immediately. You must use gather to evaluate the indexing operation. For more information, see "Deferred Evaluation of Tall Arrays" on page 12-175.

You can perform these types of indexing in the first dimension of a tall array:
- \(B=A(:, \ldots)\), where : selects all rows in \(A\).
- \(B=A(i d x, \ldots)\), where \(i d x\) is a tall numeric column vector or non-tall numeric vector.
- \(B=A(L, \ldots)\), where \(L\) is a tall or non-tall logical array of the same height as \(A\). For example, you can use relational operators, such as tt (tt.Var1 < 10,:).
- \(B=A(P: D: Q, \ldots)\) or \(B=A(P: Q, \ldots)\), where \(P: D: Q\) and \(P: Q\) are valid colon indexing expressions.
- head (\(t \mathrm{t}, \mathrm{k}\)) provides a shortcut for \(\mathrm{tt}(1: \mathrm{k},:\)).
- tail(tt,k) provides a shortcut for tt(end-k:end,:).

Additionally, the number of subscripts you must specify depends on how many dimensions the array has:
- For tall column vectors, you can specify a single subscript such as \(t(1: 10)\).
- For tall row vectors, tall tables, and tall timetables, you must specify two subscripts.
- For tall arrays with two or more dimensions, you must specify two or more subscripts. For example, if the array has three dimensions, you can use an expression such as tA(1:10,:,:) or tA(1:10,:), but not linear indexing expressions such as tA(1:10) or tA(:).

Tip The find function locates nonzero elements in tall column vectors, and can be useful to generate a vector of indices for elements that meet particular conditions. For example, \(k=f i n d(X<0)\) returns the linear indices for all negative elements in \(X\).

For example, use parentheses indexing to retrieve the first ten rows of \(t t\).
```

tt(1:10,:)
ans =
10\times3 tall table

| Var1 | Var2 | Var3 |
| :---: | :---: | :---: |
| 0.53767 | 0.6737 | 0.29617 |
| 1.8339 | -0.66911 | 1.2008 |
| -2.2588 | -0.40032 | 1.0902 |
| 0.86217 | -0.6718 | -0.3587 |
| 0.31877 | 0.57563 | -0.12993 |
| -1.3077 | -0.77809 | 0.73374 |
| -0.43359 | . | - |

```
```

0.34262 0.55298 1.1363
: : :

```

Retrieve the last 5 values of the table variable Var1.
```

tt(end-5:end,'Var1')
ans =
6x1 tall table
Var1
1.769
1.5106
0.16401
0.28276
1.1522
-1.1465

```

Retrieve every 100th row from the tall table.
```

tt(1:100:end,:)
ans =
10\times3 tall table

| Var1 | Var2 | Var3 |
| :---: | :---: | :---: |
| 0.53767 | 0.6737 | 0.29617 |
| 0.84038 | -0.041663 | -0.52093 |
| 0.18323 | 1.3419 | 0.052993 |
| 0.079934 | -0.40492 | -1.6163 |
| 0.26965 | -1.5144 | 0.98399 |
| -0.079893 | -1.6848 | -0.91182 |
| 0.47586 | -2.1746 | 1.1754 |
| 1.9085 | -0.79383 | 0.18343 |
| : | : | : |

```

\section*{Extract Tall Table Variables}

The variables in a tall table or tall timetable are each tall arrays of different underlying data types. Standard indexing methods of tables and timetables also apply to tall tables and tall timetables, including the use of timerange, withtol, and vartype.

For example, index a tall table using dot notation T.VariableName to retrieve a single variable of data as a tall array.
tt.Var1
ans =
\(1,000 \times 1\) tall double column vector
0.5377
1.8339
- 2.2588
0.8622
0.3188
\(-1.3077\)
\(-0.4336\)
0.3426
:
Use tab completion to look up the variables in a table if you cannot remember a precise variable name. For example, type \(t t\). and then press Tab. A menu pops up:
```

Command Window
>> tt = tall(table(randn (1000, 1), randn (1000,1), randn (1000,1)))
tt =
1,000\times3 tall table

```


You can also perform multiple levels of indexing. For example, extract the first 5 elements in the variable Var2. In this case you must use one of the supported forms of indexing for tall arrays in the parentheses.
```

tt.Var2(1:5)
ans =
5\times1 tall double column vector
0.6737
-0.6691
-0.4003
-0.6718
0.5756

```

See "Access Data in Tables" or "Select Timetable Data by Row Time and Variable Type" for more indexing information.

\section*{Concatenation with Tall Arrays}

In order to concatenate two or more tall arrays, as in [A1 A2 A3 ...], each of the tall arrays must be derived from a single tall array and must not have been indexed differently in the first dimension. Indexing operations include functions such as vertcat, splitapply, sort, cell2mat, synchronize, retime, and so on.

For example, concatenate a few columns from \(t t\) to create a new tall matrix.
```

[tt.Var1 tt.Var2]
ans =
1,000\times2 tall double matrix
0.5377 0.6737
1.8339 -0.6691
-2.2588 -0.4003
0.8622 -0.6718
0.3188 0.5756
-1.3077 -0.7781
-0.4336 -1.0636
0.3426 0.5530

```

To combine tall arrays with different underlying datastores, it is recommended that you use write to write the arrays (or calculation results) to disk, and then create a new datastore referencing those locations:
```

files = {'folder/path/to/file1','folder/path/to/file2'};
ds = datastore(files);

```

\section*{Assignment and Deletion with Tall Arrays}

The same subscripting rules apply whether you use indexing to assign or delete elements from a tall array. Deletion is accomplished by assigning one or more elements to the empty matrix, [].

\section*{"()" Assignment}

You can assign elements into a tall array using the general syntax \(A(m, n, \ldots)=B\). The tall array A must exist. The first subscript \(m\) must be either a colon : or a tall logical vector. With this syntax, B can be:
- Scalar
- A tall array derived from \(A(m, \ldots)\) where \(m\) is the same subscript as above. For example, \(A(m, 1: 10)\).
- An empty matrix, [] (for deletion)

\section*{"." Assignment}

For table indexing using the syntax A.Var1 = B, the array B must be a tall array with the appropriate number of rows. Typically, B is derived from existing data in the tall table. Varl can be either a new or existing variable in the tall table.

You cannot assign tall arrays as variables in a regular table, even if the table is empty.

\section*{Extract Specified Number of Rows in Sorted Order}

Sorting all of the data in a tall array can be an expensive calculation. Most often, only a subset of rows at the beginning or end of a tall array is required to answer questions like "What is the first row in this data by year?"

The topkrows function returns a specified number of rows in sorted order for this purpose. For example, use topkrows to extract the top 12 rows sorted in descending order by the second column.
```

t_top12 = gather(topkrows(tt,12,2))
Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.067 sec
t_top12 =
12\times3 table
Var1 Var2 Var3
-1.0322 3.5699 -1.4689

```
\begin{tabular}{rrr}
1.3312 & 3.4075 & 0.17694 \\
-0.27097 & 3.1585 & 0.50127 \\
0.55095 & 2.9745 & 1.382 \\
0.45168 & 2.9491 & -0.8215 \\
-1.7115 & 2.7526 & -0.3384 \\
-0.21317 & 2.7485 & 1.9033 \\
-0.43021 & 2.7335 & 0.77616 \\
-0.59003 & 2.7304 & 0.67702 \\
0.47163 & 2.7292 & 0.92099 \\
-0.47615 & 2.683 & -0.26113 \\
0.72689 & 2.5383 & -0.57588
\end{tabular}

\section*{Summarize Tall Array Contents}

The summary function returns useful information about each variable in a tall table or timetable, such as the minimum and maximum values of numeric variables, and the number of occurrences of each category for categorical variables.

For example, create a tall table for the outages.csv data set and display the summary information. This data set contains numeric, datetime, and categorical variables.
```

fmts = {'%C' '%D' '%f' '%f' '%D' '%C'};
ds = datastore('outages.csv','TextscanFormats',fmts);
T = tall(ds);
summary(T)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.16 sec
- Pass 2 of 2: Completed in 0.19 sec
Evaluation completed in 0.46 sec
Variables:
Region: 1,468\times1 categorical
Values:
MidWest 142
NorthEast 557
SouthEast 389
SouthWest 26
West 354
OutageTime: 1,468\times1 datetime
Values:

```
Min 2002-02-01 12:18
Max 2014-01-15 02:41
Loss: 1,468×1 double
Values:
Min 0
Max 23418
NumMissing 604
Customers: \(1,468 \times 1\) doubleValues:
Min 0
Max 328
RestorationTime: 1,468×1 datetimeValues:
Min 2002-02-07 16:50
Max 2042-09-18 23:31
NumMissing 29
Cause: \(1,468 \times 1\) categoricalValues:
attack 294
earthquake 2
energy emergency 188
equipment fault 156
fire 25
severe storm 338
thunder storm 201
unknown 24
wind 95
winter storm 145

\section*{Return Subset of Calculation Results}

Many of the examples on this page use gather to evaluate expressions and bring the results into memory. However, in these examples it is also trivial that the results fit in memory, since only a few rows are indexed at a time.

In cases where you are unsure if the result of an expression will fit in memory, it is recommended that you use gather(head (X)) or gather(tail(X)). These commands still evaluate all of the queued calculations, but return only a small amount of the result that is guaranteed to fit in memory.

If you are certain that the result of a calculation will not fit in memory, use write to evaluate the tall array and write the results to disk instead.

\section*{See Also}
gather|head|table|tail|tall|topkrows

\section*{More About}
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Histograms of Tall Arrays}

This example shows how to use histogram and histogram2 to analyze and visualize data contained in a tall array.

\section*{Create Tall Table}

Create a datastore using the airlinesmall. csv data set. Treat 'NA' values as missing data so that they are replaced with NaN values. Select a subset of the variables to work with. Convert the datastore into a tall table.
```

varnames = {'ArrDelay', 'DepDelay', 'Year', 'Month'};
ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA', ...
'SelectedVariableNames', varnames);
T = tall(ds)
T =
Mx4 tall table

```
\begin{tabular}{ccccc}
ArrDelay & & \begin{tabular}{c}
DepDelay
\end{tabular} & & Year
\end{tabular} \begin{tabular}{c}
Month \\
\\
\\
8
\end{tabular}

\section*{Plot Histogram of Arrival Delays}

Plot a histogram of the ArrDelay variable to examine the frequency distribution of arrival delays.
```

h = histogram(T.ArrDelay);
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 1.8 sec
- Pass 2 of 2: Completed in 0.71 sec
Evaluation completed in 3.8 sec

```


The arrival delay is most frequently a small number near 0 , so these values dominate the plot and make it difficult to see other details.

\section*{Adjust Bin Limits of Histogram}

Restrict the histogram bin limits to plot only arrival delays between -50 and 150 minutes. After you create a histogram object from a tall array, you cannot change any properties that would require recomputing the bins, including BinWidth and BinLimits. Also, you cannot use morebins or fewerbins to adjust the number of bins. In these cases, use histogram to reconstruct the histogram from the raw data in the tall array.
```

figure
histogram(T.ArrDelay,'BinLimits',[-50,150])
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.89 sec
- Pass 2 of 2: Completed in 0.68 sec
Evaluation completed in 2.1 sec
title('Flight arrival delays between -50 and 150 minutes, 1987 - 2008')
xlabel('Arrival Delay (minutes)')
ylabel('Probability')

```

Flight arrival delays between -50 and 150 minutes, 1987-2008

From this plot, it appears that long delays might be more common than initially expected. To investigate further, find the probability of an arrival delay that is one hour or greater.

\section*{Probability of Delays One Hour or Greater}

The original histogram returned an object h that contains the bin values in the Values property and the bin edges in the BinEdges property. You can use these properties to perform in-memory calculations.

Determine which bins contain arrival delays of one hour (60 minutes) or more. Remove the last bin edge from the logical index vector so that it is the same length as the vector of bin values.
```

idx = h.BinEdges >= 60;
idx(end) = [];

```

Use idx to retrieve the value associated with each selected bin. Add the bin values together, divide by the total number of samples, and multiply by 100 to determine the overall probability of a delay greater than or equal to one hour. Since the total number of samples is computed from the original data set, use gather to explicitly evaluate the calculation and return an in-memory scalar.
```

N = numel(T.ArrDelay);
P = gather(sum(h.Values(idx))*100/N)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 0.59 sec
Evaluation completed in 0.68 sec
P = 4.4809

```

Overall, the odds of an arrival delay one hour or longer are about 4.5\%.

\section*{Plot Bivariate Histogram of Delays by Month}

Plot a bivariate histogram of the arrival delays that are 60 minutes or longer by month. This plot examines how seasonality affects arrival delay.
```

figure
h2 = histogram2(T.Month,T.ArrDelay,[12 50],'YBinLimits',[60 1100],...
'Normalization','probability','FaceColor','flat');
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.2 sec
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.92 sec
Evaluation completed in 0.97 sec

```
```

title('Probability of arrival delays 1 hour or greater (by month)')
xlabel('Month (1-12)')
ylabel('Arrival Delay (minutes)')
zlabel('Probability')
xticks(1:12)
view(-126,23)

```

Probability of arrival delays 1 hour or greater (by month)

Arrival Delay (minutes)

\section*{Delay Statistics by Month}

Use the bivariate histogram object to calculate the probability of having an arrival delay one hour or greater in each month, and the mean arrival delay for each month. Put the results in a table with the variable P containing the probability information and the variable MeanByMonth containing the mean arrival delay.
```

monthNames = {'Jan','Feb','Mar','Apr','May','Jun',...
'Jul','Aug','Sep','Oct','Nov','Dec'}';
G = findgroups(T.Month);
M = splitapply(@(x) mean(x,'omitnan'),T.ArrDelay,G);
delayByMonth = table(monthNames, sum(h2.Values,2)*100, gather(M), ...
'VariableNames',{'Month','P','MeanByMonth'})
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.64 sec
- Pass 2 of 2: Completed in 1.4 sec
Evaluation completed in 2.7 sec
delayByMonth=12\times3 table
Month P MeanByMonth
{'Jan'} 9.6497 8.5954
{'Feb'} 7.7058 7.3275
{'Mar'} 9.0543 7.5536
{'Apr'} 7.2504 6.0081
{'May'} 7.4256 5.2949
{'Jun'} 10.35 10.264
{'Jul'} 10.228 8.7797
{'Aug'} 8.5989 7.4522
{'Sep'} 5.4116 3.6308
{'Oct'} 6.042 4.6059
{'Nov'} 6.9002 5.2835
{'Dec'} 11.384 10.571

```

The results indicate that flights in the holiday month of December have an \(11.4 \%\) chance of being delayed longer than an hour, but are delayed by 10.5 minutes on average. This is closely followed by the summer months of June and July, where there is about a \(10 \%\) chance of being delayed an hour or more and the average delay is roughly 9 or 10 minutes.

\section*{See Also}
histogram|histogram2|tall

\section*{More About}
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Visualization of Tall Arrays}

Visualizing large data sets requires that the data is summarized, binned, or sampled in some way to reduce the number of points that are plotted on the screen. In some cases, functions such as histogram and pie bin the data to reduce the size, while other functions such as plot and scatter use a more complex approach that avoids plotting duplicate pixels on the screen. For problems where the pixel overlap is relevant to the analysis, the binscatter function also offers an efficient way to visualize density patterns.

Visualizing tall arrays does not require the use of gather. MATLAB immediately evaluates and displays visualizations of tall arrays. Currently, you can visualize tall arrays using the functions and methods in this table.
\begin{tabular}{|l|l|l|}
\hline Function & Required Toolboxes & Notes \\
\hline plot & - & \begin{tabular}{l}
These functions plot in \\
iterations, progressively \\
adding to the plot as more \\
data is read. During the \\
updates, a progress \\
indicator shows the \\
proportion of data that has \\
been plotted. Zooming and \\
panning is supported during \\
the updating process, before \\
the plot is complete. To stop \\
the update process, press \\
the pause button in the \\
progress indicator.
\end{tabular} \\
\hline binscatter & - & \\
\hline histogram & - & \begin{tabular}{l}
For visualizing categorical \\
data only.
\end{tabular} \\
\hline histogram2 & - & \\
\hline pie & - & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Function & Required Toolboxes & Notes \\
\hline binScatterPlot & \begin{tabular}{l}
Statistics and Machine \\
Learning Toolbox \({ }^{\mathrm{TM}}\)
\end{tabular} & \begin{tabular}{l}
Figure contains a slider to \\
control the brightness and \\
color detail in the image. \\
The slider adjusts the value \\
of the Gamma image \\
correction parameter.
\end{tabular} \\
\hline ksdensity & \begin{tabular}{l}
Statistics and Machine \\
Learning Toolbox
\end{tabular} & \begin{tabular}{l}
Produces a probability \\
density estimate for the \\
data, evaluated at 100 \\
points for univariate data, or \\
900 points for bivariate \\
data.
\end{tabular} \\
\hline datasample & \begin{tabular}{l}
Statistics and Machine \\
Learning Toolbox
\end{tabular} & \begin{tabular}{l}
datasample enables you to \\
extract a subsample of a tall \\
array in a statistically sound \\
way compared to simple \\
indexing. If the subset of \\
data is small enough to fit in \\
memory, then you can use \\
plotting and fitting functions \\
on the subset that do not \\
directly support tall arrays.
\end{tabular} \\
\hline
\end{tabular}

\section*{Tall Array Plotting Examples}

This example shows several different ways you can visualize tall arrays.
Create a datastore for the airlinesmall.csv data set, which contains rows of airline flight data. Select a subset of the table variables to work with and remove rows that contain missing values.
```

ds = datastore('airlinesmall.csv','TreatAsMissing','NA');
ds.SelectedVariableNames = {'Year','Month','ArrDelay','DepDelay','Origin','Dest'};
T = tall(ds);
T = rmmissing(T)
T =
Mx6 tall table

```
\begin{tabular}{ccccccc}
Year & Month & ArrDelay & & DepDelay & & Origin
\end{tabular}

\section*{Pie Chart of Flights by Month}

Convert the numeric Month variable into a categorical variable that reflects the name of the month. Then plot a pie chart showing how many flights are in the data for each month of the year.
T.Month = categorical(T.Month,1:12,\{'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','S \(\mathrm{T}=\)

Mx6 tall table
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Month & ArrDelay & DepDelay & Origin & Dest \\
\hline 1987 & Oct & 8 & 12 & \{'LAX'\} & \{'SJC'\} \\
\hline 1987 & Oct & 8 & 1 & \{'SJC'\} & \{'BUR'\} \\
\hline 1987 & Oct & 21 & 20 & \{'SAN'\} & \{'SMF'\} \\
\hline 1987 & 0ct & 13 & 12 & \{'BUR'\} & \{'SJC'\} \\
\hline 1987 & 0ct & 4 & -1 & \{'SMF'\} & \{'LAX'\} \\
\hline 1987 & 0ct & 59 & 63 & \{'LAX'\} & \{'SJC'\} \\
\hline 1987 & Oct & 3 & -2 & \{'SAN'\} & \{'SFO'\} \\
\hline 1987 & Oct & 11 & -1 & \{'SEA'\} & \{'LAX'\} \\
\hline : & : & : & : & : & : \\
\hline
\end{tabular}
pie(T.Month)
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.9 sec

\section*{- Pass 2 of 2: Completed in 1.1 sec Evaluation completed in 3.6 sec}

\section*{Histogram of Delays}

Plot a histogram of the arrival delays for each flight in the data. Since the data has a long tail, limit the plotting area using the BinLimits name-value pair.
```

histogram(T.ArrDelay,'BinLimits',[-50 150])
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 2.7 sec
- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 4.6 sec

```


\section*{Scatter Plot of Delays}

Plot a scatter plot of arrival and departure delays. You can expect a strong correlation between these variables since flights that leave late are also likely to arrive late.

When operating on tall arrays, the plot, scatter, and binscatter functions plot the data in iterations, progressively adding to the plot as more data is read. During the updates the top of the plot has a progress indicator showing how much data has been plotted. Zooming and panning is supported during the updates before the plot is complete.
```

scatter(T.ArrDelay,T.DepDelay)
xlabel('Arrival Delay')
ylabel('Departure Delay')

```
```

xlim([-140 1000])
ylim([-140 1000])

```


The progress bar also includes a Pause/Resume button. Use the button to stop the plot updates early once enough data is displayed.

\section*{Fit Trend Line}

Use the polyfit and polyval functions to overlay a linear trend line on the plot of arrival and departure delays.
hold on
p = polyfit(T.ArrDelay,T.DepDelay,1);
x = sort(T.ArrDelay,1);
```

yp = polyval(p,x);
plot(x,yp,'r-')
hold off

```


\section*{Visualize Density}

The scatter plot of points is helpful up to a certain point, but it can be hard to decipher information from the plot if the points overlap extensively. In that case, it helps to visualize the density of points in the plot to spot trends.

Use the binscatter function to visualize the density of points in the plot of arrival and departure delays.
binscatter(T.ArrDelay,T.DepDelay,'XLimits',[-100 1000],'YLimits',[-100 1000]) \(x \lim ([-100\) 1000])
ylim([-100 1000])
xlabel('Arrival Delay')
ylabel('Departure Delay')

Adjust the CLim property of the axes so that all bin values greater than 150 are colored the same. This prevents a few bins with very large values from dominating the plot.
```

ax = gca;
ax.CLim = [0 150];

```


See Also
plot|polyfit|tall
More About
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Grouped Statistics Calculations with Tall Arrays}

This example shows how to calculate grouped statistics of a tall timetable containing power outage data. The example uses the grouptransform, groupsummary, and groupcounts functions to calculate various quantities of interest, such as the most common power outage cause in each region. Even though the raw data in this example only has about 1500 rows, you can use the techniques presented here on much larger data sets because no assumptions are made about the size of the data.

\section*{Create Datastore and Tall Timetable}

The sample file, outages.csv, contains data representing electric utility outages in the United States. The file contains six columns: Region, OutageTime, Loss, Customers, RestorationTime, and Cause.

Create a datastore for the outages.csv file. Use the "TextScanFormats" option to specify the kind of data each column contains: categorical ("\%C"), floating-point numeric ("\%f"), or datetime ("\%D").
```

data_formats = ["%C","%D","%f","%f","%D","%C"];
ds = datastore("outages.csv","TextscanFormats",data_formats);

```

Create a tall table on top of the datastore, and convert the tall table into a tall timetable. The OutageTime variable is used for the row times since it is the first datetime or duration variable in the table.
```

T = tall(ds);
T = table2timetable(T)
T =

```
Mx5 tall timetable
 OutageTime Region Loss Customers RestorationTime Cause
\begin{tabular}{llllll}
\(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) \\
\(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) \\
\(?\) & \(?\) & \(?\) & \(?\) & \(?\) & \(?\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(?\)
\end{tabular}

\section*{Replace Missing Data}

Some of the rows in the RestorationTime variable have missing times, represented by NaT values. Remove these rows from the table.
```

T = rmmissing(T,"DataVariables","RestorationTime");

```

For the numeric variables in the timetable, instead of removing rows with missing values, replace the missing values with the mean value for each region.
```

T = grouptransform(T,"Region","meanfill",["Loss","Customers"]);

```

Use ismissing to confirm that no pieces of missing data remain in the table.
```

tf = any(ismissing(T),"all");
gather(tf)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 4: Completed in 0.35 sec
- Pass 2 of 4: Completed in 0.83 sec
- Pass 3 of 4: Completed in 0.61 sec
- Pass 4 of 4: Completed in 0.65 sec
Evaluation completed in 3.5 sec
ans = logical
0

```

\section*{Preview Data}

Now that the data does not contain missing values, bring a small number of rows into memory to get an idea of what the data contains.
```

gather(head(T))

```
Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.43 sec
Evaluation completed in 0.53 sec

\begin{tabular}{|c|c|c|}
\hline 2004-04-06 & 05:44 & West \\
\hline 2002-03-16 & 06:18 & MidWest \\
\hline 2003-06-18 & 02:49 & West \\
\hline 2004-06-20 & 14:39 & West \\
\hline 2002-06-06 & 19:28 & West \\
\hline 2003-07-16 & 16:23 & NorthEast \\
\hline
\end{tabular}

Determine the mean power outage duration in each region using groupsummary. First, create a new variable OutageDuration in the table that contains the duration of each outage, found by subtracting the outage time from the restoration time. In the call to groupsummary, specify:
- "Region" as the grouping variable
- "mean" as the computation method
- "OutageDuration" as the variable to operate on.
```

T.OutageDuration = T.RestorationTime - T.OutageTime;
times = groupsummary(T,"Region","mean","OutageDuration")
times =
Mx3 tall table

```
 Region GroupCount mean_OutageDuration

Change the display format of the duration results to be in days, and gather the results into memory. The results show the mean outage duration in each region, as well as the number of reported outages in each region.
```

times.mean_OutageDuration.Format = "d";
times = gather(times)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 1.2 sec

```
```

- Pass 2 of 2: Completed in 0.76 sec
Evaluation completed in 2.5 sec
times=5\times3 table
Region GroupCount mean_OutageDuration
MidWest 138
NorthEast 548
SouthEast 379
SouthWest 25
West 349
34.135 days
24.21 days
1.7013 days
2.4799 days
28.061 days

```

\section*{Most Common Power Outage Causes by Region}

Determine how often each power outage cause occurs in each region. Use groupcounts with the Cause and Region variables as grouping variables. Gather the results into memory.
```

causes = groupcounts(T,["Cause","Region"]);
causes = gather(causes)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.36 sec
- Pass 2 of 2: Completed in 0.48 sec
Evaluation completed in 1.2 sec
causes=43\times3 table
Cause Region GroupCount
attack
attack
attack
attack
earthquake
earthquake

```

Region

MidWest NorthEast12SouthEast135West19
126NorthEast
1
West 1
MidWest energy emergency 19
energy emergency NorthEast 29
energy emergency SouthEast 79
energy emergency SouthWest 7
energy emergency West 46
equipment fault MidWest 9
equipment fault NorthEast 17
\begin{tabular}{llr}
equipment fault & SouthEast & 40 \\
equipment fault & SouthWest & 2 \\
equipment fault & West & 85
\end{tabular}

Each cause occurs several times in the table, so even though the table contains the correct data it is not in the proper format to see how often each cause occurs in each region. To improve the presentation of the data, unstack the GroupCount variable so that each column corresponds to a region and each row corresponds to an outage cause.

RegionCauses = gather(unstack(causes,"GroupCount", "Region"))
RegionCauses=10×6 table
Cause MidWest
attack
earthquake
energy emergency
equipment fault
fire
severe storm
thunder storm
unknown
wind
winter storm
\(\qquad\)
NorthEast
SouthEast
SouthWest
West
\begin{tabular}{|c|c|c|c|c|}
\hline 12 & 135 & 19 & NaN & 126 \\
\hline NaN & 1 & NaN & NaN & 1 \\
\hline 19 & 29 & 79 & 7 & 46 \\
\hline 9 & 17 & 40 & 2 & 85 \\
\hline NaN & 5 & 3 & NaN & 17 \\
\hline 30 & 139 & 132 & 6 & 22 \\
\hline 31 & 102 & 54 & 6 & 7 \\
\hline 4 & 10 & 3 & NaN & 4 \\
\hline 16 & 40 & 13 & 3 & 22 \\
\hline 17 & 70 & 36 & 1 & 19 \\
\hline
\end{tabular}

Not all combinations of outage causes and regions are represented in the data, so the resulting table contains some NaNs. Fill in the NaN values with zeros.

RegionCauses = fillmissing(RegionCauses,"constant", \{"", 0, 0, 0, 0, 0\})
RegionCauses=10×6 table
Cause MidWest NorthEast SouthEast SouthWest West
\begin{tabular}{|c|c|c|c|c|c|}
\hline attack & 12 & 135 & 19 & 0 & 126 \\
\hline earthquake & 0 & 1 & 0 & 0 & 1 \\
\hline energy emergency & 19 & 29 & 79 & 7 & 46 \\
\hline equipment fault & 9 & 17 & 40 & 2 & 85 \\
\hline fire & 0 & 5 & 3 & 0 & 17 \\
\hline severe storm & 30 & 139 & 132 & 6 & 22 \\
\hline thunder storm & 31 & 102 & 54 & 6 & 7 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
unknown & 4 & 10 & 3 & 0 & 4 \\
wind & 16 & 40 & 13 & 3 & 22 \\
winter storm & 17 & 70 & 36 & 1 & 19
\end{tabular}

\section*{Worst Power Outages in Each Region}

Calculate the broadest customer impact for each power outage in each region.
```

WorstOutages = groupsummary(T,["Region","Cause"],"max","Customers");
WorstOutages = gather(WorstOutages)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.29 sec
- Pass 2 of 2: Completed in 0.52 sec
Evaluation completed in 1.1 sec

```


Combine the data in the Region and Cause variables into a single categorical variable by briefly converting them into strings. Then, create a categorical histogram of the maximum number of affected customers for each cause in each region.

WorstOutages.RegionCause = categorical(string(WorstOutages.Region)+" ("+string(WorstOu histogram("Categories", WorstOutages.RegionCause, "BinCounts", WorstOutages.max_Customers
```

        "DisplayOrder","descend")
    ylabel("Max # Affected Customers")
    ```


\section*{See Also}
findgroups|splitapply|tall

\section*{More About}
- "Grouping Variables To Split Data"
- "Split Data into Groups and Calculate Statistics"
- "Split Table Data Variables and Apply Functions"

\title{
Extend Tall Arrays with Other Products
}

Products Used: Statistics and Machine Learning Toolbox, Database Toolbox, Parallel Computing Toolbox, MATLAB Parallel Server, MATLAB Compiler

Several toolboxes enhance the capabilities of tall arrays. These enhancements include writing machine learning algorithms, integrating with big data systems, and deploying standalone apps.

\section*{Statistics and Machine Learning}

Statistics and Machine Learning Toolbox enables you to perform advanced statistical calculations on tall arrays. Capabilities include:
- K-means clustering
- Linear regression fitting
- Grouped statistics
- Classification

See "Analysis of Big Data with Tall Arrays" (Statistics and Machine Learning Toolbox) for more information.

\section*{Control Where Your Code Runs}

When you execute calculations on tall arrays, the default execution environment uses either the local MATLAB session, or a local parallel pool if you have Parallel Computing Toolbox. Use the mapreducer function to change the execution environment of tall arrays when using Parallel Computing Toolbox, MATLAB Parallel Server, or MATLAB Compiler:
- Parallel Computing Toolbox - Run calculations in parallel using local or cluster workers to speed up large tall array calculations. See "Use Tall Arrays on a Parallel Pool" (Parallel Computing Toolbox) or "Process Big Data in the Cloud" (Parallel Computing Toolbox) for more information.
- MATLAB Parallel Server - Run tall array calculations on a cluster, including Apache Spark \({ }^{\mathrm{TM}}\) enabled Hadoop clusters. This can significantly reduce the execution time of very large calculations. See "Use Tall Arrays on a Spark Enabled Hadoop Cluster" (Parallel Computing Toolbox) for more information.
- MATLAB Compiler - Deploy MATLAB applications containing tall arrays as standalone apps on Apache Spark. See "Spark Applications" (MATLAB Compiler) for more information.

One of the benefits of developing your algorithms with tall arrays is that you only need to write the code once. You can develop your code locally, then use mapreducer to scale up and take advantage of the capabilities offered by Parallel Computing Toolbox, MATLAB Parallel Server, or MATLAB Compiler, without needing to rewrite your algorithm.

Note Each tall array is bound to a single execution environment when it is constructed using tall(ds). If that execution environment is later modified or deleted, then the tall array becomes invalid.

For this reason, each time you change the execution environment you must reconstruct the tall array.

\section*{Work with Databases}

Database Toolbox enables you to create a tall table from a DatabaseDatastore that is backed by data in a database. For more information, see "Analyze Large Data in Database Using Tall Arrays" (Database Toolbox).

Note DatabaseDatastore has these limitations:
- DatabaseDatastore must use the local MATLAB session as the execution environment. Set this environment using the command mapreducer (0).
- Standalone applications containing tall arrays that use DatabaseDatastore cannot be deployed against Apache Spark using MATLAB Compiler.

\section*{See Also}
gcmr|mapreducer|tall

\section*{More About}
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Analyze Big Data in MATLAB Using Tall Arrays}

This example shows how to use tall arrays to work with big data in MATLAB®. You can use tall arrays to perform a variety of calculations on different types of data that does not fit in memory. These include basic calculations, as well as machine learning algorithms within Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\).

This example operates on a small subset of data on a single computer, and then it then scales up to analyze all of the data set. However, this analysis technique can scale up even further to work on data sets that are so large they cannot be read into memory, or to work on systems like Apache Spark \({ }^{\mathrm{TM}}\).

\section*{Introduction to Tall Arrays}

Tall arrays and tall tables are used to work with out-of-memory data that has any number of rows. Instead of writing specialized code that takes into account the huge size of the data, tall arrays and tables let you work with large data sets in a manner similar to inmemory MATLAB® arrays. The difference is that tall arrays typically remain unevaluated until you request that the calculations be performed.

This deferred evaluation enables MATLAB to combine the queued calculations where possible and take the minimum number of passes through the data. Since the number of passes through the data greatly affects execution time, it is recommended that you request output only when necessary.

\section*{Create datastore for Collection of Files}

Creating a datastore enables you to access a collection of data. A datastore can process arbitrarily large amounts of data, and the data can even be spread across multiple files in multiple folders. You can create a datastore for a collection of tabular text files (demonstrated here), spreadsheets, images, a SQL database (Database Toolbox \({ }^{\text {TM }}\) required) or Hadoop \({ }^{\circledR}\) sequence files.

Create a datastore for a . csv file containing airline data. Treat 'NA' values as missing so that datastore replaces them with NaN values. Select the variables of interest, and specify a categorical data type for the Origin and Dest variables. Preview the contents.
```

ds = datastore('airlinesmall.csv');
ds.TreatAsMissing = 'NA';
ds.SelectedVariableNames = {'Year','Month','ArrDelay','DepDelay','Origin','Dest'};
ds.SelectedFormats(5:6) = {'%C','%C'};
pre = preview(ds)

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Month & ArrDelay & DepDelay & Origin & Dest \\
\hline 1987 & 10 & 8 & 12 & LAX & SJC \\
\hline 1987 & 10 & 8 & 1 & SJC & BUR \\
\hline 1987 & 10 & 21 & 20 & SAN & SMF \\
\hline 1987 & 10 & 13 & 12 & BUR & SJC \\
\hline 1987 & 10 & 4 & -1 & SMF & LAX \\
\hline 1987 & 10 & 59 & 63 & LAX & SJC \\
\hline 1987 & 10 & 3 & -2 & SAN & SFO \\
\hline 1987 & 10 & 11 & -1 & SEA & LAX \\
\hline
\end{tabular}

\section*{Create Tall Array}

Tall arrays are similar to in-memory MATLAB arrays, except that they can have any number of rows. Tall arrays can contain data that is numeric, logical, datetime, duration, calendarDuration, categorical, or strings. Also, you can convert any in-memory array to a tall array. (The in-memory array A must be one of the supported data types.)

The underlying class of a tall array is based on the type of datastore that backs it. For example, if the datastore ds contains tabular data, then tall (ds) returns a tall table containing the data.
```

tt = tall(ds)
tt =
Mx6 tall table

| Year | Month | ArrDelay |  | DepDelay |  | Origin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Dest

```

The display indicates the underlying data type and includes the first several rows of data. The size of the table displays as "Mx6" to indicate that MATLAB does not yet know how many rows of data there are.

\section*{Perform Calculations on Tall Arrays}

You can work with tall arrays and tall tables in a similar manner in which you work with in-memory MATLAB arrays and tables.

One important aspect of tall arrays is that as you work with them, MATLAB does not perform most operations immediately. These operations appear to execute quickly, because the actual computation is deferred until you specifically request output. This deferred evaluation is important because even a simple command like size (X) executed on a tall array with a billion rows is not a quick calculation.

As you work with tall arrays, MATLAB keeps track of all of the operations to be carried out and optimizes the number of passes through the data. Thus, it is normal to work with unevaluated tall arrays and request output only when you require it. MATLAB does not know the contents or size of unevaluated tall arrays until you request that the array be evaluated and displayed.

Calculate the mean departure delay.
```

mDep = mean(tt.DepDelay,'omitnan')
mDep =
tall double

```
 ?

\section*{Gather Results into Workspace}

The benefit of deferred evaluation is that when the time comes for MATLAB to perform the calculations, it is often possible to combine the operations in such a way that the number of passes through the data is minimized. So, even if you perform many operations, MATLAB only makes extra passes through the data when absolutely necessary.

The gather function forces evaluation of all queued operations and brings the resulting output back into memory. Since gather returns the entire result in MATLAB, you should make sure that the result will fit in memory. For example, use gather on tall arrays that are the result of a function that reduces the size of the tall array, such as sum, min, mean, and so on.

Use gather to calculate the mean departure delay and bring the answer into memory. This calculation requires a single pass through the data, but other calculations might
require several passes through the data. MATLAB determines the optimal number of passes for the calculation and displays this information at the command line.
```

mDep = gather(mDep)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.97 sec
- Pass 2 of 2: Completed in 1.1 sec
Evaluation completed in 2.5 sec
mDep = 8.1860

```

\section*{Select Subset of Tall Array}

You can extract values from a tall array by subscripting or indexing. You can index the array starting from the top or bottom, or by using a logical index. The functions head and tail are useful alternatives to indexing, enabling you to explore the first and last portions of a tall array. Gather both variables at the same time to avoid extra passes through the data.
```

h = head(tt);
tl = tail(tt);
[h,tl] = gather(h,tl)
Evaluating tall expression using the Local MATLAB Session:

- Pass l of 1: Completed in 0.93 sec
Evaluation completed in 1.1 sec
h=8\times6 table

Year Month	ArrDelay	DepDelay	$\underline{O r i g i n}$	Dest

        1987 10 8 12 LAX SJC
    1987 10 8 8 10
    1987 10 21 20 SAN SMF
    1987 10 13 12 BUR SJC
    1987 10 4 4 -1 SMF LAX
    1987 10 59 63 LAX SJC
    1987 10 3 SAN SF0
    1987 10 11 -1 SEA LAX
    tl=8\times6 table
Year Month ArrDelay DepDelay Origin Dest

```
\begin{tabular}{rlrrll}
2008 & 12 & 14 & 1 & DAB & ATL \\
2008 & 12 & -8 & -1 & ATL & TPA \\
2008 & 12 & 1 & 9 & ATL & CLT \\
2008 & 12 & -8 & -4 & ATL & CLT \\
2008 & 12 & 15 & -2 & BOS & LGA \\
2008 & 12 & -15 & -1 & SFO & ATL \\
2008 & 12 & -12 & 1 & DAB & ATL \\
2008 & 12 & -1 & 11 & ATL & IAD
\end{tabular}

Use head to select a subset of 10,000 rows from the data for prototyping code before scaling to the full data set.
ttSubset \(=\) head(tt, 10000);

\section*{Select Data by Condition}

You can use typical logical operations on tall arrays, which are useful for selecting relevant data or removing outliers with logical indexing. The logical expression creates a tall logical vector, which then is used to subscript, identifying the rows where the condition is true.

Select only the flights out of Boston by comparing the elements of the categorical variable Origin to the value 'BOS'.
```

idx = (ttSubset.Origin == 'BOS');
bosflights = ttSubset(idx,:)
bosflights =
207x6 tall table

Year	Month	ArrDelay	DepDelay	Origin	Dest
1987	10	-8	-	BOS	LGA
1987	10	-13	-1	BOS	LGA
1987	10	12	11	BOS	BWI
1987	10	-3	0	BOS	EWR
1987	10	-5	0	BOS	ORD
1987	10	31	19	BOS	PHL
1987	10	-3	0	BOS	CLE
1987	11	5	5	BOS	STL

```

You can use the same indexing technique to remove rows with missing data or NaN values from the tall array.
```

idx = any(ismissing(ttSubset),2);
ttSubset(idx,:) = [];

```

\section*{Determine Largest Delays}

Due to the nature of big data, sorting all of the data using traditional methods like sort or sortrows is inefficient. However, the topkrows function for tall arrays returns the top k rows in sorted order.

Calculate the top 10 greatest departure delays.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Evaluating Evaluation & tall ex complet & pression usi ed in 0.1 se & the Local & ATLAB S & ion: \\
\hline biggestDel & ays=10×6 & table & & & \\
\hline Year & Month & ArrDelay & DepDelay & Origin & Dest \\
\hline 1988 & 3 & 772 & 785 & ORD & LEX \\
\hline 1989 & 3 & 453 & 447 & MDT & ORD \\
\hline 1988 & 12 & 397 & 425 & SJU & BWI \\
\hline 1987 & 12 & 339 & 360 & DEN & STL \\
\hline 1988 & 3 & 261 & 273 & PHL & ROC \\
\hline 1988 & 7 & 261 & 268 & BWI & PBI \\
\hline 1988 & 2 & 257 & 253 & ORD & BTV \\
\hline 1988 & 3 & 236 & 240 & EWR & FLL \\
\hline 1989 & 2 & 263 & 227 & BNA & MOB \\
\hline 1989 & 6 & 224 & 225 & DFW & JAX \\
\hline
\end{tabular}

\section*{Visualize Data in Tall Arrays}

Plotting every point in a big data set is not feasible. For that reason, visualization of tall arrays involves reducing the number of data points using sampling or binning.

Visualize the number of flights per year with a histogram. The visualization functions pass through the data and immediately evaluate the solution when you call them, so gather is not required.
histogram(ttSubset.Year,'BinMethod','integers')
Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.55 sec
xlabel('Year')
ylabel('Number of Flights')
title('Number of Flights by Year, 1987 - 1989')

Number of Flights by Year, 1987-1989

\section*{Scale to Entire Data Set}

Instead of using the smaller data returned from head, you can scale up to perform the calculations on the entire data set by using the results from tall(ds).
```

tt = tall(ds);
idx = any(ismissing(tt),2);
tt(idx,:) = [];
mnDelay = mean(tt.DepDelay,'omitnan');
biggestDelays = topkrows(tt,10,'DepDelay');
[mnDelay,biggestDelays] = gather(mnDelay,biggestDelays)
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 0.72 sec
- Pass 2 of 2: Completed in 1 sec
Evaluation completed in 1.9 sec
mnDelay = 8.1310
biggestDelays=10\times6 table
Year Month ArrDelay DepDelay Origin Dest

1991	3	-8	1438	MCO	BWI
1998	12	-12	1433	CVG	ORF
1995	11	1014	1014	HNL	LAX
2007	4	914	924	JFK	DTW
2001	4	887	884	MCO	DTW
2008	7	845	855	CMH	ORD
1988	3	772	785	ORD	LEX
2008	4	710	713	EWR	RDU
1998	10	679	673	MCI	DFW
2006	6	603	626	ABQ	PHX

histogram(tt.Year,'BinMethod','integers')
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 2: Completed in 1.3 sec
- Pass 2 of 2: Completed in 0.82 sec
Evaluation completed in 2.4 sec
xlabel('Year')
ylabel('Number of Flights')
title('Number of Flights by Year, 1987 - 2008')

```


Use histogram2 to further break down the number of flights by month for the whole data set. Since the bins for Month and Year are known ahead of time, specify the bin edges to avoid an extra pass through the data.
```

year_edges = 1986.5:2008.5;
mont\overline{h} edges = 0.5:12.5;
histog}ram2(tt.Year,tt.Month,year_edges,month_edges,'DisplayStyle','tile'
Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.3 sec
colorbar
xlabel('Year')

```


\section*{Data Analytics and Machine Learning with Tall Arrays}

You can perform more sophisticated statistical analysis on tall arrays, including calculating predictive analytics and performing machine learning, using the functions in Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\).

For more information, see "Tall Array Support, Usage Notes, and Limitations" (Statistics and Machine Learning Toolbox).

\section*{Scale to Big Data Systems}

A key capability of tall arrays in MATLAB is the connectivity to big data platforms, such as computing clusters and Apache Spark \({ }^{\mathrm{TM}}\).

This example only scratches the surface of what is possible with tall arrays for big data. See "Extend Tall Arrays with Other Products" on page 12-215 for more information about using:
- Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\)
- Database Toolbox \({ }^{\text {TM }}\)
- Parallel Computing Toolbox \({ }^{\mathrm{TM}}\)
- MATLAB® Parallel Server \({ }^{\text {TM }}\)
- MATLAB Compiler \({ }^{\mathrm{TM}}\)

\section*{See Also}
tall

\section*{More About}
- "Tall Arrays for Out-of-Memory Data" on page 12-167

\section*{Develop Custom Tall Array Algorithms}

Tall arrays are a powerful, intuitive way to work with large data sets using traditional MATLAB syntax. However, since tall arrays operate on blocks of the data, each of which individually fits into memory, the traditional algorithms of most functions need to be updated to use a parallelized approach to support tall arrays. This topic shows you how to develop your own parallelized algorithms to operate on tall arrays.

Currently available approaches for applying custom functions to tall arrays are:
- "Single-Step Transformation Operation" on page 12-231: Apply a function to the blocks of data in a tall array.
- "Two-Step Reduction Operation" on page 12-235: Apply a function to a tall array to transform the contents, and then apply another function to reduce the output to a single block.
- "Sliding-Window Operations" on page 12-239: Apply a moving-window function to a tall array to transform the contents.

Regardless of which operation you choose, there are options, performance considerations, and common issues that apply to all approaches.

\section*{Reasons to Implement Custom Algorithms}

Most common mathematical functions and MATLAB operations already support tall arrays. If the functionality is already supported, then writing your own algorithm might not be necessary.

Here are some reasons why you might want to implement a custom algorithm for tall arrays:
- Implement Currently Unsupported Functions - If a particular function does not currently support tall arrays, then you can use the APIs outlined here to write a version of that function that supports tall arrays.
- Leverage Existing Code - If you have existing code that performs some operations on in-memory data, then with only minor modifications you can make it compatible to operate on tall arrays. This approach avoids the need to convert the code to fit the subset of the MATLAB language that supports tall arrays.
- Gain Performance - For example, you can rewrite a MATLAB function as a C++ MEX function, and then you can use the APIs outlined here to call the MEX function to operate on the data.
- Use a Preferred External Library - For compatibility within your organization it is sometimes required to use a specific external library for certain calculations. You can use the APIs outlined here to reimplement a function with those external libraries.

\section*{Supported APIs}

The supported APIs are intended for advanced use and do not include extensive input checking. Expect to spend some time testing that the supplemental functions you implement satisfy all of the requirements and perform the calculations you expect. Currently supported APIs for authoring tall array algorithms are listed here.
\begin{tabular}{|l|l|}
\hline Package Function Name & Description \\
\hline matlab.tall.transform & \begin{tabular}{l}
Apply a specified function to each block of \\
one or more tall arrays.
\end{tabular} \\
\hline matlab.tall. reduce & \begin{tabular}{l}
Apply a specified function to each block of \\
one or more tall arrays. Then feed the \\
output of that function into a second \\
reduction function.
\end{tabular} \\
\hline matlab.tall.movingWindow & \begin{tabular}{l}
Apply moving window function to blocks of \\
data.
\end{tabular} \\
\hline matlab.tall.blockMovingWindow & \begin{tabular}{l}
Apply moving window function and block \\
reduction to padded blocks of data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Background: Tall Array Blocks}

When you create a tall array from a datastore, the underlying datastore facilitates the movement of data during a calculation. The data moves in discrete pieces called blocks, where each block is a set of consecutive rows that can fit in memory. For example, one block of a 2-D array (such as a table) is \(X(n: m,:)\). The size of each block is based on the value of the ReadSize property of the datastore, but the block is not always that exact size. For the purposes of developing tall array algorithms, a tall array is considered to be the vertical concatenation of many such blocks.

The blocks of a given array are chosen at run-time based on available memory, so they can be dynamic. Therefore, the blocks might not be exactly the same size between runs. If you have changes on your computer that affect the available memory, then that can impact the size of the blocks.

Although this page refers only to blocks and rows in a 2-D sense, these concepts extend to N - D tall arrays. The block size is only constrained in the first dimension, so the block
includes all elements in other dimensions; for example, \(X(n: m,:,:, \ldots)\). Also, rather than rows, \(N\)-D arrays have slices such as \(X(p,:,:, \ldots)\).

\section*{Single-Step Transformation Operation}

The matlab.tall.transform function applies a single function to each block of a tall array, so you can use it to apply a block-wise transformation, filtering, or reduction of the data. For example, you can remove rows with specific values, center and scale the data, or detect certain conditions and transform specific pieces of data. These figures show what happens to the blocks in an array when they are operated on by matlab.tall.transform.
\begin{tabular}{|c|c|c|}
\hline Operation & Description & Examples \\
\hline & Transformation - The number of rows in each block remains the same, but the values change. & \begin{tabular}{l}
- \(\mathrm{A}=\) \\
matlab.tall.transfo rm(@sin, tX) calculates the sine of the elements in each block. \\
- \(\mathrm{A}=\) \\
matlab.tall.transfo rm(@(X) X.^2, tX) squares the elements in each block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Transform Syntax}

The generic syntax to apply a single-step transform is
[tA, tB, tC, ...] = matlab.tall.transform(fcn, tX, tY, tZ, ...)

\section*{Functional Requirements for fcn}

The general functional signature of fcn is
[a, b, c, ...] = fcn(x, y, z, ...)
fcn must satisfy these requirements:
1 Input Arguments - The inputs [x, y, z, ...] are blocks of data that fit in memory. The blocks are produced by extracting data from the respective tall array inputs [\(\mathrm{tX}, \mathrm{tY}, \mathrm{tZ}, \ldots\).\(] . The inputs [\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\). .] satisfy these properties:
- All of \([x, y, z, \ldots]\) have the same size in the first dimension after any allowed expansion.
- The blocks of data in [x, y, z, ...] come from the same index in the tall dimension, assuming the tall array is nonsingleton in the tall dimension. For example, if tX and tY are nonsingleton in the tall dimension, then the first set of blocks might be \(x=t X(1: 20000,:)\) and \(y=t Y(1: 20000,:)\).
- If the first dimension of any of [\(\mathrm{tX}, \mathrm{tY}, \mathrm{tZ}, \ldots\). .] has a size of 1 , then the corresponding block \([x, y, z, \ldots]\) consists of all the data in that tall array.
2 Output Arguments - The outputs [a, b, c, ...] are blocks that fit in memory, to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b, c, ...] satisfy these properties:
- All of [a, b, c, ...] must have the same size in the first dimension.
- All of [a, b, c, ...] are vertically concatenated with the respective results of previous calls to fcn.
- All of [a, b, c, ...] are sent to the same index in the first dimension in their respective destination output arrays.
3 Functional Rules - fcn must satisfy the functional rule:
- \(F([\) inputs1; inputs2]) \(==\) [F(inputs1); \(F(i n p u t s 2)]\) : Applying the function to the concatenation of the inputs should be the same as applying the function to the inputs separately and then concatenating the results.
4 Empty Inputs - Ensure that fon can handle an input that has a height of 0. Empty inputs can occur when a file is empty or if you have done a lot of filtering on the data.

\section*{Two-Step Reduction Operation}
matlab.tall. reduce applies two functions to a tall array, with the result of the first step being fed in as input to a final reduction step. The reduction function is applied repeatedly to the intermediate results until a single final block that fits in memory is obtained. In the MapReduce paradigm, this process is similar to a "single key" MapReduce operation, where the intermediate results all have the same key and are combined in the reduction step.

The first step is similar to matlab.tall.transform and has the same requirements. However, the reduction step always reduces the intermediate results down to a single block that fits in memory. These figures show what happens to the blocks in an array when they are operated on by matlab. tall. reduce.

\section*{Reduce Syntax}

The generic syntax to apply a two-step reduction is
```

[rA, rB, rC, ...] = matlab.tall.reduce(fcn, reducefcn, tX, tY, tZ, ...)

```

The functional signature of fcn is
\[
[a, b, c, \ldots]=f c n(x, y, z, \ldots)
\]

The functional signature of reducefon is
\([r A, r B, r C, \ldots]=\) reducefcn(\(a, b, c, \ldots\))
That is, the input tall arrays [\(\mathrm{tX}, \mathrm{tY}, \mathrm{tZ}, \ldots\). .] are broken into blocks [\(\mathrm{x}, \mathrm{y}\), \(z, \ldots\)] that are inputs to \(f c n\). Then, \(f c n\) returns outputs [a, b, c, ...] that are inputs to reducefcn. Finally, reducefcn returns the final results \([r A, r B, r C]\) that are returned by matlab.tall. reduce.

\section*{Functional Requirements for reducefon}

The requirements for fcn are the same as those that were outlined in "Functional Requirements for fcn" on page 12-234. However, the requirements for reducefon are different.

The general functional signature of reducefon is
\([r A, r B, r C, \ldots]=\operatorname{reducefcn}(a, b, c, \ldots)\)
reducefon must satisfy these requirements:
1 Input Arguments - The inputs [a, b, c, ...] are blocks that fit in memory. The blocks of data are either outputs returned by fcn, or a partially reduced output from reducefon that is being operated on again for further reduction. The inputs [a, b, c,] satisfy these properties:
- The inputs [a, b, c, ...] have the same size in the first dimension.
- For a given index in the first dimension, every row of the blocks of data [a, b, c, ...] either originates from the input, or originates from the same previous call to reducefcn.
- For a given index in the first dimension, every row of the inputs [a, b, c, ...] for that index originates from the same index in the first dimension.
2 Output Arguments - All outputs [rA, rB, rC, ...] must have the same size in the first dimension. Additionally, they must be vertically concatenable with the respective inputs [a, b, c, ...] to allow for repeated reductions when necessary.
3 Functional Rules - reducefcn must satisfy these functional rules (up to roundoff error):
- \(F(\) input \()==F(F(\) input \()):\) Applying the function repeatedly to the same inputs should not change the result.
- \(F([\) input1; input2]) \(==F([\) input2; input1]): The result should not depend on the order of concatenation.
- \(F([\) input1; input2]) \(==F([F(\) input1) ; \(F(\) input2 \()]):\) Applying the function once to the concatenation of some intermediate results should be the same as applying it separately, concatenating, and applying it again.
4 Empty Inputs - Ensure that reducefon can handle an input that has a height of 0. Empty inputs can occur when a file is empty or if you have done a lot of filtering on the data. For this call, all input blocks are empty arrays of the correct type and size in dimensions beyond the first.

\section*{Sliding-Window Operations}

The matlab.tall.movingWindow and matlab.tall.blockMovingWindow functions apply a function to windows of data within a tall array. While matlab.tall.transform and matlab.tall.reduce operate on entire blocks of data at a time, the movingwindow functions operate on windows of data as a window moves from the beginning to the end of the array. The windows can span between the blocks of data being read from disk.

These figures show what happens to the blocks in an array when they are operated on by matlab.tall.movingWindow or matlab.tall.blockMovingWindow.
\begin{tabular}{|c|c|c|c|}
\hline Operation & & Description & Examples \\
\hline & & \begin{tabular}{l}
Windowed \\
Transformation - The number of rows in each block remains the same, but the values change. The output contains the results of operations performed on both incomplete and complete windows of data. \\
Both \\
matlab.tall.movingWin dow and \\
matlab.tall.blockMovi ngWindow transform data when 'EndPoints' is the default value of 'shrink', or when a fill value is specified. Both values ensure the output is the same size in the first dimension as the input.
\end{tabular} & \begin{tabular}{l}
- \(\mathrm{A}=\) \\
matlab.tall.movingW indow(@mean, 100, tX) calculates a moving mean using a window size of 100 .
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Operation & & Description & Examples \\
\hline & & \begin{tabular}{l}
Windowed Filtering Incomplete windows of data are discarded, so the output has fewer elements than the input. The output only contains the results of operations performed on complete windows of data. \\
Both \\
matlab.tall.movingWin dow and \\
matlab.tall.blockMovi ngWindow remove incomplete windows of data when 'EndPoints' is 'discard'.
\end{tabular} & \begin{tabular}{l}
- \(\mathrm{A}=\) \\
matlab.tall.movingW indow(@mean, 100, tX, 'EndPoints', 'discard') calculates a moving mean on complete windows of data, using a window size of 100 .
\end{tabular} \\
\hline
\end{tabular}

You can use matlab.tall.movingWindow and matlab.tall.blockMovingWindow to apply windowed transformations or filters to data. For example, you can calculate a trailing average or a moving median, or you can apply several operations at once to the same window. The two functions differ in these ways:
- matlab.tall.movingWindow applies fen to all windows of data, regardless of whether the windows are complete. matlab.tall.blockMovingWindow applies
windowfen to incomplete windows of data, and applies blockfen to complete windows of data.
- matlab.tall.movingWindow operates on single windows of data at a time. matlab.tall.blockMovingWindow operates on entire blocks of data containing multiple complete windows, which reduces the number of function calls required in the calculation.

\section*{Moving Window Syntaxes}

The syntax to apply a moving window operation to single windows of data is
```

[tA, tB, tC, ...] = matlab.tall.movingWindow(fcn, window, tx, tY, tz, ...)

```

The functional signature of \(f \mathrm{f}\) must be
[a, b, c, ...] = fcn(x, y, z, ...)
Similarly, the syntax to apply a moving window operation to entire blocks of data is
[tA, tB, tC, ...] = matlab.tall.blockMovingWindow(windowfcn, blockfcn, window, tX, tY,
The functional signatures of windowfen and blockfen must be
[a, b, c, ...] = windowfcn(info, x, y, z, ...)
[a, b, c, ...] = blockfcn(info, bX, bY, bZ, ...)
The info input is a structure that contains the fields Window and Stride. When you write the function. use these fields to pick out windows of data in each block.

For an outline of general rules that \(f c n\), windowfcn, and blockfcn must follow, see "Functional Requirements for fcn" on page 12-234. Aside from the info input, fcn and windowfon have the same requirements. However, the requirements for blockfcn are different since that function operates on entire blocks of data.

\section*{Functional Requirements for windowfen}

The general functional signature of windowfen is
[a, b, c, ...] = windowfcn(info, x, y, ...)
The info input is a structure provided by matlab.tall.blockMovingWindow that includes these fields:
- Stride - Specified step size between windows (default: 1). Set this value with the 'Stride' name-value pair.
- Window - Specified window size. Set this value with the window input argument.
windowfcn must satisfy these requirements:
1 Input Arguments - The inputs [x, y, z, ...] are blocks of data that fit in memory. The blocks are produced by extracting data from the respective tall array inputs [\(\mathrm{tX}, \mathrm{tY}, \mathrm{tZ}, \ldots\). . The inputs \([\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots .\).\(] satisfy these properties:\)
- All of the inputs \([x, y, z, \ldots]\) have the same size in the first dimension.
- The blocks of data in [x, y, z, ...] come from the same index in the tall dimension, assuming the tall array is nonsingleton in the tall dimension. For example, if tX and tY are nonsingleton in the tall dimension, then the first set of blocks might be \(x=t X(1: 20000,:)\) and \(y=t Y(1: 20000,:)\).
- When the first dimension of any of [tX, tY, tZ, ...] has a size of 1 , the corresponding block \([x, y, z, \ldots]\) consists of all the data in that tall array.
- Applying windowfcn must result in a reduction of the input data to a scalar or a slice of an array of height 1 .

When the input is a matrix, N-D array, table, or timetable, applying windowfon must result in a reduction of the input data in each of its columns or variables.
2 Output Arguments - The outputs [a, b, c, ...] are blocks that fit in memory to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b, c, ...] satisfy these properties:
- All of the outputs [a, b, c, ...] must have the same size in the first dimension.
- All of the outputs [a, b, c, ...] are vertically concatenated with the respective results of previous calls to windowfen.
- All of the outputs [a, b, c, ...] are sent to the same index in the first dimension in their respective destination output arrays.

3 Functional Rules - windowfen must satisfy this functional rule:
- \(F([i n p u t s 1 ; ~ i n p u t s 2])==[F(i n p u t s 1) ; ~ F(i n p u t s 2)]:\) Applying the function to the concatenation of the inputs should be the same as applying the function to the inputs separately and then concatenating the results.

\section*{Functional Requirements for blockfen}

The general functional signature of blockfcn is
\([a, b, c, \ldots]=b l o c k f c n(i n f o, b X, b Y, b Z, \ldots)\)
The info input is a structure provided by matlab.tall.blockMovingWindow that includes these fields:
- Stride - Specified step size between windows (default: 1). Set this value with the 'Stride' name-value pair.
- Window - Specified window size. Set this value with the window input argument.

The blocks of data bX, bY, bZ, ... that matlab.tall.blockMovingWindow provides to blockfon have these properties:
- The blocks contain only full-sized windows. blockfen does not have to define a behavior for incomplete windows of data.
- The first window of data starts at the first element of the block. The last element of the last window is the last element of the block.
blockfcn must satisfy these requirements:
1 Input Arguments - The inputs [bX, bY, bZ, ...] are blocks of data that fit in memory. The blocks are produced by extracting data from the respective tall array inputs [tX, tY, tZ, ...]. The inputs [bX, bY, bZ, ...] satisfy these properties:
- All of the inputs [bX, bY, bZ, ...] have the same size in the first dimension after any allowed expansion.
- The blocks of data in [bX, bY, bZ, ...] come from the same index in the tall dimension, assuming the tall array is nonsingleton in the tall dimension. For example, if \(t X\) and \(t Y\) are nonsingleton in the tall dimension, then the first set of blocks might be \(b X=t X(1: 20000,:)\) and \(b Y=t Y(1: 20000,:)\).
- If the first dimension of any of the data inputs [\(t X, t Y, t Z, \ldots\)] has a size of 1 , then the corresponding block [bX, bY, bZ, ...] consists of all the data in that tall array.
- Applying blockfon must result in a reduction of the input data such that the result has height equal to the number of windows in the block. You can use info. Window and info. Stride to determine the number of windows in a block.

If the input is a matrix, \(N-D\) array, table, or timetable, then applying blockfen must result in a reduction of the input data in each of its columns or variables.

2 Output Arguments - The outputs [a, b, c, ...] are blocks that fit in memory, to be sent to the respective outputs [tA, tB, tC, ...]. The outputs [a, b, c, ...] satisfy these properties:
- All of the outputs [a, b, c, ...] must have the same size in the first dimension.
- All of the outputs [a, b, c, ...] are vertically concatenated with the respective results of previous calls to blockfcn.
- All of the outputs [a, b, c, ...] are sent to the same index in the first dimension in their respective destination output arrays.
3 Functional Rules - blockfcn must satisfy this functional rule:
- \(F([\) inputs1; inputs2]) \(==\) [F(inputs1); \(F(\) inputs2)]: Applying the function to the concatenation of the inputs should be the same as applying the function to the inputs separately and then concatenating the results.

\section*{Control Output Data Type}

If the final output from any of the "Supported APIs" on page 12-229 has a different data type from the input, then you must specify the 'OutputsLike' name-value pair to provide one or more prototype arrays that have the same data type and attributes as the corresponding outputs. The value of 'OutputsLike' is always a cell array, with each cell containing a prototype array for the corresponding output argument.

For example, this call to matlab.tall.transform accepts one tall array tX as an input and returns two outputs with different types specified by the prototype arrays protoA and protoB. Output A has the same data type and attributes as protoA, and likewise for \(B\) and protoB.
```

C = {protoA protoB};
[A, B] = matlab.tall.transform(fcn, tX, 'OutputsLike', C)

```

A common way to supply the prototype arrays is to call fon with trivial inputs of the proper data type, since the outputs returned by fon have the correct data type. In this example, the transform function accepts a tall double, but returns a tall table. A prototype array is generated by calling \(\mathrm{fcn}(0)\) and the prototype is specified as the value of 'OutputsLike'.
```

ds = tabularTextDatastore('airlinesmall.csv','TreatAsMissing','NA');

```
ds.SelectedVariableNames = \{'ArrDelay', 'DepDelay'\};
tt = tall(ds);
```

tX = tt.ArrDelay;
fcn = @(x) table(x,'VariableNames',{'MyVar'});
proto_A = fcn(0);
A = matlab.tall.transform(fcn,tX,'OutputsLike',{proto_A});

```

\section*{Coding and Performance Tips}
- Put all analytics in a single function that you call to operate directly on the data, instead of using unnecessary nested functions.
- Experiment using a small subset of the data. Profile your code to find and fix bottlenecks before scaling up to the entire data set, where bottlenecks can be greatly amplified.
- Pay attention to the orientation of your data, since some functions return the outputs in different shapes depending on the input data. For example, unique can return either a row vector or a column vector depending on the orientation of the input data.
- Blocks are dynamically generated at run-time based on available computer memory. Make sure that any specified reduction function obeys the function rule F ([input1; input2]) \(==F([F(\) input1 \() ; F(\) input2 \()])\). If this rule is not obeyed, then the results can differ significantly between trials.
- Blocks can have any size in the first dimension, including 0 or 1 . Size 0 or 1 can occur in intermediate calculations as a result of filtering or reduction operations. Make sure your function does the correct thing for both of these cases. One sign that the function does not handle these cases properly is when you receive an "Output is different size" error message.

\section*{See Also}
matlab.tall.blockMovingWindow|matlab.tall.movingWindow| matlab.tall.reduce|matlab.tall.transform

\section*{More About}
- "Index and View Tall Array Elements" on page 12-181
- "Visualization of Tall Arrays" on page 12-198
- "Extend Tall Arrays with Other Products" on page 12-215

\section*{TCP/IP Support in MATLAB}
- "TCP/IP Communication Overview" on page 13-2
- "Create a TCP/IP Connection" on page 13-3
- "Configure Properties for TCP/IP Communication" on page 13-6
- "Write and Read Data over TCP/IP Interface" on page 13-9

\section*{TCP/IP Communication Overview}

Transmission Control Protocol (TCP) is a transport protocol layered on top of the Internet Protocol (IP) and is one of the most used networking protocols. The MATLAB TCP/IP client support uses raw socket communication and lets you connect to remote hosts from MATLAB for reading and writing data. For example, you could use it to acquire data from a remote weather station, and plot the data.
- Connection based protocol - The two ends of the communication link must be connected at all times during the communication.
- Streaming protocol - TCP/IP has a long stream of data that is transmitted from one end of the connection to the other end, and another long stream of data flowing in the opposite direction. The TCP/IP stack at one end is responsible for breaking the stream of data into packets and sending those packets, while the stack at the other end is responsible for reassembling the packets into a data stream using information in the packet headers.
- Reliable protocol - The packets sent by TCP/IP contain a unique sequence number. The starting sequence number is communicated to the other side at the beginning of communication. The receiver acknowledges each packet, and the acknowledgment contains the sequence number so that the sender knows which packet was acknowledged. This method implies that any packets lost on the way can be retransmitted because the sender would know that packets did not reach their destination because it had not received an acknowledgment. Also, packets that arrive out of sequence can be reassembled in the proper order by the receiver.

Timeouts can be established because the sender knows (from the first few packets) how long it takes on average for a packet to be sent and its acknowledgment received.

You can create a TCP/IP connection to a server or hardware and perform read/write operations. Use the tcpclient function to create the connection, and the write and read functions for synchronously reading and writing data.

See "Create a TCP/IP Connection" on page 13-3 to get started, and "Write and Read Data over TCP/IP Interface" on page 13-9 for examples of reading and writing data.

\section*{Create a TCP/IP Connection}

The MATLAB TCP/IP client support lets you connect to remote hosts or hardware from MATLAB for reading and writing data. The typical workflow is:
- Create a TCP/IP connection to a server or hardware.
- Configure the connection if necessary.
- Perform read and write operations.
- Clear and close the connection.

To communicate over the TCP/IP interface, you first create a TCP/IP object using the tcpclient function. The syntax is:
```

<objname> = tcpclient(Address, Port)

```

The address can be either a remote host name or a remote IP address. In both cases, the Port must be a positive integer between 1 and 65535.

\section*{Create Object Using Host Name}

This example creates the TCP/IP object \(t\) using the host address shown and port of 80.
```

t = tcpclient('www.mathworks.com', 80)
t =
tcpclient with properties:
Address: 'www.mathworks.com'
Port: 80
Timeout: 10
BytesAvailable: 0
ConnectTimeout: Inf

```

Note When connecting using a host name, such as a specified web address or ' localhost', the IP address will be resolved according to the configuration of your network interface. This may result in an IPv4 address or an IPv6 address. If your TCP/IP server expects the incoming connections to be of a certain type of address, for example IPv4 address only, you may be required to use the explicit IP address, instead of the host name, when creating the client.

\section*{Create Object Using IP Address}

This example creates the TCP/IP object tusing the IP address shown and port of 4012.
```

t = tcpclient('172.28.154.231', 4012)
t =
tcpclient with properties:
Address: '172.28.154.231'
Port: 4012
Timeout: 10
BytesAvailable: 0
ConnectTimeout: Inf

```

\section*{Set the Timeout Property}

You can create the object using a name-value pair to set the Timeout value. The Timeout property specifies the waiting time to complete read and write operations in seconds, and the default is 10 . You can change the value either during object creation or after you create the object.

This example creates a TCP/IP object, but increases the Timeout to 20 seconds.
```

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)
t =
tcpclient with properties:
Address: '172.28.154.231'
Port: 4012
Timeout: 20
BytesAvailable: 0
ConnectTimeout: Inf

```

The output reflects the Timeout property change.

\section*{Set the Connect Timeout Property}

You can create the object using a name-value pair to set the ConnectTimeout value. The ConnectTimeout property specifies the maximum time in seconds to wait for a connection request to the specified remote host to succeed or fail. The value must be
greater than or equal to 1. If not specified, the default value of ConnectionTimeout is Inf. You can change the value only during object creation.

This example creates a TCP/IP object, but specifies the ConnectTimeout as 10 seconds.
```

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 10)

```
t =
tcpclient with properties:
Address: '172.28.154.231'
Port: 4012
Timeout: 10
BytesAvailable: 0
ConnectTimeout: 10
The output reflects the ConnectTimeout property change.

Note If an invalid address or port is specified or the connection to the server cannot be established, the object is not created.

\section*{Configure Properties for TCP/IP Communication}

The tcpclient object has the following properties.
\begin{tabular}{|l|l|}
\hline Property & Description \\
\hline Address & \begin{tabular}{l}
Remote host name or IP address for connection. Specify address \\
as the first argument when you create the tcpclient object. In \\
this example Address is '172.28.154.231'.
\end{tabular} \\
\hline t = tcpclient ('172.28.154.231', 4012)
\end{tabular}\(\left|\begin{array}{ll}\text { Port } & \begin{array}{l}\text { Remote host port for connection. Specify port number as the } \\
\text { second argument when you create the tcpclient object. The } \\
\text { Port must be a positive integer between 1 and 65535. In this } \\
\text { example Port is 4012. }\end{array} \\
\text { t = tcpclient ('www. mathworks. com', 4012) }\end{array}\right|\)\begin{tabular}{ll}
BytesAvailable & \begin{tabular}{l}
Read-only property that returns the number of bytes available in \\
the input buffer.
\end{tabular} \\
\hline Timeout & \begin{tabular}{l}
Waiting time in seconds to complete read and write operations, \\
specified as a positive value of type double. The default is 10. \\
You can change the value either during object creation, or after \\
you create the object.
\end{tabular} \\
\hline ConnectTimeout & \begin{tabular}{l}
Maximum time in seconds to wait for a connection request to the \\
specified remote host to succeed or fail, specified as a positive \\
value of type double. If not specified, the default value is Inf. \\
You can change the value only during object creation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Setting the Timeout}

The default value for Timeout is 10 seconds. You can change the value either during object creation, or after you create the object.

You can optionally create the tcpclient object using a name-value pair to set the Timeout value.

This example creates the TCP/IP object and increases the Timeout to 20 seconds.
```

t = tcpclient('172.28.154.231', 4012, 'Timeout', 20)
t =
tcpclient with properties:
Address: '172.28.154.231'
Port: 4012
Timeout: 20
BytesAvailable: 0
ConnectTimeout: Inf

```

The output reflects the Timeout property change from the default of 10 seconds to 20 seconds.

You can also change it anytime by setting the property value using this syntax.
<object_name>. <property_name> = <property_value>
This example using the same object named t increases the Timeout to 30 seconds.
t. Timeout \(=30\)

\section*{Setting the Connect Timeout}

You can create the tcpclient object using a name-value pair to set the ConnectTimeout value. The ConnectTimeout property specifies the maximum time in seconds to wait for a connection request to the specified remote host to succeed or fail. The value must be greater than or equal to 1 . If not specified, the default value of ConnectionTimeout is Inf. You can change the value only during object creation.

This example creates a TCP/IP object, but changes the ConnectTimeout to 10 seconds.
```

t = tcpclient('172.28.154.231', 4012, 'ConnectTimeout', 10)
t =
tcpclient with properties:
Address: '172.28.154.231'
Port: 4012
Timeout: 10
BytesAvailable: 0
ConnectTimeout: 10

```

The output reflects the ConnectTimeout property change.

\section*{Write and Read Data over TCP/IP Interface}
```

In this section...
"Write Data" on page 13-9
"Read Data" on page 13-9
"Acquire Data from a Weather Station Server" on page 13-10
"Read and Write uint8 Data" on page 13-11

```

\section*{Write Data}

The write function synchronously writes data to the remote host connected to the tcpclient object. First specify the data, then write the data. The function waits until the specified number of values is written to the remote host.

In this example, a tcpclient object \(t\) already exists.
```

% Create a variable called data
data = 1:10;
% Write the data to the object t
write(t, data)

```

Note For any read or write operation, the data type is converted to uint8 for the data transfer. It is then converted back to whatever data type you set if you specified another data type.

\section*{Read Data}

The read function synchronously reads data from the remote host connected to the tcpclient object and returns the data. There are three read options:
- Read all bytes available (no arguments)
- Optionally specify the number of bytes to read
- Optionally specify the data type

If you do not specify a size, the default read uses the BytesAvailable property value, which is equal to the numbers of bytes available in the input buffer.

In these examples, a tcpclient object \(t\) already exists.
```

% Read all bytes available.
read(t)
% Specify the number of bytes to read, 5 in this case.
read(t, 5)
% Specify the number of bytes to read, 10, and the data type, double.
read(t, 10, 'double')

```

Note For any read or write operation, the data type is converted to uint8 for the data transfer. It is then converted back to whatever data type you set if you specified another data type.

\section*{Acquire Data from a Weather Station Server}

One of the primary uses of TCP/IP communication is to acquire data from a server. This example shows how to acquire and plot data from a remote weather station.

Note The IP address in this example is not a working IP address. The example shows how to connect to a remote server. You should substitute the address shown here with the IP address or host name of a server you want to communicate with.

1 Create the tcpclient object using the Address shown here and Port of 1045.
```

t = tcpclient('172.28.154.231', 1045)
t =
tcpclient with properties:
Address: '172.28.154.231'
Port: 1045
Timeout: 10
BytesAvailable: 0

```

See the note above step 1 about using a valid address.

2 Acquire data using the read function. Specify the number of bytes to read as 30, for 10 samples from 3 sensors (temperature, pressure, and humidity). Specify the data type as double.
data \(=\) read(t, 30, 'double');
3 Reshape the \(1 \times 30\) data into \(10 \times 3\) data to show one column each for temperature, pressure, and humidity.
```

data = reshape(data, [3, 10]);

```

4 Plot the temperature.
subplot(311); plot(data(:, 1));
5 Plot the pressure.
subplot(312);
plot(data(:, 2));
6 Plot the humidity.
subplot(313);
plot(data(:, 3));
7 Close the connection between the TCP/IP client object and the remote host by clearing the object.
```

clear t

```

\section*{Read and Write uint8 Data}

This example shows how to read and write uint8 data from an echo server.
1 Create the tcpclient object using a local host at Port 7.
```

t = tcpclient('localhost', 7)
t =
tcpclient with properties:
Address: 'localhost'
Port: 7
Timeout: 10
BytesAvailable: 0

```

2 Assign 10 bytes of uint8 data to the variable data.
```

data = uint8(1:10)
data =

```
 \(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)

3 Check the data.
whos data
\begin{tabular}{rrrrr}
Name & Size & Bytes & Class & Attributes \\
data & \(1 \times 10\) & 10 & uint8 &
\end{tabular}

4 Write the data to the echoserver. write(t, data)
5 Check that the data was written using the BytesAvailable property.
t.BytesAvailable
ans \(=\)
10
6 Read the data from the server.
read(t)
ans =
\(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)
7 Close the connection by clearing the object.
clear t

\section*{Bluetooth Low Energy Communication}
- "Bluetooth Low Energy Communication Overview" on page 14-2
- "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5
- "Work with Device Characteristics and Descriptors" on page 14-9
- "Collect Data from Fitness Monitoring Devices" on page 14-15
- "Track Orientation of Bluetooth Low Energy Device" on page 14-23
- "Troubleshooting Bluetooth Low Energy" on page 14-30

\section*{Bluetooth Low Energy Communication Overview}

Bluetooth Low Energy is a wireless communication protocol for discovering and communicating with low-power peripheral devices. Bluetooth Low Energy support in MATLAB allows you to:
- Scan for nearby peripheral devices and view their advertisement data.
- Establish a connection between your computer and peripheral devices.
- Read and write characteristic and descriptor data.
- Subscribe to characteristics to enable notification or indication.

Bluetooth Low Energy Communication in MATLAB is different from "Bluetooth Communication" (Instrument Control Toolbox) in Instrument Control Toolbox \({ }^{\mathrm{TM}}\) and Bluetooth in Communications Toolbox \({ }^{\mathrm{TM}}\). To understand the use cases for each feature and to decide which one best fits your needs, refer to the documentation in their respective toolboxes.

\section*{Prerequisites and Setup}

To use the Bluetooth Low Energy interface in MATLAB, you need the following:
- A peripheral device that supports Bluetooth 4.0 or higher
- A built-in or external Bluetooth 4.0 adapter on your computer
- MATLAB installed on your computer

Make sure your computer has Bluetooth turned on. The peripheral device that you are scanning for must be near your computer and disconnected from other devices and applications.

\section*{Bluetooth Low Energy Concepts}

The Bluetooth Low Energy communication is based on the Generic Access Profile (GAP) protocol for device discovery and the Generic Attribute (GATT) protocol for device communication. Both of these protocols are documented in detail on the Bluetooth SIG website. Although specific knowledge about GAP and GATT is not necessary to communicate with Bluetooth Low Energy devices in MATLAB, there are a few important concepts to understand.

During discovery, devices are either central devices or peripheral devices.
- A central device scans for advertisement data from other devices. In the Bluetooth Low Energy interface in MATLAB, your computer is always the central device.
- A peripheral device transmits advertisement data. Peripheral devices are nearby devices that you are scanning for. Peripheral devices include fitness trackers, health monitors, and personal electronics such as smartwatches or wireless headphones.

After discovering the peripheral devices, you can connect to multiple peripheral devices from MATLAB at the same time. For more information about scanning for and connecting to peripheral devices, see "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5.

After establishing a connection between MATLAB on your computer and a Bluetooth Low Energy peripheral device, the two have a client-server relationship. The server is the device that contains data, while the client is the device that receives the data and performs a function.

\section*{Services, Characteristics, and Descriptors}

The building blocks of Bluetooth Low Energy device communication are services, characteristics, and descriptors. All three of these play a role in reading from and writing to peripheral devices in MATLAB. In peripheral devices, their functions are as follows:
- Services are collections of related characteristics. Services are not readable or writable, but the characteristics that they contain can be. For example, the Heart Rate service includes both the Heart Rate Measurement and Body Sensor Location characteristics.
- Characteristics contain values for user data or device data. This is the primary attribute of the peripheral device that you want to read. For example, the Heart Rate Measurement characteristic is a standard characteristic commonly found on fitness trackers. You can read or write characteristic values.
- Descriptors describe characteristic values. Each characteristic can have one or more descriptors associated with it. A descriptor contains metadata about the characteristic value being measured. For example, the Client Characteristic Configuration Descriptor is a descriptor that determines whether the device is currently collecting characteristic data or not. You can read or write descriptor values.

All three of these can be standard or custom. Standard services, characteristics, and descriptors are defined by the Bluetooth SIG, while custom services, characteristics, and descriptors are usually specific to the device or device manufacturer.

In the Bluetooth Low Energy interface in MATLAB, you can use read and write on characteristic and descriptor objects. You can also use subscribe and unsubscribe with characteristic objects. For more information about how to perform these operations, see "Work with Device Characteristics and Descriptors" on page 14-9.

\section*{See Also}
ble | blelist | characteristic| descriptor|read|subscribe|unsubscribe | write

\section*{More About}
- "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5
- "Work with Device Characteristics and Descriptors" on page 14-9
- "Collect Data from Fitness Monitoring Devices" on page 14-15
- "Track Orientation of Bluetooth Low Energy Device" on page 14-23
- "Troubleshooting Bluetooth Low Energy" on page 14-30

\section*{External Websites}
- Bluetooth SIG

\section*{Find Your Bluetooth Low Energy Peripheral Devices}

You can see a list of nearby Bluetooth Low Energy peripheral devices using blelist. After you identify your device on the list, you can establish a connection to it from MATLAB using ble.

\section*{Scan for Devices}

Scan for Bluetooth Low Energy peripheral devices from MATLAB using blelist. This function lists all nearby peripheral devices that are advertising data. You can view the advertisement data for each device in MATLAB to determine whether it is connectable. If your device does not appear in the list, make sure it is powered on, nearby, and disconnected from any other devices or applications. Then scan for it again.
```

list = blelist
list=5\times5 table
Index
-
lll

```

Address
"8498663EE16A"
"2C4D2724754D" -69
"1B75E09FD18F" -70
"4F7D6DAF9FCE"
"7B8ADB5851BD" -76 [1×1 struct]

Devices are sorted by RSSI, which represents signal strength. If there are several devices listed, use the Name field to identify your device.

The advertisement data for each device contains data defined in the Generic Access Profile (GAP) by Bluetooth SIG. The Type field in the advertisement data Advertisement shows the connection status. View advertisement data of the first device.
list.Advertisement(1)
ans \(=\) struct with fields:
Type: ["Connectable Undirected" "Scan Response"]
Appearance: "Generic Watch"
ShortenedLocalName: []
CompleteLocalName: "Gear Fit2 (E16A)"
```

TxPowerLevel: []
SlaveConnectionIntervalRange: []
ManufacturerSpecificData: [0 117 1 0 20130$]$
ServiceData: []
CompleteServiceUUIDs: []
IncompleteServiceUUIDs: []
ServiceSolicitationUUIDs: []

```

\section*{Scan for Devices by Name}

You can use name-value pair arguments to list only devices with a particular name.
For example, list all peripheral devices with names starting with the string "UA".
```

list = blelist("Name","UA")

```
\begin{tabular}{ll}
list \(=2 \times 5\) table \\
Index & Name \\
\hline
\end{tabular}
\begin{tabular}{lllll}
1 & "UA E39 MODULE" & "84DD20E39AB6" & -84 & {\([1 \times 1\)} \\
2 & struct \(]\) \\
2 & "UA Footpod 239AE2" & "0CF3EE239AE2" & -87 & {\([1 \times 1\)} \\
struct \(]\)
\end{tabular}

You can use name-value pair arguments to scan for specific names when you have many peripheral devices nearby.

\section*{Scan for Devices by Service Name or UUID}

For devices that are advertising services, you can use name-value pair arguments to list only devices with the specified service. Service name and service UUID are both valid.

For example, list all peripheral devices that advertise the Heart Rate service.
```

list = blelist("Services","Heart Rate")

```
\begin{tabular}{ccccc}
\begin{tabular}{l}
list \(=1 \times 5\) table \\
Index
\end{tabular} & Name & Address & & RSSI
\end{tabular}

You can use name-value pair arguments to scan for specific services when you know which services you want to work with.

\section*{Scan for Longer Time}

You can increase the amount of time MATLAB scans for nearby devices. This is useful if your device has a high advertising interval and does not appear in the list with the default timeout value of three seconds.
```

list = blelist("Timeout",10);

```

\section*{Connect to a Device}

After you discover your device, establish a connection between MATLAB and the peripheral device using ble. Specify the device name or address from the blelist output.
```

b = ble("Gear Fit2 (E16A)")
b =
ble with properties:
Name: "Gear Fit2 (E16A)"
Address: "8498663EE16A"
Connected: 1
Services: [2×2 table]
Characteristics: [3\times5 table]

```
Show services and characteristics

After creating a connection to your device, you can work with the Characteristics listed in the ble properties. See "Work with Device Characteristics and Descriptors" on page 14-9 for more information and next steps.

\section*{See Also}
ble|blelist

\section*{More About}
- "Work with Device Characteristics and Descriptors" on page 14-9
- "Collect Data from Fitness Monitoring Devices" on page 14-15
- "Track Orientation of Bluetooth Low Energy Device" on page 14-23
- "Troubleshooting Bluetooth Low Energy" on page 14-30

\section*{Work with Device Characteristics and Descriptors}

Before working with characteristics or descriptors, scan for and create a connection to your Bluetooth Low Energy peripheral device. See "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5 for more information and instructions. After connecting to your device, you can interface with it by reading or writing the device characteristics and descriptors.
```

b = ble("DemoDev");

```

\section*{Access Device Characteristics}

View your device characteristics by looking at the Characteristics property of the ble object.
```

b.Characteristics

```
```

ans=11\times5 table
ServiceName

```
 "Generic Access"
 "Generic Access"
 "Generic Access" "1800"
 "Generic Access" "1800"
 "Generic Attribute" "1801"
 "Heart Rate" "180D"
 "Heart Rate" "180D"
 "Battery Service" "180F"
 "User Data" "181C"
 "Custom"
 "Custom"
"1800"
"1800"
"1800"
"1800"
"1801"
"180D"
"180D"
"180F"
"181C"

ServiceUUID
"03B80E5A-EDE8-4B33-A751-6CE34EC4C700"
"03B80E5A-EDE8-4B33-A751-6CE34EC4C700"

\section*{"Device Name"}
"Appearance"
"Peripheral Prefe
"Central Address "Service Changed" "Heart Rate Measu "Body Sensor Loca "Battery Level"
"Gender"
"Custom"
"Custom"

This table lists each characteristic and the service it is associated with. As the table shows, each service can contain multiple characteristics. If multiple characteristics have the same name, differentiate between them using the UUID. In this example, the device has both standard and custom characteristics. Standard characteristics are defined by the Bluetooth SIG, while custom characteristics are usually specific to the device or device manufacturer.

The Attributes field in this table tells you the read and write permissions for each characteristic. Select a characteristic you are interested in and view its properties using
characteristic. For example, access the "Gender" characteristic using the service and characteristic names.
```

c = characteristic(b,"User Data","Gender")
C =
Characteristic with properties:
Name: "Gender"
UUID: "2A8C"
Attributes: "Read" "Write"
Descriptors: []

```

This characteristic is both readable and writable.

\section*{Read and Write Characteristic Data}

Because the "Gender" characteristic is readable and writable, you can write data to it and verify the change in values.

Use read to get the current data. The full behavior of read for a characteristic depends on the Attributes property, as described in characteristicData.
```

data = read(c)
data = 0

```

Interpret the data by referring to the specification for this characteristic on the Bluetooth SIG website. 0 represents male and 1 represents female. Write 1 to the characteristic to indicate female using write.
```

write(c,1)

```

You can read from the characteristic again to observe the change in the data.
```

data = read(c)
data = 1

```

\section*{Subscribe to Characteristic}

You can also subscribe to a characteristic to enable notification or indication on the characteristic. You can only subscribe to characteristics that contain "Notify", "Indicate", or both in the Attributes property. After you enable notification or indication for a characteristic, use read to get the updated data. See
characteristicData for a description of the full behavior of read based on Attributes.

For this example, create a characteristic object that represents the "Heart Rate Measurement" characteristic.
```

c = characteristic(b,"Heart Rate","Heart Rate Measurement")
c =
Characteristic with properties:
Name: "Heart Rate Measurement"
UUID: "2A37"
Attributes: "Notify"
Descriptors: [1x3 table]
DataAvailableFcn: []

```
```

Show descriptors

```

This characteristic supports "Notify".
Start receiving notifications by using subscribe. See type for a description of the full behavior of subscribe based on Attributes.
```

subscribe(c)

```

Read from the characteristic to check that you are receiving data.
```

read(c)
ans = 1×19

```
\begin{tabular}{llllllllllllll}
23 & 14 & 1 & 187 & 1 & 186 & 1 & 185 & 1 & 184 & 1 & 183 & 1 & 182
\end{tabular}

Interpret the data by referring to the specification for this characteristic on the Bluetooth SIG website.

After you finish working with the characteristic, disable notifications using unsubscribe.
```

unsubscribe(c)

```

\section*{Use Callback Function to Read Characteristic Data}

You can also create a callback function to read characteristic data as it updates with new data from the device.

Because the "Heart Rate Measurement" characteristic supports "Notify", you can create a callback function called displayCharacteristicData. Specify the read mode as 'oldest' instead of 'latest'. Calling the 'latest' data can lead to errors in the callback function caused by the flushing of previous data.
```

function displayCharacteristicData(src,evt)
[data,timestamp] = read(src,'oldest');
disp(data);
disp(timestamp);
end

```

Use the @ operator to assign the function handle to the DataAvailableFcn property of the characteristic. When a new notification is available, the callback is called.
```

c.DataAvailableFcn = @displayCharacteristicData

```
c =
 Characteristic with properties:
```

            Name: "Heart Rate Measurement"
                    UUID: "2A37"
            Attributes: "Notify"
            Descriptors: [1\times3 table]
    DataAvailableFcn: displayCharacteristicData

```
```

Show descriptors

```

After you finish working with the characteristic, disable notifications and reset the callback using unsubscribe.
unsubscribe(c)
c. DataAvailableFcn = [];

\section*{Access Device Descriptors}

If a characteristic has descriptors, you can access the descriptors to read from or write to them. View the descriptors for a characteristic by looking at the Descriptors property of the characteristic object.

For this example, show the Descriptors for the "Heart Rate Measurement" characteristic.
```

c.Descriptors

```
ans \(=1 \times 3\) table
 DescriptorName DescriptorUUID Attributes
 "Client Characteristic Configuration"
\begin{tabular}{cc}
DescriptorUUID & Attributes \\
"2902" & \(\{1 \times 2\) string \(\}\)
\end{tabular}

Access the "Client Characteristic Configuration" descriptor.
```

d = descriptor(c,"Client Characteristic Configuration")

```
d \(=\)
 Descriptor with properties:
 Name: "Client Characteristic Configuration"
 UUID: "2902"
 Attributes: ["Read" "Write"]

This descriptor is both readable and writable.

\section*{Read and Write Descriptor Data}

The "Client Characteristic Configuration" descriptor contains information about whether notification or indication is enabled or disabled. You can use read to get the current data.
```

data = read(d)
data = 1×2
0 0

```

Interpret this data by referring to the specification for this descriptor on the Bluetooth SIG website.

This value changes when the notification or indication status changes. For example, write to this value to enable notification for the "Heart Rate Measurement" characteristic using write. Then, observe the change in values by reading the descriptor again.
```

write(d,[1 0])

```
data \(=\operatorname{read}(d)\)
```

data = 1×2
10

```

\section*{See Also}
characteristic|descriptor|read|subscribe|unsubscribe|write

\section*{More About}
- "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5
- "Collect Data from Fitness Monitoring Devices" on page 14-15
- "Track Orientation of Bluetooth Low Energy Device" on page 14-23
- "Troubleshooting Bluetooth Low Energy" on page 14-30

\section*{Collect Data from Fitness Monitoring Devices}

This example shows how to collect and plot data from fitness monitoring devices using Bluetooth \({ }^{\circledR}\) Low Energy communication.

\section*{Hardware Setup}

This example uses an Under Armour® heart rate monitor belt and a pair of Under Armour smart running shoes. Both devices support Bluetooth Low Energy communication.

\section*{Discover and Connect to Devices}

First, check that the Bluetooth Low Energy devices support connections by finding them in MATLAB. The blelist function scans nearby Bluetooth Low Energy peripheral devices that are advertising.
```

blelist
ans=14\times5 table

| Index $\quad$ Name $\quad$ Address |
| :--- | :--- |


1	$" "$
2	$" "$
3	$" U A$
4	$" "$
5	$" U A$
5	""
6	$" "$
7	$" "$
8	$" "$
9	$" "$
10	$" "$
11	$" "$
12	$" "$
13	$" "$

```
"21996E3A-8F31-496D-B332-79D03B759BC7" -65
"12377421-4EA3-4F77-9365-EFD580C34DE9" -66
"8206F662-BA4A-483F-A908-516FF506BFB0" -67
"CF65AD36-2146-4CA1-BCEA-FED47F6195CA" - 76
"CF7B1A17-4104-4D7B-AE70-1837CAE9C9D0" - 78
"67A1A92A-5F1C-4AF8-857A-99F194E9A5F8" -82
"5609D68D-0EED-41D7-BE19-F3ACAA119C7A" -84
"5A17DF46-6F71-4DAC-AF0D-0F28E3911187" -85
"9675A0FA-0394-468B-B908-040696E1C5BC" -88
"61540D17-C2DD-41D4-B107-E2E7374B11F4" -88
"C2A5CCC3-CA6C - 4688-AAE9-A5BE039561F9" - 92
"AF5E1195-4088-4A4B-ADA5-0BD3C91BFE62" -93
"83C69EFB-0FAD-4A35-B167-79C51A1F245D" -94
"993276FD-07EC-433D-85E1-E144B289B648" -95

After the devices are found in MATLAB, connect to them by calling ble. Specify the name of the device if the name is unique, or specify the device address.
```

belt = ble("UA E39 MODULE")
belt =
ble with properties:

```
```

            Name: "UA E39 MODULE"
            Address: "8206F662-BA4A-483F-A908-516FF506BFB0"
        Connected: 1
            Services: [4×2 table]
    Characteristics: [22\times5 table]
Show services and characteristics
shoe = ble("UA Footpod 239AE2")
shoe =
ble with properties:
Name: "UA Footpod 239AE2"
Address: "CF7B1A17-4104-4D7B-AE70-1837CAE9C9D0"
Connected: 1
Services: [8×2 table]
Characteristics: [39\times5 table]
Show services and characteristics
Access the Characteristics property of the ble object belt. This device has the "Heart Rate" service which contains the "Heart Rate Measurement" characteristic.

```
```

belt.Characteristics

```
```

belt.Characteristics

```
```

ans=22\times5 table

```
ans=22\times5 table
 ServiceName ServiceUUID
```

    ServiceName ServiceUUID
    ```
"180D"
```

```
"Heart Rate"
```

"Heart Rate"
"Heart Rate"
"Heart Rate" "180D"
"Battery Service" "180F"
"Device Information" "180A"
"Device Information"
"Custom"
"180D"
"180D"
"180D"
"180A"
"180A"
"180A"
"180A"
"180A"
"180A"
"180A"
"180A"
"180A"
"21A51000-4C86-11E2-BCFD-0800200C9A66"

```
"180D"
"180D"
"180F"
"180A"
"180A"
"180A"
"180A"
"180A"
180A
"180A"
"21A51000-4C86-11E2-BCFD-0800200C9A66"
"Heart Rate Meas "Body Sensor Loc
"Heart Rate Cont "Battery Level" "System ID"
"Model Number St
"Serial Number S
"Firmware Revisi
"Hardware Revisi
"Software Revisi
"Manufacturer Nar
"IEEE 11073-2060
"PnP ID"
"Custom"
```

"Custom" "21A51000-4C86-11E2-BCFD-0800200C9A66" "Custom"
"Custom" "21A51000-4C86-11E2-BCFD-0800200C9A66" "Custom"

```

Access the Characteristics property of the ble object shoe. This device has the "Running Speed and Cadence" service which contains the "RSC Measurement" characteristic.
```

```
shoe.Characteristics
```

```
```

```
shoe.Characteristics
```

```
"Device Information" "180A"
"Battery Service" "180F"
"Running Speed and Cadence" "1814"
"Running Speed and Cadence" "1814"
"Running Speed and Cadence" "1814"
```

```
ans=39\times5 table
```

```
ans=39\times5 table
 ServiceName
 ServiceName
 ServiceUUID
```

    ServiceUUID
    ```
```

"Custom"

```
"Custom"
"Custom"
"Custom"
"Custom"
```

```
"Custom"
```

```
```

"21A54000-4C86-11E2-BCFD-0800200C9A66"
"21A54000-4C86-11E2-BCFD-0800200C9A66"
"21A54000-4C86-11E2-BCFD-0800200C9A66"

```
"System "Model Nur
"Serial N
"Firmware
"Hardware
"Software
"Manufact
"IEEE 110
"PnP ID"
"Battery
"RSC Meas
"RSC Feat
"SC Contr
"Custom"
"Custom"
"Custom"

\section*{Read Heart Rate Data}

Next, create an object for the "Heart Rate Measurement" characteristic by specifying its service and characteristic information.
```

hr = characteristic(belt, "heart rate", "heart rate measurement")
hr =
Characteristic with properties:
Name: "Heart Rate Measurement"
UUID: "2A37"

```
```

    Attributes: "Notify"
    Descriptors: [1x3 table]
    DataAvailableFcn: []

```
```

Show descriptors

```

Then read the current heart rate measurement from the device.
```

data = read(hr)
data = 1×4
22 96 73 3

```

According to Bluetooth Low Energy Specification, the "Heart Rate Measurement" characteristic value contains a flag byte followed by one or many heart rate values. The format of the measurement value depends on the flag value. Convert the raw data to a heart rate in beats per minute (bpm).
```

flag = uint8(data(1));
% Get the first bit of the flag, which indicates the format of the heart rate value
heartRateValueFormat = bitget(flag, 1);
if heartRateValueFormat == 0
% Heart rate format is uint8
heartRate = data(2);
else
% Heart rate format is uint16
heartRate = double(typecast(uint8(data(2:3)), 'uint16'));
end
fprintf('Heart rate measurement: %d(bpm)\n', heartRate);
Heart rate measurement: 96(bpm)

```

\section*{Read Running Speed and Cadence Data}

Similarly, create an object for the "RSC Measurement" characteristic by specifying its service and characteristic information.
```

rsc = characteristic(shoe, "running speed and cadence", "rsc measurement")
rsc =
Characteristic with properties:

```
```

            Name: "RSC Measurement"
            UUID: "2A53"
            Attributes: "Notify"
    Descriptors: [1x3 table]
    DataAvailableFcn: []

```
Show descriptors

Then read the current running speed and cadence value from the device.
```

data = read(rsc)
data = 1\times10

3	0	0	0	0	0	84	57	0	0

```

According to Bluetooth Low Energy Specification, the "RSC Measurement" characteristic value contains 2 bytes that represents the instantaneous speed and 1 byte that represents the instantaneous cadence. Convert the raw data to a running speed in meters per second \((\mathrm{m} / \mathrm{s})\) and to a cadence in steps per minute.
```

instantaneousSpeed = double(typecast(uint8(data(2:3)), 'uint16'))/256;
instantaneousCadence = data(4);
fprintf('Instantaneous speed: %.2f(m/s) and instantaneous cadence: %d(steps per minute
Instantaneous speed: 0.00(m/s) and instantaneous cadence: 0(steps per minute)

```

\section*{Correlate Heart Rate and Running Speed}

After reading the heart rate and RSC data, track live data during a running session and correlate the two measurements to analyze fitness performance.

To show the correlation of fitness data, first create two plots to create an animation by adding data points in a loop.
```

% Create a plot for running speed against heart rate
axSpeed = axes('XLim', [0, 5], 'YLim', [60, 220]);
xlabel(axSpeed, 'Running speed (m/s)');
ylabel(axSpeed, 'Heart rate (bpm)');
subplot(1, 2, 1, axSpeed);
hSpeed = animatedline(axSpeed, 'Marker', 'o', 'MarkerFaceColor', 'green');
% Create a plot for running cadence against heart rate

```
```

axCadence = axes('XLim', [0, 200], 'YLim', [60 220]);
xlabel(axCadence, 'Running cadence (steps per minute)');
ylabel(axCadence, 'Heart rate (bpm)');
subplot(1, 2, 2, axCadence);
hCadence = animatedline(axCadence, 'Marker', 'o', 'MarkerFaceColor', 'blue');

```


Next, read device data in a loop and update the plot as the user progresses from walking to jogging to running.
```

for loop = 1:30
% Get heart rate data

```
```

    data = read(hr);
    flag = uint8(data(1));
    heartRateValueFormat = bitget(flag, 1);
    if heartRateValueFormat == 0
        heartRate = data(2);
    else
    heartRate = double(typecast(uint8(data(2:3)), 'uint16'));
    end
% Get running speed data
data = read(rsc);
instantaneousSpeed = double(typecast(uint8(data(2:3)), 'uint16'))/256;
instantaneousCadence = data(4);
% Update plot with new data
addpoints(hSpeed, instantaneousSpeed, heartRate);
addpoints(hCadence, instantaneousCadence, heartRate);
drawnow;
end

```


These plots generally show that higher running speed and cadence values correspond to an increased heart rate.

\section*{Disconnect from Device}

Clear the device objects when you are finished working with them.
clear belt shoe

\section*{Track Orientation of Bluetooth Low Energy Device}

This example shows how to track device orientation with device motion sensor data using Bluetooth \({ }^{\circledR}\) Low Energy communication.

\section*{Hardware Setup}

This example uses the Nordic Thingy:52 \({ }^{\mathrm{TM}}\) device. Nordic Thingy:52 is a Bluetooth Low Energy device with a 9 -axis motion sensor. This device provides a rich set of sensor data including raw accelerometer, gyroscope, compass, and fused data. This example uses the device calculated rotation matrix to track the device orientation.

\section*{Discover and Connect to Device}

First, check that the Bluetooth Low Energy device supports connections by finding it in MATLAB. The blelist function scans nearby Bluetooth Low Energy peripheral devices that are advertising.
```

blelist

Index	Name	Address	RSSI	Advertisement
1	"Thingy"	"F2DF635320F6"	-54	[1×1 struct]
2	""	"5AE98748DC34"	-73	[ $1 \times 1$ struct]
3	""	"7A9762B423E0"	-76	[1×1 struct]
4	""	"5E0EAEF93E78"	-76	[1×1 struct]
5	""	"08534F9CC17B"	-77	[1×1 struct]
6	""	"4323693660AC"	-79	[1×1 struct]
7	""	"5386B1B9FCEC"	-82	[1×1 struct]
8	""	"2D132D3ACD33"	-83	[1×1 struct]
9	""	"537E555A0188"	-84	[1×1 struct]
10	""	"237E6384E9BF"	-87	[1×1 struct]
11	""	"2C0CA5F4793C"	-88	[1×1 struct]
12	""	"55D810EF7331"	-89	[1×1 struct]
13	""	"3A01FA8D3D18"	-89	[1×1 struct]
14	""	"2084C6A7DA4D"	-90	[1×1 struct]
15	""	"52DBAB89F58F"	-91	[1×1 struct]
16	" "	"528E12038BD6"	-91	[1×1 struct]

```

After the device is found in MATLAB, connect to it by calling ble. Specify the name of the device if it has a unique name, or specify the device address.
```

b = ble("Thingy")
b =
ble with properties:

Name:	Thingy"
Address:	"F2DF635320F6"
Connected:	1
Services:	$[9 \times 2$ table]
Characteristics: $[38 \times 5$ table]	

```

Show services and characteristics
Access the Characteristics property of the ble object. The device has the "Motion Service" service, which contains the "Rotation Matrix" characteristic.

\section*{b.Characteristics}
```

ans=38\times5 table
ServiceName ServiceUUID
"Generic Access"
"1800"
"1800"
"1800"
"1800"
"1801"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680100-9B35-4933-9B10-52FFA9740042"
"EF680200-9B35-4933-9B10-52FFA9740042"
"EF680200-9B35-4933-9B10-52FFA9740042"
"EF680200-9B35-4933-9B10-52FFA9740042"

```
"Devic
"Appea
"Peripl
"Centra
"Servi
"Devic
"Adver "Conne
"Eddys
"Cloud
"Firmw
"MTU Re
"NFC T
"Tempe
"Press
"Humid

\section*{Read Sensor Data}

Next, create an object for the "Rotation Matrix" characteristic by specifying its service and characteristic information.
```

c = characteristic(b, "motion service", "rotation matrix")
c =
Characteristic with properties:
Name: "Rotation Matrix"
UUID: "EF680408-9B35-4933-9B10-52FFA9740042"
Attributes: "Notify"
Descriptors: [1x3 table]
DataAvailableFcn: []

```

\section*{Show descriptors}

Then read the current rotation matrix value from the device.
```

data = read(c)
data = 1\times18

```
\begin{tabular}{llllllllllllll}
253 & 63 & 255 & 255 & 15 & 1 & 255 & 255 & 0 & 64 & 8 & 0 & 240 & 254
\end{tabular}

According to the Nordic Thingy:52 documentation, this raw data contains a 3-by-3 matrix where each element is a 16 -bit integer sent in 2 bytes. Each element represents a signed floating point number, composed of 2 sign-and-exponent bits and 14 fraction bits. Interpret the raw data as a rotation matrix.
```

% Prepare 4-by-4 transform matrix to plot later (assume the device has no
% translation and only rotation)
transformMatrix = eye(4);
% Populate the transform matrix with 9 rotation matrix elements
for row = 1:3
for column = 1:3
% Extract the 2 bytes representing the current element in the rotation matrix
beginIndex = (row-1)*3 + (column-1);
element = data(2*beginIndex + (1:2));
transformMatrix(row, column) = double(typecast(uint8(element), 'int16')) / (2^`
end
end

```
```

% Display the transform matrix
disp(transformMatrix);

0.9998	-0.0001	0.0165	0
-0.0001	1.0000	0.0005	0
-0.0166	-0.0005	0.9998	0
0	0	0	1.0000

```

\section*{Track Device Orientation}

To show live tracking of the device orientation, first plot a 3-D object representing the Nordic Thingy:52 device.
```

% Create a 3-D plot
ax = axes('XLim', [-1.5 1.5], 'YLim', [-1.5 1.5], 'ZLim', [-1 2]);
xlabel(ax, 'X-axis');
ylabel(ax, 'Y-axis');
zlabel(ax, 'Z-axis');
% Reverse the 2 axis directions to match the device coordinate system
set(ax, 'Zdir', 'reverse');
set(ax, 'Xdir', 'reverse');
grid on; view(3);
% Define the surface color
color = [0.3010 0.7450 0.9330];
% Create patches for all cube surfaces by specifying the four corners of each surface
top = [-1 -1 1; 1 -1 1; 1 1 1; -1 1 1];
p(1) = patch(top(:,1), top(:,2), top(:,3), color);
bottom = [-1 -1 0; 1 -1 0; 1 1 0; -1 1 0];
p(2) = patch(bottom(:,1), bottom(:,2), bottom(:,3), color);
front = [1 -1 0; 1 1 0; 1 1 1; 1 -1 1];
p(3) = patch(front(:,1), front(:,2), front(:,3), color);
back = [-1 -1 0; -1 1 0; -1 1 1; -1 -1 1];
p(4) = patch(back(:,1), back(:,2), back(:,3), color);
left = [1 -1 0; -1 -1 0; -1 -1 1; 1 -1 1];
p(5) = patch(left(:,1), left(:,2), left(:,3), color);
right = [1 1 0; -1 1 0; -1 1 1; 1 1 1];
p(6) = patch(right(:,1), right(:,2), right(:,3), color);

```
```

mark = [0.9 -0.7 -0.01; 0.7 -0.7 -0.01; 0.7 -0.9 -0.01; 0.9 -0.9 -0.01];
p(7) = patch(mark(:,1), mark(:,2), mark(:,3), 'black');
% Set the object transparency
alpha(0.5)

```

After the 3-D object is created, link the rotation matrix data acquired from the device to the plot by using hgtransform.
```

tfObject = hgtransform('Parent', ax);
set(p, 'Parent', tfObject);

```


With the Transform object, pull device data in a loop and use the data to update the object orientation. The rotation matrix data sent from the device has precision loss, which
can cause matrix transformation warnings. For this example, ignore the warning by suppressing it. For greater accuracy, you can use "Euler" or "Quaternion" characteristic data and convert it to a rotation matrix using Robotics System Toolbox \({ }^{\mathrm{TM}}\).
```

warning('off', 'MATLAB:hg:DiceyTransformMatrix');

```
for loop = 1:100
 \% Acquire device data
 data \(=\) read(c);
 \% Prepare 4-by-4 transform matrix to plot later
 transformMatrix = eye(4);
 \% Populate the transform matrix with 9 rotation matrix elements
 for row = 1:3
 for column = 1:3
 \% Extract the 2 bytes representing the current element in the rotation mat
 beginIndex \(=(\) row-1)*3 \(+(\) column-1);
 element = data(2*beginIndex + (1:2));
 transformMatrix(row, column) = double(typecast(uint8(element), 'int16'))
 end
 end
 \% Update plot
 set(tf0bject, 'Matrix', transformMatrix);
 pause(0.1);
end

warning('on', 'MATLAB:hg:DiceyTransformMatrix');

\section*{Close Device Connection}

Clear the device object when you are finished working with it. clear b

\section*{Troubleshooting Bluetooth Low Energy}

If you are having issues connecting to your Bluetooth Low Energy peripheral device from MATLAB or are unable to read or write data, you can try some of the following troubleshooting tips.

For more information about the Bluetooth Low Energy interface, see:
- "Bluetooth Low Energy Communication Overview" on page 14-2
- "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5
- "Work with Device Characteristics and Descriptors" on page 14-9

\section*{Supported Platforms}

The Bluetooth Low Energy interface is supported on these platforms:
- macOS 10.13 High Sierra or later
- Windows 10 or later

Calling blelist or ble on any other platform returns an error.

\section*{Device Discovery and Connection}

If MATLAB does not detect your built-in or external Bluetooth adapter when you call blelist, try the following:
- Make sure the adapter supports Bluetooth 4.0 and higher.
- Restart Bluetooth services on your computer.
- Update to the latest device drivers for your adapter.
- Reboot your computer.

If your device does not appear in the blelist output, make sure that you have done the following:
- Power on your peripheral device.
- Bring your peripheral device within range of your computer.
- Disconnect your peripheral device from any other devices or applications first. The output from blelist shows you only nearby devices that are currently advertising
data. If your device is already connected in another application or in MATLAB, it might not appear in the output.
- Try a larger value for the Timeout parameter in blelist. This increases the amount of time MATLAB scans for nearby devices. For example, blelist("Timeout", 20) searches for nearby peripheral devices for 20 seconds. The default timeout value is three seconds. If your device transmits advertisement data less often than once every three seconds, MATLAB might not capture it.

If your peripheral device powers off or disconnects, the UUID might change when it powers on again or reconnects. However, the name remains the same in the blelist output. If you are trying to create a new ble object for the same device, specify the new UUID instead of the name.

On Windows, if a peripheral device has already been paired but the firmware that defines characteristics and descriptors is changed, ble might fail to connect the device to your computer. To fix this, disconnect and then reconnect your device to Windows.

\section*{Read and Write Data}

Using read(c,'latest') or read(c) inside a callback function for a characteristic with a high rate can throw an error or block MATLAB for a long time. Instead, use read (c, ' oldest') in a callback function. For an example, see "Read Characteristic Data from a Bluetooth Low Energy Peripheral Device Using a Callback Function".

On macOS, some device characteristics require authentication to read or write for the first time. After you create a ble object, run read or write. Follow the prompts that appear on your computer to pair your peripheral device.

\section*{See Also}
ble|blelist|characteristic|descriptor

\section*{More About}
- "Bluetooth Low Energy Communication Overview" on page 14-2
- "Find Your Bluetooth Low Energy Peripheral Devices" on page 14-5
- "Work with Device Characteristics and Descriptors" on page 14-9```

